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Abstract
Background To prospectively develop and validate the T2WI texture analysis model based on a node-by-node comparison 
for improving the diagnostic accuracy of lymph node metastasis (LNM) in rectal cancer.
Methods A total of 381 histopathologically confirmed lymph nodes (LNs) were collected. LNs texture features were extracted 
from MRI-T2WI. Spearman’s rank correlation coefficient and the least absolute shrinkage and selection operator were used 
for feature selection to construct the LN rad-score. Then the clinical risk factors and LN texture features were combined to 
establish combined predictive model. Model performance was assessed by the area under the receiver operating character-
istic (ROC) curve (AUC). Decision curve analysis (DCA) and nomogram were used to evaluate the clinical application of 
the model.
Results A total of 107 texture features were extracted from LN-MRI images. After selection and dimensionality reduction, 
the radiomics prediction model consisting of 8 texture features showed well-predictive performance in the training and 
validation cohorts (AUC, 0.676; 95% CI 0.582–0.771) (AUC, 0.774; 95% CI 0.648–0.899). A clinical–radiomics prediction 
model with the best performance was created by combining clinical and radiomics features, 0.818 (95% CI 0.742–0.893) for 
the training and 0.922 (95% CI 0.863–0.980) for the validation cohort. The LN Rad-score in clinical–radiomics nomogram 
obtained the highest classification contribution and was well calibrated. DCA demonstrated the superiority of the clinical–
radiomics model.
Conclusion The lymph node T2WI-based texture features can help to improve the preoperative prediction of LNM.
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Abbreviations
MRI  Magnetic resonance imaging
LNM  Lymph node metastasis
LNs  Lymph nodes
ROC  Receiver operating characteristic
AUC   Area under the curve
DCA  Decision curve analysis
TME  Total mesorectal excision
CEA  Carcinoembryonic antigen
CA19-9  Carbohydrate antigen 19–9
LASSO  Least absolute shrinkage and selection operator

Introduction

Rectal cancer is common cancer with high mortality and 
morbidity rate [1]. Mesorectal lymph node metastasis is a 
primary metastatic modality in rectal cancer and an impor-
tant prognostic factor affecting local recurrence and overall 
survival [2]. The National Comprehensive Cancer Network 
rectal cancer guidelines recommend accurately evaluating 
LN invasion to guide surgical and individualized treatment 
strategies [3]. Therefore, preoperative clarification of LN 
status is essential for managing rectal cancer.

In clinical practice, magnetic resonance imaging (MRI) 
is the preferred method for assessing rectal cancer staging 
[4]. However, lacking uniform criteria for defining LN sta-
tus, previous studies have shown that the accuracy of MRI 
in predicting the N stage of rectal cancer is unreliable, both 
in terms of short diameter and morphological features [5, 
6]. Therefore, more powerful and sensitive diagnostic tools 
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are urgently needed to optimize the diagnostic accuracy of 
LNM.

In recent years, radiomics research has attracted much 
attention with the development of artificial intelligence. As 
an emerging field of translational research, radiomics con-
vert medical images into high-throughput quantitative fea-
tures or biomarkers for tissue characterization and constructs 
predictive models through machine learning, which can be 
used for tumor diagnosis, staging, treatment response predic-
tion, and prognosis [7, 8]. Several colorectal cancer studies 
have applied radiomics to predict LN status and provide a 
basis for clinical decision-making, implying that radiomics 
has great potential for predicting LN status [9–14].

However, lacking pathological ground truth of individual 
LN, most studies have focused on extracting imaging fea-
tures of the primary tumor to predict LNM indirectly, and 
few have explored the features of LNs themselves. There-
fore, this study prospectively investigated the lymph nodes 
T2WI-based texture features performance, by combining 
with clinical risk factors to develop and validate the radi-
omics models, assessing the value of preoperative prediction 
of LNM.

Methods

This methodological study was based on “Prospective study 
for the accuracy of imaging in the diagnosis of mesangial 
lymph node staging in rectal cancer.” The Medical Ethics 
Committee of our hospital approved the study, and written 

informed consent was obtained from all patients before sur-
gery. From October 2021 to October 2022, patients with 
histopathologically verified rectal cancer underwent rectal 
MRI before surgery. The inclusion criteria were: (1) rectal 
carcinoma located ≤ 10 cm above the anal verge; (2) radi-
cal surgery scheduled within two weeks after rectal MRI; 
and (3) patients with 1 ≤ LNs ≤ 15 on preoperative imaging 
fndings. Exclusion criteria were: (1) complete imaging and 
clinical data were unavailable; 2) patients received preopera-
tive neoadjuvant chemoradiotherapy. A total of 74 eligible 
patients with rectal cancer were finally enrolled (Fig. 1).

MR imaging protocol

MR imaging was performed with a 3 T MAGNETOM Skyra 
MR scanner (Siemens Healthineers, Malvern, PA, USA) 
employing an 18-channel body coil. All patients were given 
an intravenous antiperistaltic agent (10 mg raniscopolamine 
hydrochloride) 30 min before MRI for bowel preparation. 
The high-resolution rectal MRI protocol comprised turbo 
spin-echo sagittal, oblique coronal, oblique axial T2-, and 
diffusion-weighted imaging. The scan parameters used for 
the oblique axial T2-weighted imaging sequence were as 
follows: repetition time/echo time, 6890/100; slice thickness, 
3 mm; voxel size, 0.3 × 0.3 × 3 mm; field of view, 180 mm; 
matrix, 384 × 346; slices, 48; average, 3; total scanning time, 
5 min, and 5 s; parallel acquisition technique with general-
ized autocalibrating partial parallel acquisition acceleration 
factor. The oblique axial DWI sequence was a transverse 
echo-planar imaging diffusion sequence with 1000 s/mm2 

Fig. 1  Flowchart of patient 
selection. pN + any pathologic 
tumor stage with lymph node 
positivity, pN- any pathologic 
tumor stage with lymph node 
negativity
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as the highest b value. The same parameters, such as field 
of view (FOV), slice thickness, and gap, were used in DWI 
to match the tumor on the oblique axial T2WI. The total 
scan time was 30 min. We retrieve and acquire all (DICOM) 
images from our hospital's picture archiving and communi-
cation system (PACS) system for image segmentation and 
analysis.

Radiologic–pathologic node‑by‑node comparison

All rectal MRI images of patients with rectal cancer were 
analyzed preoperatively by a radiologist with more than 
15 years of experience interpreting rectal imaging studies. 
Similar to the method described in previous reports, the radi-
ologist performed anatomic correlation matching with T2WI 
to confirm regional LNs and drawn on anatomical maps to 
obtain accurate histology-imaging correlation [15]. All 
patients underwent total mesorectal excision (TME) within 
2 weeks of the imaging examination. Fresh specimens were 
sent to the pathology laboratory for macroscopic examina-
tion. A pathologist with 15 years of experience guided each 
specimen by a 3 mm ruled template and sectioned at 3 mm 
intervals transversely. LNs were carefully identified on each 
slice, and the anatomical map was used as a template for 
node-by-node correspondence. The benign and malignant 
LNs were reported according to the microscopy results.

Clinical and imaging data collection

The clinical data included patient age, sex, carcinoembry-
onic antigen (CEA), and carbohydrate antigen 19–9 (CA19-
9) levels. The histological grades were obtained from patho-
logical reports.

In MRI data assessments, two radiologists experienced in 
reading rectal MRI were blinded to the histological infor-
mation and independently reviewed the entire MR images. 
The tumor diameter, infiltration depth, MRI-EMVI, and 
MRI-CRM were determined. Two radiologists determined 
the above indicators and then reviewed with a senior radiolo-
gist for final judgment.

Radiomics workflow

The radiomics workflow is illustrated in Fig. 2, and the 
details of steps are described as follows.

Image data acquisition and segmentation

The MRI DICOME image files of the matched LNs were 
collected and the region of interest (ROI) on oblique axial 
T2WI was traced manually along the largest cross-sectional 
area of each LN using 3D Slicer version 4.11.0 (Harvard 
University, Boston, MA, USA), excluding adjacent air, ves-
sels, fat and normal tissues. All outlines were performed 
independently by two experienced colorectal surgeons.

Feature extraction and selection

Slicer-radiomics (an extension of the 3D Slicer program 
that encapsulates a PyRadiomics library to compute vari-
ous radiometric features) was used to texture features extrac-
tion. Each ROI extracts 6 sets of raw fine texture features, 
including morphological features (Shape, 14), gray level 
co-occurrence matrix (GLCM, 24), gray level dependence 
matrix (GLDM, 14), first-order statistics (FoS, 18), gray 
level run length matrix (GLRLM, 16), gray level size zone 
matrix (GLSZM, 16), and neighboring gray tone difference 

Fig. 2  The workflow of radiomics in this study



2011Abdominal Radiology (2024) 49:2008–2016 

matrix (NGTDM, 5), for a total of 107 texture features. Sup-
plementary Table 1 summarizes the details of the features. 
The intraclass correlation coefficient (ICC) was used to 
assess the intra-observer and inter-observer agreements of 
feature extraction. Features with better repeatability were 
retained for analysis with ICC > 0.70 as the benchmark. 
Before calculating, features were rescaled into the range 
of [0,1] using min–max normalization and irrelevant were 
eliminated using the method of maximum correlation and 
minimum redundancy (mRMR). The least absolute shrink-
age and selection operator (LASSO) was applied to select 
the optimized features, adjusted by ten-fold cross-validation 
for the penalty parameter lambda to avoid over-fitting. The 
features weighted by LASSO coefficients were linearly com-
bined for constructing the radiomics score (Rad-score) and 
radiomics model.

Model construction and validation

LNs were randomly allocated into training and validation 
groups in a 7:3 ratio to ensure the same distribution of malig-
nant and benign LNs within the two groups. Based on the 
pathology report as the gold standard in the training cohort, 
the Wilcoxon test was first performed for all clinical risk 
factors, and univariate logistic regression was applied for 
factors with p < 0.1 to select independent predictors. Then 
multivariable logistic regression analysis was performed for 
the independent clinical risk factors, Rad-score was used to 
establish the clinical prediction model, radiomics predic-
tion models, and the clinical–radiomics prediction model. 
Nomograms were generated for model visualization and 
application based on the multivariate logistic regression. The 
performance of the nomogram was evaluated using the cali-
bration plot. Receiver operating characteristic (ROC) curves 
and the area under the curve (AUC) were used to assess the 
diagnostic value of the three models and validated. Deci-
sion curve analysis (DCA) was developed to compare the 
net benefits of a series of threshold probabilities based on 
the three models. All steps were performed with R version 
3.6.2 (www.r- proje ct. org) using the “glmnet,” “glm2,” and 
“pROC” packages.

Results

Demographic and clinical findings

From October 2021 to October 2022, 74 cases were pro-
spectively enrolled. Table 1 summarizes and compares 
the basic demographic characteristics, tumor characteris-
tics, clinical features, and categorizes according to the pN 
status. Among them, pT stage, preoperative CEA level, 
CA-199 level, and MRI-EMVI were statistical differences 

between the two sets (p < 0.1). For evaluation on a node-
by-node basis, 381 histopathologically confirmed LNs 
were collected, 342 LNs were negative and 39 were 
positive. The matched LNs were randomly allocated to 
a training cohort (239 negative/27 positive) and a valida-
tion cohort (103 negative/12 positive) in a ratio of 7:3. 
Univariate logistic regression results demonstrated that 
preoperative CEA levels and MRI-EMVI were associated 
with LNM and proved to be independent predictors in mul-
tivariate logistic regression (p < 0.05) (Table 2). Therefore, 
a clinical prediction model based on two significant pre-
dictors is presented in Fig. 3. In the training cohort, the 
diagnostic accuracy of the nomogram was 53.8%, the AUC 
was 0.676 (95% CI 0.582–0.771), and the sensitivity and 
specificity were 85.2 and 50.2%. The validation cohort had 
a prediction accuracy of 60.9%, sensitivity and specific-
ity were 91.7 and 57.3%, with the AUC of 0.774 (95% CI 
0.648–0.899) (Table 3).

Table 1  Demographic comparison between pN + /pN- cohorts

pN- pathological benign lymph node, pN + pathological malignant 
lymph node, pT stage pathological T stage, CA19-9 carbohydrate 
antigen 19–9, CEA carcinoembryonic antigen, CRM circumferential 
resection margin, EMVI extramural vascular invasion
*Chi-square test
**Rank-sum test

Characteristics pN- pN + P value

Number 54 20
Age, median 66 67 0.826**
Tumor diameter (mm) 39 45 0.184**
Infiltration depth (mm) 14 15 0.937**
Gender 0.153*
Male 29 7
Female 25 13
Location 0.598*
Low (< 5 cm) 14 4
Middle (5-10 cm) 40 16
pT stage 0.001*
T1-2 27 0
T3-4 27 20
CA19-9 /(U·mL-1) 0.059*
0–27 51 16
 > 27 3 4
CEA /(ng·mL-1) 0.001*
0–5 45 8
 > 5 9 12
MRI-CRM 0.774*
Positive 17 7
Negative 37 13 0.086*
MRI-EMVI
Positive 11 8
Negative 43 12

http://www.r-project.org
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Radiomics‑based model comparison and validation

A total of 107 texture features were extracted from LN-
MRI images. The mean inter-observer ICC was 0.850, 
indicating substantial agreement. 97 features with favora-
ble repeatability were retained for analysis, and after 
LASSO regression, features were reduced to 8 (Fig. 4).

The final formula of Rad-score used to predict LNM is 
as follows:

Rad-score = 1.692 * MinorAxisLength—13.527 * 
Sphericity—0.023 * VoxelVolume—2.242 * X90Percen-
tile + 8.503 * JointEntropy—1.539 * DependenceNonUni-
formity + 1.371 * LowGrayLevelZoneEmphasis—0.093 * 
Contrast + 3.171.

The AUC values for the radiomics model were 0.793 
(95% CI 0.707–0.880) and 0.847 (95% CI 0.734–0.960) 
in the training and validation cohorts. The sensitivity and 
specificity were 81.5%/70.7% and 75/83.5%, respectively. 
After combining clinical and radiomics features, preop-
erative CEA level was not an independent predictor in 
multivariate logistic regression. The comparison revealed 
that the clinical–radiomics prediction model had the best 
performance in both cohorts with the highest AUC val-
ues, 0.818 (95% CI 0.742–0.893) for the training cohort 
and 0.922 (95% CI 0.863–0.980) for the validation cohort. 
The sensitivity, specificity, and accuracy of the combined 
model in the two cohorts were 88.9, 61.9, 64.7 and 91.7, 
82.5, 83.5%, respectively. The corresponding ROC curves 
and AUC values are shown in Fig. 3 and Table 3. Based on 

Table 2  Univariate and 
multivariate logistic regression 
analyses for LNM

OR odd ratio, CI confidence interval

Factors Univariate logistic regression P value Multivariate logistic regression P value
OR (95% CI) OR (95% CI)

CEA 2.498 (1.118–5.581) 0.026 2.370 (0.983–5.715) 0.055
CA-199 1.233 (0.344–4.425) 0.748
MRI-EMVI 0.437 (0.195–0.978) 0.044 0.405 (0.166–0.986) 0.047
Rad-score 2.746 (1.795–4.201)  < 0.001

Fig. 3  ROC curves of clinical, 
radiomics, and clinical–radiom-
ics combined model: A ROC 
curve in the training cohort. B 
ROC curve in the validation 
cohort

Table 3  Accuracy and predictive value between 3 models

AUC  area under the curve, CI confidence interval, PPV positive predict value, NPV negative predict value

Cohorts Model AUC (95% CI) Cut-off Sensitivity Specificity PPV NPV Accuracy

Training Clinical features 0.676 (0.582–0.771) 0.084 0.852 0.502 0.162 0.968 0.538
Lymph node radiomics 0.793 (0.707–0.880) 0.098 0.815 0.707 0.239 0.971 0.718
Combined 0.818 (0.742–0.893) 0.068 0.889 0.619 0.209 0.980 0.647

Validation Clinical features 0.774 (0.648–0.899) 0.084 0.917 0.573 0.200 0.983 0.609
Lymph node radiomics 0.847 (0.734–0.960) 0.135 0.750 0.835 0.346 0.967 0.826
Combined 0.922 (0.863–0.980) 0.094 0.917 0.825 0.379 0.988 0.835
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this combined model, we generated a visualization of the 
clinical–radiomics nomogram (Fig. 5), with the Rad-score 
obtaining the highest classification contribution.

The Hosmer–Lemeshow goodness-of-fit test was 
p = 0.453 and the bootstrapped-concordance index was 
0.818 in the training cohort. In the validation cohort, the 
Hosmer–Lemeshow goodness-of-fit test was p = 0.927 
and the bootstrapped-concordance index was 0.922. The 
calibration curves demonstrate good agreement between 
the predicted and actual probabilities for the training and 
validation cohorts (Fig. 6).

The result of DCA based on the three models indicated 
that the radiomics-based predictive model gains more ben-
efit compared to the “treat all” or “treat none” strategy 
when the individual LNM threshold probability from 0.5 
to 1.0 (Fig. 7).

Discussion

In this study, we built and validated a combined clini-
cal–radiomics model by extracting LN-T2WI texture features 
based on node-by-node discovery. Our results demonstrate 
that the texture features perform well, significantly improve 
diagnostic accuracy, which can be used as a non-invasive 
adjunctive assessment tool in clinical decision-making.

Accurate assessment of LN status remains challenging in 
current clinical practice. Previous studies have revealed sev-
eral clinical features associated with LNM [10–12, 16–18]. 
In our study, preoperative CEA levels and MRI-EMVI were 
independent risk factors associated with LNM, which is 
consistent with the results of previous studies [11, 12, 17, 
18]. CEA is the most common tumor marker of colorectal 
cancer. It plays a fundamental role in cell recognition and 
adhesion, which is a widely used and simple test in clini-
cal practice. High preoperative levels of CEA may indicate 

Fig. 4  Feature selection and dimension reduction: A The ten-fold cross-validation of the LASSO analysis. B The regression coefficients of 
LASSO

Fig. 5  The clinical–radiomics 
predictive nomogram
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increased tumor metastasis or invasiveness [19]. In addition, 
we found that pN + patients were more likely to present with 
specific features of the mesorectum, including the invaded 
vessel diameter, signal changes, et al. Liu et al. demonstrated 
that MRI-EMVI positivity was associated with LNM [20]. 
In this study, the clinical prediction model obtained a high 
sensitivity but low specificity and diagnostic accuracy, with 
moderate AUC values, implying that clinical features may 
not be sufficient to diagnose LNM reliably. Furthermore, 
while there was a strong correlation between pT staging and 
LNM (p < 0.001), clinicopathological variables were not 
included in the final risk factors since we desire to propose 
a non-invasive assessment tool.

Texture analysis can reflect the spatial distribution of 
gray level intensity and thus objectively describe the het-
erogeneity of the target area. Huang et al. were the first to 
develop radiomics nomogram by extracting texture features 
of the primary tumor in the CT-venous phase and obtained 

a C-index of 0.778 in the validation cohort [17]. Liu et al. 
found that the entropy of tumor was an independent predic-
tor of LNs involvement in ADC histogram texture features 
[21]. Yang et al. went a step further and found that skewness, 
kurtosis, and energy were all correlated with LNM by T2WI 
histogram features of the primary tumor, with independently 
predicted AUCs of 0.648–0.750 [22]. However, both of them 
only extract features from the primary tumor, not individual 
LNs. The truth is features of LN itself are more predictive 
based on node-by-node analysis.

In this study, we determined the status of individual LNs 
by preoperative node-by-node comparison and selected 8 out 
of 107 texture features from T2W images, including three 
shape features, one first-order feature, and four higher-order 
features. These features characterized the geometry and 
color space, suggesting that metastatic LNs may have more 
significant intra-heterogeneity. Interestingly, the MinorAx-
isLength selected from the texture features indicates that 
the size dimensions of LNM are closely related to LNM. 
Although the current diagnostic accuracy of LNM based 
on the maximum short diameter of LNs is only between 0.5 
and0.7 [23], our findings suggest that morphologic features 
and intra-heterogeneity are critical factors in identifying 
metastatic LNs. After fitting to Rad-score, the radiomics 
prediction model showed well-predictive performance in 
the training and validation cohorts (AUC, 0.676; 95% CI 
0.582–0.771) (AUC, 0.774; 95% CI 0.648–0.899), indicating 
that the LNs texture features are helpful in LNM diagnosis.

Considering the variability of individualized treatment 
modalities, a single feature or model may be inadequate in 
clinical practice. In exploring the individualized preopera-
tive prediction nomogram of LNM, Li et al. included nine 
clinical risk factors and demonstrated that the clinical-pri-
mary lesion radiomics-peripheral lymph node radiomics 
model obtained the highest AUC value (0.7606) [11]. Liu 
et al. developed a multi-regional-based MRI radiomics pre-
diction model with improved performance after combining 
clinical data with radiomics features (AUC = 0.832 (95% 

Fig. 6  Calibration curve of the 
nomogram: A Calibration curve 
of the nomogram in the training 
cohort. B Calibration curve of 
the nomogram in the validation 
cohort

Fig. 7  DCA of the nomogram. The net benefit is measured by y-axis. 
The gray curve symbolizes that all LNs had metastasis. The black 
line symbolizes that no LNs had metastasis
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CI 0.717–0.915)) [16]. In our study, the clinical–radiomics 
combined prediction model obtained the highest AUC value 
and maximum net benefit. It should be noted that though 
CEA was statistically different in the univariate analysis, it 
was excluded in the final combined model. The strong dis-
criminatory efficacy of texture features diminished the con-
tribution of CEA, similar to the findings of Chen et al. [18]. 
Furthermore, we found that the combined model had a high 
NPV in both cohorts. The truth is, it is the most clinically 
valuable metric, as patients with accurately identified pN- 
can consider organ preservation strategies, which is impor-
tant for improving the quality of life. To facilitate clinical 
application, we constructed a nomogram in which the LN 
Rad-score showed absolute dominance, predicting that tex-
ture analysis could be a valuable tool for LNM prediction.

Since 2016, the role of texture analysis in predicting 
LNM of rectal cancer has been reported in several stud-
ies, mostly using CT as the initial evaluation tool [10, 11, 
17, 24]. In contrast, MRI has high soft-tissue contrast and 
spatial resolution, which is advantageous in characterizing 
the details and is more conducive in finding the differences 
between LNs [4]. In sketching ROI, as in the study by Huang 
et al. [17], we focused on depicting the largest cross-section 
of the LNs. Even though it may be challenging to summa-
rize all texture features in the largest cross-section for large 
volumes or morphologically irregular LNs, small volumes 
LNs may only be displayed at a single level due to the high 
layer thickness of MRI. Thus, to balance the errors caused 
by tracing, the current segmentation method is probably the 
most clinically feasible, and future related studies need to 
improve and optimize this aspect.

This study has some limitations. First, this trial with a rel-
atively small sample size, containing only 39 positive lymph 
nodes, which may affect the radiomics model's stability, 
exhibiting in lower sensitivity and higher specificity. We aim 
to increase the sample size in the future and substantially 
improving the model’s sensitivity. Second, lacking external 
validation may hinder the universality of results. Third, we 
selected only T2WI for feature extraction. Studies have dem-
onstrated that combining multi-regional or multi-objective 
features can further improve the prediction [16, 18]. Fourth, 
whole-lymph nodes manual segmentation was used in this 
study, which is time-consuming and error-prone. Currently, 
several studies utilized radiomics features extracted from 
automatic or semi-automatic segmentation based on deep 
learning [25]. The utilization of artificial intelligence has 
significantly enhanced the reliability of research and holds 
promise as a replacement for the time-consuming and non-
reproducible manual segmentation method currently in use 
[26]. Fifth, the inherent shortcomings of Radiomics lead to 
poor reproducibility. For example, different MRI techniques, 
parameters can affect the results. In addition, the variations 
in treatment approaches across regions or institutions can 

result in distinct lymph node responses. The reactive LN 
swelling makes it difficult tobe differentiated from involved 
nodes. Edema of the perirectal fat tissue by radiation and 
post-radiation fibrosis around the LN may result in false-
positive results of LN status, which makes the reliability of 
the extracted features challenged. Therefore, a larger sam-
ple and multi-center validation are required to complete the 
clinical transformation.

Conclusion

The results of this study demonstrate that the lymph node 
T2WI-based texture features can facilitate individualized 
preoperative prediction of LNM in rectal cancer.
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