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Abstract
Purpose  To evaluate the efficacy of a vendor-specific deep learning reconstruction algorithm (DLRA) in enhancing image 
quality and focal lesion detection using three-dimensional T1-weighted gradient-echo images in gadoxetic acid-enhanced 
liver magnetic resonance imaging (MRI) in patients at a high risk of hepatocellular carcinoma.
Materials and methods  In this retrospective analysis, 83 high-risk patients with hepatocellular carcinoma underwent gadox-
etic acid-enhanced liver MRI using a 3-T scanner. Triple arterial phase, high-resolution portal venous phase, and high-
resolution hepatobiliary phase images were reconstructed using conventional reconstruction techniques and DLRA (AIRTM 
Recon DL; GE Healthcare) for subsequent comparison. Image quality and solid focal lesion detection were assessed by 
three abdominal radiologists and compared between conventional and DL methods. Focal liver lesion detection was evalu-
ated using figures of merit (FOMs) from a jackknife alternative free-response receiver operating characteristic analysis on 
a per-lesion basis.
Results  DLRA-reconstructed images exhibited significantly improved overall image quality, image contrast, lesion conspicu-
ity, vessel conspicuity, and liver edge sharpness and reduced subjective image noise, ringing artifacts, and motion artifacts 
compared to conventionally reconstructed images (all P < 0.05). Although there was no significant difference in the FOMs 
of non-cystic focal liver lesions between the conventional and DL methods, DLRA-reconstructed images showed notably 
higher pooled sensitivity than conventionally reconstructed images (P < 0.05) in all phases and higher detection rates for 
viable post-treatment HCCs in the arterial and hepatobiliary phases (all P < 0.05).
Conclusions  Implementing DLRA can enhance the image quality in 3D T1-weighted gradient-echo sequences of gadoxetic 
acid-enhanced liver MRI examinations, leading to improved detection of viable post-treatment HCCs.

 *	 Jeong Min Lee 
	 jmsh@snu.ac.kr

1	 Department of Radiology, Seoul National University 
Hospital, Seoul, Republic of Korea

2	 Department of Radiology, Seoul National University College 
of Medicine, 28, Yongon‑dong, Chongno‑gu, Seoul 110‑744, 
Republic of Korea

3	 Department of Radiology, Soonchunhyang University Seoul 
Hospital, Seoul, Republic of Korea

4	 Institute of Radiation Medicine, Seoul National University 
Medical Research Center, Seoul, Republic of Korea

http://orcid.org/0000-0003-0561-8777
http://crossmark.crossref.org/dialog/?doi=10.1007/s00261-023-04124-4&domain=pdf


739Abdominal Radiology (2024) 49:738–747	

1 3

Graphical abstract

Keywords  Hepatocellular carcinoma · Gadoxetic acid-enhanced MRI · Deep learning algorithm · LI-RADS

Introduction

Hepatocellular carcinoma (HCC) is the most common pri-
mary liver cancer and is associated with high mortality 
worldwide [1]. Gadoxetic acid-enhanced magnetic reso-
nance imaging (MRI) is widely employed for the nonin-
vasive identification of HCC in high-risk individuals, as 
advocated by leading guidelines [2–5]. Gadoxetic acid-
enhanced MRI has proven particularly effective in identi-
fying small HCCs (< 2 cm) because of the strong contrast 
between the lesion and the liver background during the 
hepatobiliary phase (HBP), resulting in high sensitivity 
[6]. However, factors such as transient respiratory motion 
during the arterial phase (AP), low signal-to-noise ratio 
(SNR), and a limited temporal window of dynamic phases 
may compromise the image quality and focal lesion detect-
ability of gadoxetic acid-enhanced MRI [7, 8]. Over the 
years, numerous rapid imaging techniques, such as parallel 
imaging and compressed sensing, have been developed to 
enhance the temporal resolution of the dynamic phases [9, 
10]. Despite these advancements, the utility of these tech-
niques remains restricted by the intrinsic trade-off between 
scan duration and image quality parameters, such as SNR 
and spatial resolution.

Recently, deep learning (DL) algorithms have been 
applied to MRI, including image acquisition and recon-
struction [11–13]. Specifically, numerous DL reconstruc-
tion algorithms (DLRAs) have been developed to enhance 
image quality by reducing noise and mitigating artifacts in 

two-dimensional T2-weighted fast spin-echo, T1-weighted 
gradient-echo (GRE), and diffusion-weighted images 
acquired using clinical scanners [14–17]. DL reconstruc-
tion amplifies the image sharpness and clarity by suppress-
ing artifacts such as Gibbs ringing and increasing the SNR 
[18, 19]. Recently, vendor-specific DL reconstruction was 
introduced for 3D T1-weighted GRE sequences, which are 
commonly used in dynamic abdominal MRI scans (AIRTM 
Recon DL, GE Healthcare, Waukesha, Wisconsin, USA). 
Based on previous research outcomes that demonstrated 
the efficacy of DL reconstruction of 2D T1-weighted 
GRE, 3D T2-weighted sequences in other organs, and 3D 
T1-weighted MR enterography [20–22], we hypothesized 
that the implementation of DL reconstruction may enhance 
image quality in 3D T1-weighted GRE sequences of 
gadoxetic acid-enhanced liver MRI examinations. Conse-
quently, this may improve focal lesion detectability, bear-
ing significant clinical ramifications for early identification 
and management of HCC.

Therefore, this retrospective study aimed to investigate the 
effectiveness of a vendor-specific DLRA for 3D T1-weighted 
GRE sequences in improving image quality and focal lesion 
detectability of gadoxetic acid-enhanced liver MRI of patients 
at a high risk of HCC.
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Materials and methods

This retrospective study was approved by the Institutional 
Review Board of Seoul National University Hospital (IRB 
No. H-2206-176-1336), which waived the requirement for 
informed consent.

Patients

Between September 2021 and May 2022, 106 consecutive 
patients underwent gadoxetic acid-enhanced dynamic liver 
MRI using a 3-T scanner, and DLRA was applied to the 
acquired images. Among these patients, we enrolled those 
who fulfilled the following inclusion criteria: (a) patients 
at risk of developing HCC and (b) age ≥ 18 years. Patients 
were excluded if (a) more than five focal liver lesions (FLLs) 
were found and (b) liver MRI was not consistent with the 
routine protocol for any reason. Thus, 23 patients were 
excluded because of no risk factor for HCC (n = 3) or equal 
or more than five FLLs (n = 20). Finally, 83 patients (male, n 
= 49; median age 65.8 [interquartile range 60.0–72.0] years) 
were included in this study (Fig. 1; Table 1).

MRI acquisition

All examinations were performed using a 3-T scanner 
(SIGNA Premier; GE Healthcare). Liver MRI examination 
consisted of the following sequences: heavily T2-weighted 
imaging (T2WI), fat-suppressed T2WI, precontrast 
T1-weighted imaging (T1WI), postcontrast T1WI (arterial, 
portal venous, transitional, and hepatobiliary phases), dual-
echo imaging, and diffusion-weighted imaging with three 
b-values (50, 400, and 800 s/mm2; Table 2). A standard dose 
of gadoxetic acid (0.025 mmol/kg; Primovist/Eovist; Bayer 
Healthcare, Berlin, Germany) was administered with a 25 

mL saline flush at a rate of 1 mL/s. Dynamic phases, includ-
ing triple AP, portal venous phase (PVP, 60 s after contrast 
injection), transitional phase (3 min), and HBP (20 min), 
were obtained using a fat-suppressed 3D T1-weighted GRE 
sequence (LAVA, GE Healthcare) with standard resolu-
tion after the injection. Furthermore, during PVP and HBP, 
high-resolution axial images with a 2-mm slice thickness 
and 1-mm reconstruction interval were routinely obtained 
using a 3D T1-weighted GRE sequence immediately after 
standard-resolution imaging.

Deep learning reconstruction algorithm

The DLRA used in this study was a vendor-provided proto-
type version of the AIRTM Recon DL 3D (GE Healthcare) 
[14], which is now commercially available. This image 

Fig. 1   Flow diagram of the study showing which patients were 
included or excluded

Table 1   Patients characteristics

Data are median (IQR) or n (%)
TACE transarterial chemoembolization, RFA radiofrequency ablation, 
PEIT percutaneous ethanol injection therapy, LI-RADS Liver Imag-
ing-Reporting and Data System

Characteristics Data

Age (years) 65.8 (60.0–72.0)
 >50 77 (92.8)
 ≤50 6 (7.2)

Sex
 Male:female 49:34

Underlying liver disease
 Hepatitis B virus 63 (75.9)
 Hepatitis C virus 6 (7.2)
 Alcohol 4 (4.8)
 Others 10 (12.0)

Previous locoregional therapy
 None 17 (20.5)
 TACE, RFA, or PEIT 66 (79.5)

Focal observation information
 Total no. of observations 89

No. of observations per patient
 1 Observation 17 (40.5)
 2 Observations 11 (26.2)
 3 Observations 6 (14.3)
 4 Observations 8 (19.0)

Size (cm) 1.0 (0.8–1.2)
No. of observations according to LI-RADS cat-

egory
 LR-M 0
 LR TR-viable 16 (18.0)
 LR-5 7 (7.9)
 LR-4 22 (24.7)
 LR-3 25 (28.1)
 LR-2 19 (21.3)
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reconstruction technique includes a deep convolution neural 
network to reduce noise, reduce Gibbs ringing, and improve 
image sharpness in all three directions. The MR images were 
reconstructed offline from the raw k-space data at a user-
specified denoising level. In addition, among the liver MR 
images, triple AP, high-resolution PVP, and high-resolution 
HBP images were reconstruct ed using DL reconstruction at 
a 75% denoising level [22] and used for comparison between 
conventional and DL reconstruction.

Image analysis

All 83 pairs of MRI datasets (conventional and DL recon-
structions) were evaluated by three abdominal radiologists 
with 5–7 years of experience in interpreting abdominal MR 
images. Triple AP, high-resolution PVP, and high-resolu-
tion HBP images were reconstructed using the conventional 
reconstruction technique and DLRA. Precontrast T1W and 
heavily T2W images reconstructed with the conventional 
method were added to both sets to determine whether 
enhancement existed and to exclude cysts. Therefore, con-
ventional and DL image sets included axial precontrast T1W, 
heavily T2W, and postcontrast triple AP, high-resolution 
PVP, and high-resolution HBP images reconstructed with 
either conventional or DL reconstruction, respectively.

Paired sets of MR images generated with conventional 
and DL reconstruction methods were provided in random 
order. The image sets were anonymous and randomly 
assigned to folders A or B to avoid any bias. The reviewers 
were blinded to both the reconstruction method and clinical 
information except that the patients were at risk of devel-
oping HCC. A minimum 4-week washout period was used 
between the evaluations of folders A and B.

Image quality

For each image set, the degree of contrast enhancement of 
the hepatic vessels (right hepatic artery on AP, right portal 
vein on PVP, and right hepatic vein on HBP images), con-
spicuity of the hepatic vessels, liver edge sharpness, ringing 
artifacts, susceptibility artifacts, motion artifacts, subjective 

image noise levels, and overall image quality were evalu-
ated for each phase. The detailed scale information used for 
image evaluation is provided in Table E1.

Detectability of focal liver lesions

Reviewers were asked to detect up to four FLLs per patient, 
excluding arterioportal shunts, post-treatment changes, and 
cysts, and to record the conspicuity score of each suspected 
lesion in each of the three phases (AP, PVP, and HBP) on a 
4-point scale (Table E1). They also were requested to indi-
cate the location and image slices of suspected lesions for 
localization.

Reference standards

Two experienced abdominal radiologists (J.H.Y. and J.H.K., 
with 15 and eight years of experience in interpreting abdom-
inal MRI, respectively), who did not participate in the review 
session, evaluated the entire MRI sequence and follow-up 
images to identify and characterize FLLs in consensus. A 
total of 89 FLLs were identified and categorized according 
to the Liver Imaging Reporting and Data System (LI-RADS) 
version 2018 [23] and LI-RADS 2017 Treatment Response 
algorithm [24].

Statistical analysis

The Mann–Whitney U test was used to compare the image 
quality scores, which were averaged across the three read-
ers, between the conventional and DL methods. The perfor-
mance of each reader in detecting FLLs in the AP, PVP, and 
HBP was evaluated using figures of merit (FOMs) from a 
jackknife alternative free-response receiver operating char-
acteristic (JAFROC) analysis (version 4.2.1) on a per-lesion 
basis. Comparisons of the FOMs were performed using the 
Hillis improvement [25] of the method described by Dorf-
man et al. [26] with the modeling assumption of random 
reader-random cases. Per-lesion sensitivity was calculated 
as the number of correctly localized lesions divided by the 
total number of lesions. The false-positive interpretation rate 

Table 2   Imaging parameters of gadoxetic acid-enhanced liver MRI

FSE fast spin echo, GRE gradient-recalled echo, LAVA liver acquisition with volume acceleration

Sequence Repetition time (ms) Echo time (ms) Flip angle 
(degrees)

Slice thick-
ness (mm)

Field of view (cm) Matrix

Breath-hold T2-weighted FSE 811.4–889.3 160 90 3 380 × 380 352 × 288
Respiratory-triggered T2-weighted FSE 3000 80 111 4 380 × 380 288 × 288
Breath-hold T1-weighted spoiled GRE 4.7 1.4, 2.8 9 6 380 × 380 352 × 288
Breath-hold T1-wegithed 3D LAVA 3.1–5.5 1.4–1.9 11–30 6 380 × 380 384 × 300
Diffusion-weighted imaging 5000.7 50 90 3 380 × 380 130 × 130
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was defined as the number of false-positive interpretations 
divided by the total number of MRI scans. McNemar’s test 
was used to compare the sensitivities of the conventional and 
DL methods for individual readers. The generalized estimat-
ing equation was used to compare the pooled sensitivities, 
lesion conspicuity scores, and rates of false-positive inter-
pretations between the conventional and DL methods.

Interreader agreement levels were evaluated using Gwet’s 
AC1 [27], as the prevalence of a trait and the bias of raters 
affect the kappa statistic. For example, if there is an imbal-
ance in the number of positive or negative ratings, the kappa 
coefficient decreases. Similarly, if there is a consistent varia-
tion in the ratings made by raters, the kappa coefficient may 
be artificially high. In contrast, Gwet's AC1 is not affected 
by trait prevalence or rater bias, thus providing more reliable 
results [27]. For the interpretation of the chance-corrected 
agreement, we used the criteria suggested by Landis and 
Koch [28]: 0.00–0.20, slight agreement; 0.21–0.40, fair 
agreement; 0.41–0.60, moderate agreement; 0.61–0.80, 
substantial agreement; 0.81–1.00, almost perfect agreement.

Results

Patient demographics and FLL characteristics

The clinical characteristics of the patients are summarized 
in Table 1. In total, 89 FLLs (median diameter, 1.0 cm; 

interquartile range, 0.8–1.2 cm) were included in this study. 
Detailed information on the FLLs is presented in Table 1.

Image quality parameter comparisons

DL-reconstructed AP, PVP, and HBP images showed com-
pared to conventionally reconstructed images significantly 
better overall image quality, image contrast, vessel conspicu-
ity, liver edge sharpness, significantly less subjective image 
noise, ringing artifacts, and motion artifacts (P < 0.05 for 
all; Table 3; Fig. 2). In terms of susceptibility artifacts, no 
difference in AP and PVP images was found between con-
ventional and DL methods (3.02 ± 0.46 vs. 3.01 ± 0.40 and 
3.02 ± 0.47 vs. 3.02 ± 0.48; P = 0.505 and 0.886, respec-
tively). However, for HBP, the DL method resulted in sig-
nificantly fewer artifacts than the conventional method (3.21 
± 0.53 vs. 3.11 ± 0.46; P = 0.037; Table 3). In addition, 
the DL-reconstructed AP, PVP, and HBP images showed a 
better conspicuity score for FLLs than conventionally recon-
structed images (P < 0.05; Table 3; Fig. 3).

Comparison of FLL detectability 
between conventional and DL reconstruction

In all three AP, PVP, and HBP images, the conventional 
and DL methods did not show significant differences in 
JAFROC FOMs (0.603 vs. 0.611, 0.603 vs. 0.635, and 
0.648 vs. 0.682; P = 0.847, 0.467, and 0.617, respectively; 

Table 3   Comparison of image quality between conventional and deep learning reconstructions

Data are % (numerator/denominator) or mean ± standard deviation (range)
DL deep learning, PVP portal venous phase, HBP hepatobiliary phase

Parameter Arterial phase PVP HBP

Conventional DL P Conventional DL P Conventional DL P

Image con-
trast

2.71±0.72 
(1–4)

3.11±0.72 
(1–4)

< 0.0001 3.59±0.56 
(2–4)

3.75±0.50 
(2–4)

< 0.0001 3.66±0.59 
(1–4)

3.76±0.51 
(2–4)

0.0013

Vessel conspi-
cuity

2.49±0.72 
(1–4)

2.98±0.76 
(1–4)

< 0.0001 3.51±0.62 
(2–4)

3.75±0.54 
(2–4)

< 0.0001 3.31±0.75 
(1–4)

3.55±0.67 
(2–4)

< 0.0001

Liver edge 
sharpness

2.49±0.59 
(1–3)

2.84±0.50 
(1–4)

< 0.0001 3.27±0.57 
(1–4)

3.48±0.62 
(1–4)

< 0.0001 3.49±0.55 
(1–4)

3.71±0.53 
(1–4)

< 0.0001

Subjective 
image noise

2.86±0.47 
(1–4)

3.53± 0.64 
(1–4)

< 0.0001 2.78±0.53 
(1–4)

3.62±0.60 
(1–4)

< 0.0001 2.91±0.58 
(1–4)

3.59±0.63 
(1–4)

< 0.0001

Ringing 
artifact

2.72±0.59 
(1–4)

2.86±0.65 
(1–4)

0.0005 2.99±0.33 
(2–4)

3.17±0.52 
(1–4)

< 0.0001 3.03±0.40 
(2–4)

3.35±0.52 
(2–4)

< 0.0001

Susceptibility 
artifact

3.02±0.46 
(2–4)

3.01±0.40 
(2–4)

0.505 3.02±0.47 
(2–4)

3.02±0.48 
(2–4)

0.886 3.11±0.46 
(1–4)

3.21±0.53 
(2–4)

0.037

Motion arti-
fact

2.91±0.67 
(1–4)

3.15±0.69 
(1–4)

< 0.0001 3.40±0.65 
(1–4)

3.63±0.68 
(1–4)

< 0.0001 3.44±0.66 
(1–4)

3.59±0.62 
(1–4)

0.0009

Overall image 
quality

2.57±0.63 
(1–4)

3.08±0.70 
(1–4)

< 0.0001 3.05±0.61 
(1–4)

3.49±0.70 
(1–4)

< 0.0001 3.14±0.69 
(1–4)

3.58±0.65 
(1–4)

< 0.0001

Lesion con-
spicuity

1.43±0.91 
(1–4)

1.60±1.01 
(1–4)

< 0.0001 1.47±0.91 
(1–4)

1.60±1.00 
(1–4)

0.009 1.93±1.30 
(1–4)

2.12±1.36 
(1–4)

0.001
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Table 4). However, the DL reconstruction of AP, PVP, and 
HBP images demonstrated significantly higher pooled sen-
sitivity than the conventional method (24.3% [65/267] vs. 
21.7% [58/267], 30.7% [82/267] vs. 24.7% [66/267], and 
41.9% [112/267] vs. 36.3% [97/267], respectively; P < 0.05). 
Table 4 summarizes the FLL detection performance of each 
reviewer. 

Comparison of HCC diagnosis between conventional 
and DL reconstruction

The detection rates of LR-TR viable lesions in DL-recon-
structed AP and HBP images were significantly higher than 
those in the corresponding conventionally reconstructed 
images (37.5% [18/48] vs. 22.9% [11/48] and 52.1% 
[25/48] vs. 39.6% [19/48], respectively; P < 0.05; Table 5; 
Fig. 3). In addition, DL-reconstructed PVP images showed 
a higher lesion detection rate for LR-3 than conventionally 
reconstructed images (24.0% [18/75] vs. 16.0% [12/75]; P 
= 0.031). In all other LI-RADS categories, no significant 

difference in lesion detection rates was observed between 
the conventional and DL methods (Table 5).

Interreader agreement for image quality evaluation

Interreader agreements for image contrast, vessel conspicu-
ity, liver edge sharpness, subjective image noise, ringing 
artifact, susceptibility artifact, motion artifact, and overall 
image quality in AP, PVP, and HBP ranged from moder-
ate to almost perfect (Gwet’s AC1 range, 0.516–0.969). In 
terms of lesion conspicuity, a moderate-to-substantial agree-
ment was found in the AP and PVP (Gwet’s AC1 range, 
0.626–0.861), whereas agreement was poor to moderate in 
the HBP (Gwet’s AC1 range, 0.150–0.593; Table E2).

Discussion

In this study, we demonstrated that by implementing ven-
dor-specific DLRA in 3D T1-weighted GRE sequences for 
gadoxetic acid-enhanced liver MR examinations of high-risk 

Fig. 2   Gadoxetic acid-enhanced MRI of a 66-year-old male patient 
with chronic hepatitis B. The conventional arterial (A), portal venous 
(B), and hepatobiliary (C) phases in the top row show worse ves-
sel conspicuity (arrows), image contrast, liver edge sharpness, and 

increased ringing artifact (arrows) compared with the DL-recon-
structed arterial (D), portal venous (E), and hepatobiliary (F) phases 
in the bottom row
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HCC patients, image quality and sensitivity in detecting 
non-cystic FLLs and LR-TR viable lesions were notably 
improved. DLRA substantially improved the overall image 
quality, image contrast, vessel conspicuity, and liver edge 
sharpness, while reducing subjective image noise, ringing 
artifacts, and motion artifacts. The enhancement in image 
quality with the DLRA can be attributed to the inherent abil-
ity of DL algorithms to address the noise and artifacts pre-
sent in the imaging data. By operating on raw and complex-
valued k-space data, these algorithms can suppress ringing 
artifacts, reduce noise, and enhance image sharpness and 
clarity [18]. The observed enhancements in image quality 

parameters are consistent with prior research that has shown 
the efficacy of DLRA in improving the image quality for a 
range of MRI sequences. These include 2D T1-weighted 
GRE sequences, 3D T1-weighted MR enterography, and 
T2-weighted sequences of various organs [15–17, 20–22].

Notably, in our study, the detection of LR-TR viable 
lesions in the AP and HBP was significantly improved with 
DLRA application. This finding is clinically relevant, as 
locoregional treatments are frequently used for early- and 
intermediate-stage HCCs. Furthermore, DL-reconstructed 
3D T1-weighted GRE images displayed higher conspicu-
ity scores for FLLs, ascribed to increased contrast and liver 

Table 4   Comparison between observation detectability of conventional and deep learning reconstructions

Data in parentheses are numerator and denominator; data in brackets are 95% confidence intervals
FOM figure-of-merit, FP false positive, JAFROC jackknife alternative free-response receiver operating characteristic, DL deep learning, PVP 
portal venous phase, HBP hepatobiliary phase
*Per-observation based sensitivities were calculated by using the number of detected observations divided by the number of total observations
† Rates of false-positive interpretations were calculated as the total number of false-positive interpretations divided by the total number of MRI 
scans

JAFROC FOM Sensitivity (%) Rate of FP interpretations (%)

Conventional DL P Conventional DL P Conventional DL P

Arterial
 Reader 1 0.583 0.571 0.770 18.0 (16/89) 18.0 (16/89) 1.000 1.2 (1/83) 3.6 (3/83) 0.178
 Reader 2 0.583 0.613 0.417 21.3 (19/89) 23.6 (21/89) 0.500 1.2 (1/83) 2.4 (2/83) 0.624
 Reader 3 0.644 0.650 0.888 25.8 (23/89) 31.5 (28/89) 0.063 3.6 (3/83) 4.8 (4/83) 0.656
 Pooled 0.603 0.611 0.847 21.7 (58/267) 24.3 (65/267) 0.009 1.6 (4/249) 3.6 (9/249) 0.269

PVP
 Reader 1 0.567 0.590 0.591 16.9 (15/89) 19.1 (17/89) 0.500 3.6 (3/83) 2.4 (2/83) 0.321
 Reader 2 0.593 0.636 0.248 21.3 (19/89) 30.3 (27/89) 0.008 1.2 (1/83) 2.4 (2/83) 0.624
 Reader 3 0.649 0.680 0.558 36.0 (32/89) 42.7 (38/89) 0.031 13.3 (11/83) 8.4 (7/83) 0.340
 Pooled 0.603 0.635 0.467 24.7 (66/267) 30.7 (82/267) <0.0001 5.6 (14/249) 4.4 (11/249) 0.418

HBP
 Reader 1 0.577 0.590 0.776 19.1 (17/89) 19.1 (17/89) 1.000 4.8 (4/83) 2.4 (2/83) 0.050
 Reader 2 0.649 0.664 0.726 36.0 (32/89) 39.3 (35/89) 0.250 1.2 (1/83) 2.4 (2/83) 0.624
 Reader 3 0.713 0.794 0.156 54.0 (48/89) 67.4 (60/89) 0.001 9.6 (8/83) 8.4 (7/83) 0.766
 Pooled 0.648 0.682 0.617 36.3 (97/267) 41.9 (112/267) <0.0001 4.8 (12/249) 4.4 (11/249) 0.642

Table 5   Subgroup analyses of observation detectability of conventional and deep learning reconstructions

Lesions detected by the pooled data of 3 reviewers

Arterial PVP HBP

Conventional (%) DL (%) P Conventional (%) DL (%) P Conventional (%) DL (%) P

LI-RADS category
 LR TR-viable 22.9 (11/48) 37.5 (18/48) 0.016 31.3 (15/48) 41.7 (20/48) 0.063 39.6 (19/48) 52.1 (25/48) 0.031
 LR-5 81.0 (17/21) 81.0 (17/21) 1.000 66.7 (14/21) 71.4 (15/21) 1.000 76.2 (16/21) 76.2 (16/21) 1.000
 LR-4 12.1 (8/66) 12.1 (8/66) 1.000 15.2 (10/66) 12.1 (8/66) 0.500 25.8 (17/66) 30.3 (20/66) 0.250
 LR-3 4.0 (3/75) 4.0 (3/75) 1.000 16.0 (12/75) 24.0 (18/75) 0.031 30.7 (23/75) 37.3 (28/75) 0.063
 LR-2 28.1 (16/57) 35.1 (20/57) 0.125 24.6 (14/57) 33.3 (19/57) 0.063 36.8 (21/57) 42.1 (24/57) 0.250
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edge sharpness, as well as reduced noise and artifacts. The 
enhanced image sharpness and clarity and reduced noise 
and artifacts contributed to better identification of LR-TR 
viable lesions and higher conspicuity scores for FLLs. Given 
that the early detection of LR-TR viable lesions may enable 
additional treatment to achieve complete necrosis of HCC 
lesions and improve survival, this finding has substantial 
clinical value. Our results suggest that DLRA can enhance 
the diagnostic accuracy of gadoxetic acid-enhanced liver 
MRI for early-stage HCC detection in high-risk individuals, 
potentially improving patient management and outcomes. 
Future multicenter prospective studies with larger cohorts 
are required to validate and generalize these findings.

In our study, we employed triple AP imaging, acquiring 
three independent 3D datasets during a single breath-hold, 
and applied high acceleration factors to mitigate transient 
respiratory motion in gadoxetic acid-enhanced liver MRI. 
This is crucial because the occurrence of such motion in 
gadoxetic acid-enhanced liver MRI is not negligible, with 
reported incidence rates ranging from 3.2 to 26.7% [10, 
29]. Because the depiction of AP hyperenhancement is cru-
cial for HCC diagnosis [2], the acquisition of high-quality 
3D GRE images during AP with high temporal and spatial 

resolution may benefit high-risk HCC patients. Various 
techniques, such as parallel imaging, view sharing, and 
compressed sensing, have been employed to achieve rapid 
AP image acquisition while preserving spatial resolution 
[8–10]. Nonetheless, these techniques may encounter chal-
lenges related to low SNR, artifacts, and motion-related 
problems. We discovered that DLRA significantly reduced 
image noise and artifacts while improving image resolution 
using a super-resolution algorithm [18, 19, 22]. By enabling 
a higher acceleration factor in the 3D T1-weighted GRE 
sequences, the breath-hold time might be reduced without 
sacrificing image quality. Recent research has also demon-
strated that DLRA methods decrease 2D T1-weighted GRE 
sequence acquisition time while improving image quality. 
Our study findings indicate that triple AP imaging using 3D 
T1-weighted GRE sequences with DLRA and high accelera-
tion factors can assist in the diagnosis of HCC, especially 
with gadoxetic acid.

Regarding interreader agreement, all items, except for 
lesion conspicuity score in the HBP (which ranged from 
poor to moderate), demonstrated moderate to almost per-
fect agreement. The HBP is known to be the most sensi-
tive phase for lesion detection among the dynamic phases 

Fig. 3   Gadoxetic acid-enhanced 
MRI of a 64-year-old female 
patient with chronic hepatitis B. 
The conventional arterial (A) 
and hepatobiliary (B) phases 
in the top row show worse 
LR-TR viable lesion (arrows) 
conspicuity compared with the 
DL-reconstructed arterial (C) 
and hepatobiliary (D) phases in 
the bottom row
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of liver MRI. Therefore, in terms of lesion conspicuity 
scores, it is believed that reader preferences (sensitivity vs. 
specificity) may have a relatively more pronounced impact 
on HBP compared to other phases.

Our study has some limitations. First, the retrospective 
nature of the study and the inclusion of a single-center 
cohort may have limited the generalizability of our find-
ings. Second, we utilized a vendor-specific DLRA, which 
may restrict the applicability of our results to other MRI 
systems and DL algorithms. Third, the relatively small 
sample size and number of lesions may constrain the sta-
tistical power of our analyses. Forth, subtraction images 
were not included in our study data sets. Given that sub-
traction images could be beneficial for the evaluation of 
non-cystic focal liver lesions, it would be valuable to con-
duct future studies that incorporate subtraction images.

In conclusion, utilizing vendor-specific DLRA for 
3D T1-weighted GRE sequences in gadoxetic acid-
enhanced liver MRI can greatly enhance the image qual-
ity and improve the detection of FLLs, especially LR-TR 
viable lesions. The clinical adoption of DLRA for 3D 
T1-weighted GRE in liver MRI could potentially aid in 
the diagnosis and treatment of HCC.
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