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Abstract
Purpose To assess the role of pretreatment multiparametric (mp)MRI-based radiomic features in predicting pathologic 
complete response (pCR) of locally advanced rectal cancer (LARC) to neoadjuvant chemoradiation therapy (nCRT).
Methods This was a retrospective dual-center study including 98 patients (M/F 77/21, mean age 60 years) with LARC who 
underwent pretreatment mpMRI followed by nCRT and total mesorectal excision or watch and wait. Fifty-eight patients from 
institution 1 constituted the training set and 40 from institution 2 the validation set. Manual segmentation using volumes of 
interest was performed on T1WI pre-/post-contrast, T2WI and diffusion-weighted imaging (DWI) sequences. Demographic 
information and serum carcinoembryonic antigen (CEA) levels were collected. Shape, 1st and 2nd order radiomic features 
were extracted and entered in models based on principal component analysis used to predict pCR. The best model was 
obtained using a k-fold cross-validation method on the training set, and AUC, sensitivity and specificity for prediction of 
pCR were calculated on the validation set.
Results Stage distribution was T3 (n = 79) or T4 (n = 19). Overall, 16 (16.3%) patients achieved pCR. Demographics, MRI 
TNM stage, and CEA were not predictive of pCR (p range 0.59–0.96), while several radiomic models achieved high diagnos-
tic performance for prediction of pCR (in the validation set), with AUCs ranging from 0.7 to 0.9, with the best model based 
on high b-value DWI demonstrating AUC of 0.9 [95% confidence intervals: 0.67, 1], sensitivity of 100% [100%, 100%], and 
specificity of 81% [66%, 96%].
Conclusion Radiomic models obtained from pre-treatment MRI show good to excellent performance for the prediction of 
pCR in patients with LARC, superior to clinical parameters and CEA. A larger study is needed for confirmation of these 
results.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00261-023-04128-0&domain=pdf
http://orcid.org/0000-0002-8483-3653


792 Abdominal Radiology (2024) 49:791–800

1 3

Graphical abstract

Predic�on of locally advanced rectal cancer response to 
neoadjuvant chemoradia�on therapy using volumetric 
mul�parametric MRI-based radiomics

El Homsi et al; 2023

A radiomics model based on high b-value 
DWI showed an AUC of 0.9, sensitivity of 
1 and specificity of 0.81 for predicting 
response to neoadjuvant therapy in 
patients with locally advanced rectal 
cancer.
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Abbreviations
DWI  Diffusion-weighted imaging
LARC   Locally advanced rectal cancer
MLP  Multilayer perceptron
mpMRI  Multiparametric magnetic resonance imaging
nCRT   Neoadjuvant chemoradiation therapy
PCA  Principal component analysis
pCR  Pathologic complete response
T1WI  T1-weighted imaging
T2WI  T2-weighted imaging
TRG   Tumor regression grade

Introduction

Colorectal cancer (CRC) is the 3rd most common cancer 
worldwide and the 2nd most deadly cancer [1]. The incidence 
of rectal cancer has recently increased in patients younger than 
50 years [2]. According to the National Comprehensive Cancer 
Network (NCCN) guidelines, the current standard treatment 
for patients with locally advanced rectal cancer (LARC) is neo-
adjuvant chemoradiation therapy (nCRT) followed by surgery 
with total mesorectal excision [3]. However, up to 25% of these 
patients will show complete pathological response (pCR) after 
nCRT, which may render surgery unnecessary [4]. As pCR 
can only be assessed with certainty at histopathology, imaging 
could represent a valuable noninvasive tool to predict which 

patients are more likely to respond to neoadjuvant therapy, 
sparing them surgery and its complications.

MRI is the imaging modality of choice for local rectal 
cancer staging and follow-up after neoadjuvant therapy, 
typically by combining T2-weighted imaging (T2WI) and 
diffusion-weighted imaging (DWI) [5]. Contrast-enhanced 
T1WI may have additional value, primarily in identifying 
tumor recurrence [6]. Moreover, radiomics, a method of 
algorithm-based computed extraction of a large number 
of quantitative image features from diagnostic medical 
images, has the potential for improving diagnostic and 
prognostic accuracy [7]. Several studies have reported 
the use of radiomic models based on pre-treatment MRI, 
with reported AUCs ranging between 0.69 and 0.94 for 
the prediction of pCR in LARC [8–14]. Most of these 
studies were single-center [8, 10, 12–14] and analyzed 
mostly T2WI sequences [8–10]. Three of these studies had 
external validation cohorts [9–11]. For example, a recent 
dual-center study that analyzed T2WI radiomic features 
on pre-treatment MRI (n = 132) achieved an AUC of 0.80 
in the validation cohort [9]. Only two studies have ana-
lyzed radiomic features on DWI [11, 12], while one study 
assessed additional features from pre-contrast T1WI with 
T2WI [14] and developed a nomogram including clini-
cal features, achieving an AUC of 0.912. Finally, another 
study analyzed contrast-enhanced T1WI and DWI (n = 48) 
with no validation cohort [12]. To our knowledge, there 
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have not been significant multi-center efforts on evaluating 
the performance of radiomics using multiparametric MRI 
(mpMRI), across training and external validation cohorts.

The objective of our study was to assess the role of pre-
treatment mpMRI-based radiomic features in predicting pCR 
of LARC to neoadjuvant chemoradiation therapy (nCRT).

Materials and methods

Study population

This was a retrospective dual-center study approved by the 
Institutional Review Board of both institutions (Institution 1, 
Ichan School of Medicine at Mount Sinai and Institution 2, 
Columbia University Medical Center) with a waiver for writ-
ten informed consent. We examined the databases of both 
institutions for consecutive adult patients diagnosed with 
LARC (stage T3–4 or N+) who underwent pre-treatment 
MRI and who were subsequently treated by either neoadju-
vant chemoradiation therapy followed by surgical excision or 
watch-and-wait between January 2013 and December 2019. 
Reasons for exclusion are listed in Fig. 1. Neoadjuvant ther-
apy consisted of capecitabine (n = 69) or FOLFOX (combi-
nation of folinic acid, fluorouracil, and oxaliplatin, n = 11) 
combined with radiation therapy (dose ranging between 
25 and 40 Gy divided into 5–28 fractions over a period of 
35.6 days ± 10.3 days). The type of chemotherapy adminis-
tered was missing in 18 patients. The final study population 
included 98 patients (77M/21F, average 58.3 years) includ-
ing 58 from institution 1 and 40 from institution 2. The aver-
age time between the end of CRT and surgery was 80 days 
(range 5–315 days, Table 1).

MRI protocol

At institution 1, out of 58 rectal MRI examinations, 39/58 
(67%) were performed in-house while the remaining 19/58 
(33%) were done at outside facilities. A total of 26 MRIs 
were performed at 1.5 T and 32 at 3 T. At institution 2, 
all the MRIs were performed in-house (22 MRIs at 1.5 T 
and 18 MRIs at 3 T). The patients from institution 2 were 
included in a previous publication in which a radiomic 
model based on T2WI sequence in pre-treatment rectal 
MRI was used to predict pCR, neoadjuvant rectal score, 
and tumor regression score (blinded Ref). This previous 
publication did not assess T1WI pre- and post-contrast and 
DWI. MRI examinations were performed using different 

Fig. 1  Flowchart of the patient 
population

Table 1  Patient population characteristics

TRG  tumor regression grade
*Unavailable in 18 patients

Training set (n = 58) Validation set (n = 40)

Age (years, mean ± SD) 57 ± 13 63 ± 13
Gender
 Male 45 (78%) 32 (80%)
 Female 13 (22%) 8 (20%)

Pre-treatment serum 
CEA* (ng/mL, 
mean ± SD)

23.4 ± 50 12 ± 27

Baseline MRI T-stage
 T3 50 (86%) 29 (73%)
 T4 8 (14%) 11 (27%)

Histopathologic TRG 
score

 Score 0 12/58 (21%) 4/40 (10%)
 Score 1 13/58 (22%) 17/40 (43%)
 Score 2 22/58 (38%) 16/40 (40%)
 Score 3 11/58 (19%) 3/40 (7%)
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platforms including GE (n = 53), Siemens (n = 41), and 
Philips (n = 4). MRI sequence parameters are summarized 
in Supplementary Table 1.

Qualitative analysis

Tumor location and stage were retrieved by the study coordi-
nator (observer 1, ME, a radiologist from institution 1, with 
1 year experience in body MRI) from clinical reports of both 
institutions. Tumor location was identified according to the 
distance from the anal verge [15]. Tumor stage was assessed 
based on the American Joint Committee on Cancer Stag-
ing Manual of TNM staging (applied to MRI) and extracted 
from clinical MRI reports [16].

Quantitative analysis

Tumor segmentation

Tumors were manually segmented by observer 1, who pre-
scribed volumes of interest (VOIs) in tumors on oblique 
axial T2WI, T1WI pre- and post-contrast (at 60 s), low 
(0–50) and high b-value (600–1500) DWI using software 
compliant with the Imaging Biomarker Standardization Ini-
tiative (IBSI) guidelines [17] (Olea Sphere 3.0.16, La Cio-
tat, France). ADC maps were not segmented. Tumor depos-
its outside the primary tumor and lymph nodes were not 
included in the segmentation. A second observer (observer 
2, NV, from institution 1, with 1 year of experience in body 
MRI) segmented 24 patients following the same guidelines 
for the purpose of inter-observer reproducibility assessment. 
Both observers were blinded to outcome at time of image 
analysis. Tumor volume was measured on all segmented 
sequences.

Radiomic feature extraction

In order to homogenize image processing, spatial resampling 
was performed to create isotropic voxels (1.0 × 1.0 × 1.0 
 mm3) using the nearest neighbor as the interpolation algo-
rithm. Signal intensity discretization was performed using a 
fixed bin number of 64, as recommended by the IBSI guide-
lines. Signal intensity normalization of the images was per-
formed for all sequences, based on all pixel values in the 
image using z-score normalization:

where X and f(x) are the original and normalized intensity, 
respectively, and μx and σx are the mean and the standard 
deviation of the signal intensity values [18]. 108 Radiomic 

f (x) =
(x − �x)

�x
,

features for each image type (T2WI, low and high b-value, 
pre- and post-contrast T1WI) were extracted using the same 
software, for a total of 540 features per patient. These fea-
tures were divided into the following categories: 16 shape 
features, 19 1st order features (histogram features), 23 origi-
nal gray level co-occurrence (GLCM), 16 original gray level 
run length matrix (GLRLM), 15 original gray level size zone 
matrix (GLSZM), 14 original gray level dependence matrix 
(GLDM), and 5 original neighboring gray tone difference 
matrix (NGTDM).

Model building

Patients from institution 1 were used as a training set and 
those from institution 2 as validation set. A methodic feature 
selection with principal component analysis (PCA) was used 
to reduce the risk of overfitting and therefore a more general-
izable model could be obtained. The top N radiomic features 
that best explained the variation between the target and non-
target samples were used, with N = 20, 50, 100, and 108 (all). 
For generalizability, we conducted multiple experiments 
with different neural network architectures using a 20-k fold 
cross-validation method on the training set to identify the 
most suitable architectures for our predictive task. The cross-
validation method was applied only on the training dataset; 
the hold-off validation set was only used for testing purposes. 
By evaluating the average performance across the 20 folds, 
this approach provided valuable insights into which network 
architectures were most suitable for our predictive task. Ana-
lyzing the average performance across the folds allowed us 
to identify the best-performing model architectures. These 
well-optimized architectures were subsequently tested on 
the validation dataset, ensuring a robust assessment of their 
predictive capabilities. We explored different combinations 
of layers and nodes, opting for a shallow network configura-
tion (consisting in 1 input layer, 3 hidden layers and 1 output 
layer) due to the limited number of available samples [19, 
20]. Once the optimal architecture was identified through the 
cross-validation approach, the selected models were trained 
using the entire training dataset and the performance was 
tested on the validation dataset. To overcome the limited 
number of samples, data augmentation was performed on the 
training set using Synthetic Minority Oversampling Tech-
nique (SMOTE) [21]. This is a popular technique in the field 
of machine learning to address class imbalance problems 
by generating synthetic samples to augment the minority 
class. To do so, the algorithm selects k-nearest neighbors 
of the minority class and creates new instances along the 
connecting multi-dimensional line between these samples. 
To apply this method, we used the Python imbalanced-
learn module which provides a SMOTE function. In our 
application we kept the default parameters just keeping the 
same random state in order to have replicable results. This 
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technique allowed us to balance our training dataset from 
25% complete response and 75% non-complete response to 
a 50/50 distribution. The best results were obtained with a 
MLP (multilayer perceptron) model using the top 100 PCA 
(principal component analysis) features. This shallow MLP 
has 3 hidden layers of 8, 16, and 32 nodes, respectively, and 
an output layer predicting pCR vs. no pCR. The batch size 
corresponds to the number of samples for a single forward 
backward iteration for weights update. The output of the 
MLP is a value between 0 and 1 indicating a likelihood of 
a sample pertaining to the pCR group (1) or the non pCR 
group (0). This way, by thresholding the values at 0.5, the 
model made its predictions for every sample. Additional 
models were not evaluated because of the limited sample 
size. In order to obtain feature importance ranking, we used 
the permutation importance method [22]. The idea of this 
method is to compare the baseline score to the average score 
obtained from permutations of a specific feature to deter-
mine its importance in terms of predictive results.

Reference standard

The reference standard was the histopathologic clinical 
report of the surgical resection specimens (in operated 
patients). The modified tumor regression (TRG) score was 
used at both institutions as follows [16]: score 0: no viable 
cancer cells (pCR), score 1: single cells or rare small groups 
of cancer cells, score 2: residual cancer with evidence of 
tumor regression but more than a single cell and score 3: 
extensive residual cancer with no evidence of tumor regres-
sion. Patients with scores 0 are considered to have pCR. 
For 2 patients, a continued clinical CR with negative MRI 
examinations and endoscopy was considered a substitute for 
pCR for patients enrolled in watch-and-wait protocols [23].

Statistical analysis

Statistical analysis was performed using MATLAB R2018 
(The MathWorks, Natick, MA) and Python. p-values < 0.05 
were considered statistically significant. Inter-observer 
agreement was assessed by measuring the intraclass cor-
relation coefficient (ICC); features with ICC > 0.7 were 
considered to have good inter-observer agreement. Feature 
redundancy, corresponding to features with high correla-
tion (r > 0.95), was assessed using Spearman’s correlation 

coefficient between feature pairs. A radiomic score for the 
prediction of pCR using a combination of radiomic features 
was built using MLP modeling. The optimal sensitivity and 
specificity of the radiomic score was calculated by maximiz-
ing the Youden J statistic. Demographics and clinical char-
acteristics (age, sex, baseline tumor stage, and serum CEA) 
were also analyzed using χ2-test for categorical variables and 
independent samples t-test for continuous variables.

Results

Patient characteristics

In total, 16/98 (16.3%) patients achieved pCR; 30/98 (30.6%) 
had a TRG score of 1, 38/98 (38.8%) a score of 2, and 14/98 
(14.3%) a score of 3 (Table 1).

Prediction of pCR

Demographic data (age and sex), baseline TNM stage, 
and serum CEA were not significant predictors of pCR 
(p = 0.59–0.96).

Out of 540 extracted radiomic features (108 per 
sequence), 404 features had good to excellent inter-observer 
reliability (ICC > 0.7).

Table 2 summarizes the different models to predict pCR. 
For the prediction of pCR, the model based on high b-value 
DWI features achieved the best AUC of 0.9 [95% CI 0.67, 
1] with a sensitivity of 100% [95% CI 100%, 100%] and 
specificity of 81% [95% CI 66%, 96%] in the validation set 
(Figs. 2, 3). Table 3 lists the top 10 features of the high 
b-value model in order of importance.

Model performance across different MRI sequences and 
different numbers of input features are shown in Supplemen-
tary Table 2. For comparison purposes with the high b-value 
DWI model, two models built based on pre- and post-con-
trast T1W1 shape features, respectively, achieved AUCs of 
0.83 [95% CI 0.53, 1] and 0.81 [95% CI 0.5, 1], specificities 
of 66% [95% CI 48%, 84%] and 63% [44%, 81%] and the 
same sensitivity of 100% [95% CI 100%, 100%]. The list of 
top shape features that were selected for inclusion in both 
these models is given in Table 4. Of note, there was no dif-
ference in performance between T1WI shape feature models 

Table 2  Best performing 
radiomic models for prediction 
of pCR in patients with LARC 
(locally advanced rectal cancer) 
in the validation set

Numbers in brackets represent confidence intervals

Model AUC Sensitivity Specificity

High b-value DWI 0.9 [0.67, 1] 1 [1, 1] 0.81 [0.66, 0.96]
Shape features from T1 pre-contrast 0.83 [0.53, 1] 1 [1, 1] 0.66 [0.48, 0.84]
Shape features from T1 post-contrast 0.81 [0.5, 1] 1 [1, 1] 0.63 [0.44, 0.81]
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and the high b-value DWI model as there was overlap in the 
95% confidence intervals of their AUCs.

In addition, there was no difference in tumor volume 
on both low and high b-value DWI between patients with 
pCR vs. non pCR in both the training set (25.702 ± 22.853 
 mm3 vs. 37.713 ± 45.748  mm3, respectively, p = 0.35) and 
the validation set (19.578 ± 9.884  mm3 vs. 27.652 ± 20.325 
 mm3, respectively, p = 0.78).

Discussion

In our study, we developed and validated a radiomic model 
using mpMRI (including T2WI, pre- and post-contrast T1WI 
and DWI), obtaining excellent performance using high 
b-value DWI features, with an AUC of 0.9 (in the validation 
set), 100% sensitivity and 81% specificity for the prediction 
of pCR in LARC. Additionally, we developed two models 
using only shape features from T1WI pre- and post-con-
trast also to predict pCR, with observed good performance 
(AUCs of 0.81–0.83 in the validation set).

Our results show higher performance of radiomics com-
pared with previous studies [8–12, 24]. For example, Pet-
kovska et al. reported an AUC of 0.75 in 102 patients with 
LARC by combining radiomic features extracted from T2WI 
and staging criteria; however, their study lacked a valida-
tion cohort [8]. Antunes et al. reported an AUC of 0.712 
in an external validation set by analyzing T2WI sequences 
in 104 patients [10]. Another study from Van Griethuysen 
et al. evaluating 133 patients from 2 centers showed AUCs 
between 0.73 and 0.77 in the validation set from a model 
obtained with DWI/ADC and T2WI [11]. Most of the pub-
lished radiomics studies for the prediction of pCR using pre-
treatment MRI were solely based on T2WI features [8–10, 
25]. A few studies such as the one by Van Griethuysen et al. 
[11] built radiomic models combining T2WI and DWI with 
a few features selected from T2WI. Our study is similar to 
the single-center study of Nie et al. [12] in which features 
were extracted from mpMRI including post-contrast T1WI 
(n = 48), albeit Nie et al.’s models showed lower perfor-
mance with AUCs of 0.54–0.73 for predicting pCR (with-
out a validation cohort). Meanwhile, Cui et al. developed a 

Fig. 2  44-year-old man with locally advanced rectal cancer, stage T3. 
Axial oblique T2WI (A) and post-contrast T1WI (B) show near cir-
cumferential mid rectal tumor with enhancement (arrows). Histopa-
thology on rectal specimen obtained after neoadjuvant chemoradia-
tion therapy (C) shows no residual tumor with fibrotic and sclerotic 
vessels (arrow), compatible with pathologic complete response (TRG 

score 0). Radiomic maps of high b-value Gray Level Co-occurrence 
Matrix inverse difference normalized (D) and high b-value Gray 
Level Run Length Matrix (GLRLM) long run emphasis (E) show 
high value points. Radiomic map of high b-value Gray Level Run 
Length Matrix (GLRLM) LRHGL emphasis (F) shows sparse high 
value points
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radiomic model on 131 training datasets combining features 
from T2WI, post-contrast T1WI and ADC from a single 
center, with a reported excellent AUC of 0.944 for predicting 
pCR in their validation set comprising 55 patients, similar 
to our results [13]. The high performance of their model can 
be potentially explained by the homogeneity of their MRI 
exams, in which all MRIs were performed at 3 T using the 

same MRI parameters, as opposed to our study, where we 
used multiple field strengths, vendors, and protocols.

A portion of our cohort was included in a previously 
published radiomics study in patients with LARC using 
axial T2WI in 132 patients from 2 different centers, with 
a calculated AUC of 0.80 for prediction of pCR using 
repeated cross-validation [9]. This previous study built 

Fig. 3  37-year-old man with locally advanced rectal cancer, stage T3. 
A Axial T2W1 and B post-contrast T1W1 show circumferentially 
enhancing low rectal tumor. C Histopathology on rectal specimen 
obtained after neoadjuvant chemoradiation therapy shows residual 
tumor cells in a background of fibrosis (arrow), TRG score 3. Radi-
omic maps of high b-value Gray Level Co-occurrence Matrix inverse 

difference normalized (D) and high b-value Gray Level Run Length 
Matrix (GLRLM) long run emphasis (E) show mostly intermediate 
values. Radiomic map of high b-value Gray Level Run Length Matrix 
(GLRLM) LRHGL emphasis (F) shows mostly low values with 
sparse high value points

Table 3  Top 10 features in the 
high b-value DWI radiomic 
model

Feature name

High bval_Original Gray Level Run Length Matrix Long Run High Gray Level Emphasis
High bval_Original Gray Level Co-occurrence Matrix Inverse Difference Normalized
High bval_Original Gray Level Run Length Matrix Long Run Emphasis
High bval_Original Gray Level Co-occurrence Matrix Sum Average
High bval_Original Gray Level Co-occurrence Matrix Cluster Shade
High bval_Original Gray Level Co-occurrence Matrix Sum Entropy
High bval_Original Gray Level Size Zone Matrix Zone Entropy
High bval_Original Gray Level Co-occurrence Matrix Difference Average
High bval_Original First Order 10th Percentile
High bval_Original Gray Level Size Zone Matrix Gray Level Variance
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models for the prediction of pCR using 1,595 T2WI radi-
omic features in both tumor and mesorectal compartment, 
as well as clinical variables.

An important consideration when performing radiomics 
quantification is the inter-reader reproducibility of the meas-
urement which we obtained in our study, as we only selected 
radiomic features with ICC > 0.7, as described before [11].

The identification of adverse imaging phenotypes based 
on radiomics at baseline (in addition to T staging) may trig-
ger more aggressive neoadjuvant therapies (including immu-
notherapy) and closer follow-up of these patients [26]. Sev-
eral studies showed that pCR after nCRT is associated with 
low recurrence and longer disease-free survival; thus, radi-
omic models can also potentially predict prognosis [27–29].

Radiomics is increasingly described for cancer diagnosis/
characterization and for the prediction of cancer response 
to therapy. Radiomics quantification provides information 
on tumor heterogeneity and is associated with underlying 
gene expression and prognosis [30]. However, its technical 
complexity, inter-platform and inter-vendor variability and 
often limited sample size without validation cohorts limit 
its clinical impact [7]. Manual segmentation of tumors has 
been so far the mainstay in radiomics, yet it is time con-
suming, despite being reproducible (as confirmed by our 
study). There is an urgent need for automated tools using 
deep learning to help expedite these tasks [31], especially 
since it has been suggested that radiomic features are more 
robust when using automatic delineation of the tumor [32].

There are several limitations to our study. First, the retro-
spective nature of our study may have resulted in a selection 
bias of the patients. Second, the number of patients with 

pCR was relatively small even though we present one of the 
first approaches of multi-institutional validation of multi-
parametric radiomics in LARC. Third, we did not attempt 
to correct for inter-platform and acquisition parameter 
variability.

Future directions include head-to-head comparison of 
radiomic biomarkers against blood [33] and tissue biomark-
ers [34] for predicting rectal cancer response.

In conclusion, radiomic models based on pre-treatment 
mpMRI are promising predictors of pCR in patients with 
LARC, which may help with personalized therapy and prog-
nostication. Larger studies are needed to validate our results.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00261- 023- 04128-0.
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