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Abstract
Purpose  Microvascular invasion (MVI) is a common complication of hepatocellular carcinoma (HCC) surgery, which is 
an important predictor of reduced surgical prognosis. This study aimed to develop a fully automated diagnostic model to 
predict pre-surgical MVI based on four-phase dynamic CT images.
Methods  A total of 140 patients with HCC from two centers were retrospectively included (training set, n = 98; testing set, 
n = 42). All CT phases were aligned to the portal venous phase, and were then used to train a deep-learning model for liver 
tumor segmentation. Radiomics features were extracted from the tumor areas of original CT phases and pairwise subtraction 
images, as well as peritumoral features. Lastly, linear discriminant analysis (LDA) models were trained based on clinical 
features, radiomics features, and hybrid features, respectively. Models were evaluated by area under curve (AUC), accuracy, 
sensitivity, specificity, positive and negative predictive values (PPV and NPV).
Results  Overall, 86 and 54 patients with MVI− (age, 55.92 ± 9.62 years; 68 men) and MVI+ (age, 53.59 ± 11.47 years; 43 
men) were included. Average dice coefficients of liver tumor segmentation were 0.89 and 0.82 in training and testing sets, 
respectively. The model based on radiomics (AUC = 0.865, 95% CI: 0.725–0.951) showed slightly better performance than 
that based on clinical features (AUC = 0.841, 95% CI: 0.696–0.936). The classification model based on hybrid features 
achieved better performance in both training (AUC = 0.955, 95% CI: 0.893–0.987) and testing sets (AUC = 0.913, 95% CI: 
0.785–0.978), compared with models based on clinical and radiomics features (p-value < 0.05). Moreover, the hybrid model 
also provided the best accuracy (0.857), sensitivity (0.875), and NPV (0.917).
Conclusion  The classification model based on multimodal intra- and peri-tumoral radiomics features can well predict HCC 
patients with MVI.

Zhenghao Zhou and Tianyi Xia have contributed equally to this 
work as co-first authors.

 *	 Shenghong Ju 
	 jsh@seu.edu.cn

 *	 Jun Xu 
	 jxu@nuist.edu.cn

1	 School of Artificial Intelligence, Institute for AI in Medicine, 
Nanjing University of Information Science and Technology, 
Nanjing 210044, China

2	 Jiangsu Key Laboratory of Molecular and Functional 
Imaging, Department of Radiology, School of Medicine, 
Zhongda Hospital, Southeast University, 87 Ding Jia Qiao 
Road, Nanjing 210009, China

3	 Cerebrovascular Disease Treatment Center, Nanjing Brain 
Hospital Affiliated to Brain Hospital of Nanjing Medical 
University, Nanjing 210029, China

4	 Information School, University of Washington, Seattle, 
WA 98195, USA

http://orcid.org/0000-0001-5041-7865
http://orcid.org/0000-0001-5315-8811
http://crossmark.crossref.org/dialog/?doi=10.1007/s00261-023-04102-w&domain=pdf


612	 Abdominal Radiology (2024) 49:611–624

1 3

Graphical Abstract

Keywords  MVI · Peritumoral radiomics · Dynamic enhanced CT · Hepatocellular carcinoma · Subtraction image

Introduction

Hepatocellular carcinoma (HCC) is the third leading cause 
of cancer death [1], accounting for 90% of primary liver can-
cers in the world. Prognosis of HCC surgery is usually very 
poor, and about 50% - 70% of HCC patients are recurrent 
within 5 years after hepatectomy [2, 3]. Microvascular inva-
sion (MVI) is found in 30–50% of HCC pathologies, which 
is regarded as a major risk factor for postsurgical recurrence 
[4, 5], even in patients with isolated small HCC [6]. There-
fore, clinical guidelines suggest a large surgical extent for 
MVI-positive patients [7]. Diagnosis of MVI is thus critical 
in presurgical evaluation of HCC patients [8].

MVI is a nest of cancer cells within the endothelium of 
blood vessels, which is visible only in microscopy images 
[9]. Noninvasive methods have been used to predict MVI, 
including alpha-fetoprotein (AFP), tumor size , and two-
trait predictor of venous invasion bicharacteristic predic-
tors of venous invasion (TTPVI) [10]. However, these 
predictors are based on low-order features which cannot 
capture a full view of tumors. Radiomics technologies 
have been developed to extract high-throughput quantita-
tive image features, and improve accuracy of diagnosis and 
prognosis in cancer studies [11, 12]. However, radiomics 

for live tumors usually depends on manual segmenta-
tion due to poor output of automatic segmentation [13]. 
The manual segmentation is time-consuming and usually 
inconsistent across studies. Moreover, current radiomics 
studies of liver cancer depend on enhanced images of cer-
tain phase, and thus ignoring the information of tumor 
changes in the temporal dimension [14].

To address the abovementioned issues, this study is 
aimed to develop an automated MVI prediction model 
based on 4-phase CT of patients with HCC [15, 16]. In 
particular, dynamic features were extracted between CT 
phases. The model is then built based on a fusion of clini-
cal features, dynamic features, peritumoral and intratu-
moral radiomics features to improve prediction of MVI.

Materials and methods

This multi-center cross-sectional study was reviewed and 
approved by the Biomedical Research Ethics Committee 
of our hospital without patient consent. Patient data has 
been anonymized in this report.
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Subjects

We retrospectively reviewed two datasets of HCC patients 
who underwent CT examination from May 2012 to July 
2017 at Center 1 (***), and from January 2014 to April 
2019 at Center 2 (***) (Fig. 1). The inclusion criteria were 
as follows: (1) pathological diagnosis as HCC, (2) avail-
able, and (3) non-contrast and contrast-enhanced abdomen 
CT examination within 8 weeks before hepatectomy. The 
exclusion criteria were as follows: (1) preoperative treatment 
for HCC, (2) macroscopic vascular invasion or extrahepatic, 
(3) image artifacts, and (4) poor registration quality. At last, 
a total of 81 patients from Center 1, and 59 patients from 
Center 2 were included for the following analysis.

CT acquisition

All patients underwent unenhanced and contrast-enhanced 
multiphasic abdominal CT examinations using one of 

the following systems: GE Revolution CT, TOSHIBA 
Aquilion ONE, SIEMENS SOMATOM Definition, SIE-
MENS SOMATOM Definition Flash, UIH uCT 510 or 
UIH uCT 760. Scanning parameters were as follows: 
tube voltage of 100 or 120 kVp; tube current of 60-380 
mAs; the field of view = 350 × 350 mm; matrix = 512 × 
512; slice thickness = 0.625 mm. A 1.3–1.5 mL/kg body 
weight bolus of contrast material iodixanol (Ultravist 300 
or Ultravist 370, Bayer, Germany) and ioversol (Optiray 
320 or Optiray 350, Guerbet, France) was injected intra-
venously at a flow rate of 3.0–4.0 mL/sec. Arterial phase 
scanning was initiated with about 20 seconds delay after 
enhancement of the descending aorta to 100 HU, as meas-
ured using a bolus-tracking technique; portal venous and 
delayed phase images were obtained at 60–75 and 150–180 
seconds, respectively, after injection of contrast.

Fig. 1   Flowchart of patient selection process
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Image analysis

Clinical features and semantic imaging assessment

The data on clinical characteristics collected through elec-
tronic health records included age, sex, hepatitis B virus 
(HBV), Barcelona clinic liver cancer stage, cirrhosis, Child-
Pugh (CHILD), AFP [26], alanine aminotransferase (ALT), 
and aspartate aminotransferase (AST).

Two readers (***, *** with 15, and 7 years of experi-
ence in abdomen imaging, respectively) were blinded and 
independently reviewed all images to evaluate the semantic 
imaging features. Any controversies were settled by a major-
ity vote. The following four semantic imaging features were 
evaluated: (1) pseudo–capsule, (2) TTPVI, (3) peritumoral 
enhancement, (4) margin, and (5) tumor size. The definition 
of TTPVI is the presence of tumors with internal arteries and 
without hypodense halos.

Image pre‑processing

The raw data (Fig. 3A_I–A_IV) of all 4 phases of CT images 
were resampled to 0.695 × 0.695 × 5 mm3 to eliminate dif-
ferences in rotation and slice thickness (Appendix E1). The 
first three phases (arterial, delay and nonenhanced) were 
transformed to corresponding portal venous phase image 
by rigid transformation. The same organs were then placed 
in the same positions, and all images share the same origins 
and spacings. Then Elastix software was used to register the 
four phases of CT images based on liver mask (Appendix 
E2). At last, pairwise subtraction was performed between 
the 4-phase images to generate 6 new images (Fig. 3B). The 
phase with lower average intensity is subtracted by those 
with larger average intensities.

Tumor segmentation

Each original transverse plane was reviewed and the tumor 
area was delineated on portal venous phase images of all 
patients by two radiologists using the ITK-SNAP software 
(http://​www.​itksn​ap.​org) with 15 and 20 years of experi-
ence (*** and ***, respectively). Furthermore, all evaluators 
were blinded to the patients’ pathological and clinical data, 
and the results were determined by consensus.

Subsequently, aA tTotal of randomly -selected images 
from 98 patients were used as the training set, and those 
from the left 42 patients were used as the testing dataset. 
The nnU-Net was used for semantic segmentation of tumors. 
The preprocessed four CT phase images (Fig. 3A_VI–A_IX) 
were concatenated as input of the nnU-Net. The specific 
details and parameters of the network implementation can 
be described in Appendix E3.

Radiomic analysis

Feature extraction

Image transformation was performed on aligned four phase 
CT images and their subtraction images, including loga-
rithm, square root, exponential, gradient, wavelet and Lapla-
cian of Gaussian transforms. Then, PyRadiomics (https://​
pyrad​iomics.​readt​hedocs.​io) was used to extract radiomics 
features from the original and transformed images. Radiom-
ics features include first-order statistics, shape, Gray level 
co-occurrence matrix (GLCM), Gray level size zone matrix 
(GLSZM), Gray level run length matrix (GLRLM), Gray 
level difference matrix (GLDM) and Neighborhood gray-
tone difference matrix (NGTDM). Additionally, Combina-
tions of image transformations were implemented to find 
the optimal subset of radiomics features for different image 
types of radiomics models.

Peritumoral analysis

Peritumoral features were extracted by dilating tumor 
regions within the liver mask. The tumor regions were 
dilated by 2 to 20 mm with an incremental of 2 mm. Dilated 
images were subtracted by original tumor regions to gener-
ate shell-like mask. These shells were then intersected with 
the liver mask to generate 10 peritumoral regions for each 
patient. A total of 6752 radiomic features were extracted 
from each peritumoral region.

Model construction

Z-score normalization was performed for all extracted radi-
omics features and clinical features. Wilcoxon rank sum test 
was carried out to select MVI-related features. Then maxi-
mum correlation optimum redundancy algorithm (mRMR) 
was performed to reduce redundancy across features. A com-
bination of image transforms and Wilcoxon rank sum test 
thresholds (p-value < 0.01 and 0.05) (Appendix E4) was 
used to select the best parameters.

Three prediction models were built sequentially based 
on radiomic features: (1) The original modal (Ori model) 
was established using linear discriminant analysis (LDA) 
based on radiomic features from original 4 CT phase images. 
(2) Then, a radiomics model (Ori_sub model) was based on 
features from both original and subtraction images. (3) Peri-
tumoral features were added to LDA classification model to 
construct the Ori_sub_edge model. In addition, we also built 
a LDA model based on clinical features. Finally, all of the 
above features were integrated to build a hybrid Ecos Model 
(Fig. 2) and We ranked importance of radiomics features 
through mRMR.

http://www.itksnap.org
https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
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Model evaluation

The discriminability of predication models was evaluated by 
receiver operating characteristic curves (ROC). sensitivity, 
specificity, accuracy, PPV, NPV, and AUC were calculated. 
The clinical utility of the model was assessed through deci-
sion curve analysis (DCA), which involved measuring the 
net benefit at various threshold probabilities. This helped 
to determine the threshold probabilities at which the model 
could provide the greatest clinical benefit.

Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics 
(Version 25) and MedCalc (Version 20.123) software(https://​
www.​medca​lc.​org/). Patients enrolled in the MVI study were 
randomly assigned to the training and testing groups in a 
ratio of 7:3.

All continuous variables were tested for normal distribu-
tion and homogeneity of variance. The independent sample 
t test was used to compare the differences between the two 
groups. Delong test was used to compare the performance 
of the models. The discriminant performance of the model 
to predict MVI state was investigated using AUC as an 
indicator, and tested in the testing cohort. The difference 
was statistically significant (p-value < 0.05). Automatic 
segmentation and artificial mapping of interobserver and 

intraobserver dice similarity coefficients (DSCs) between 
tumors have been reported.

Results

Demographic and clinical information

The patient characteristics are shown in Table 1. In this 
study, 86 MVI− patients (mean age 55.92±9.624 years, 
68 men) and 54 MVI+ patients (mean age 53.59±11.469 
years, 43 men) were included. The diagnostic model was 
developed based on a training set involving 60 patients 
with MVI− (mean age: 56.3±9.962, 45 males) and 38 
patients with MVI+ (mean age: 53.92±10.066, 30 males) 
and an independent testing set involving 26 patients with 
MVI− (mean age: 54.96±8.906, 23 men) and 16 MVI+ 
patients (mean age 52.81±14.625, 13 men), the two radi-
ologists had very good inter-observer agreement on images 
features, with k statistics ranging from 0.93 to 0.99. The 
interobserver ICC was also good for tumor size, ranging 
from 0.84 to 0.95. The independent sample T test shows that 
there is no significant difference between the MVI+ group 
and the MVI− group in gender, margin, cirrhosis, and HBV 
between the training set and the verification set. Significant 
differences were observed in tumor size, pseudo–capsule and 
TTPVI (p-value < 0.05).

Fig. 2   Overview of image processing and radiomics analysis. Four 
phases enhanced CT images were registered using Elastix and multi-
modal segmentation of tumor areas using nnU-Net. Three broad cate-

gories of images were designed: Original images, Subtraction images 
and Peritumoral images. Finally, feature extraction and selecting were 
performed and machine learning models were established

https://www.medcalc.org/
https://www.medcalc.org/
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Liver tumor registration and tumor segmentation

The liver mask-based registration improved consistency of 
tumor location, size, and shape across different phases, as 
shown in Fig. 3(A_V, A_X).

The performance of the multi-modal deep learning seg-
mentation model is shown in Table E3. In manually seg-
mented observers, DSCs was good, ranging from 0.76 to 
0.83 in the four test sequences (arterial phase, delay phase, 
nonenhanced phase, and portal venous phase). In addi-
tion, the inter-observer DSCs for manual segmentation was 
moderate, with DSCs ranging from 0.74 to 0.79 in the four 
sequences. The mean DSCs values between manual descrip-
tion and deep learn-based automatic segmentation were 0.76 
and 0.82 in the single-mode (venous phase) and multi-mode 
segmentation models in the testing set, respectively.

Clinical model

The clinical model was established according to five clini-
cal characteristics, including tumor size, pseudo–capsule, 
TTPVI, margin, and AFP (Table 2). The AUC of the final 
clinical model in the training cohort and testing cohort 

were 0.860 (95% [CI], 0.775–0.922) and 0.841 (95% [CI], 
0.696–0.936). Calibration curves show good calibration 
with the training queue (p-value = 0.88) and testing queue 
(p-value = 0.94), respectively, Fig E1d.

Radiomics model

Models based on a combination of logarithm, wavelet, and 
square root transforms obtained the best performance for 
original four phase CT images and their subtraction images. 
A combination of all 6 transforms (logarithm, square root, 
exponential, gradient, wavelet, and Laplacian of Gauss-
ian) showed the best performance in peritumoral radiomics 
model.

In feature selection, the Ori model, Ori_sub model, and 
Ori_sub_edge model selected 20, 13, and 24 radiomic fea-
tures, respectively. As shown in Table 3 and Fig. 5(a,b), 
the Ori_sub_edge model outperformed the Ori model and 
Ori_sub model, and achieved the best AUC, accuracy, sen-
sitivity, specificity, PPV, and NPV in both training and 
testing sets. The calibration curves of the three radiomics 
models on the training set and the testing set all show good 
calibration degree, the confusion matrix represents the 

Fig. 3   Images detail display (both were male patients from ***). In 
A, I–IV and VI–IX are the original and four phase CT images after 
registration, respectively; B contains six subtraction images, from 
left to right, a–v, d–v, n–v, a–d, n–a, n-d (Appendix E5), respectively; 
C shows the peritumoral expansion area. From left to right, they 

are expanded by 2–20mm (increment = 2mm). V and X are spliced 
images, which are composed of different quarters of the focal parts of 
the original phase 4 CT and the post-registration phase 4 CT, respec-
tively. The spliced images after registration is are closer to the mask 
predicted by the network than that before registration
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overall performance of the model in distinguishing between 
MVI− groups and MVI+ groups in the training and testing 
queues (Fig E1).

The features of the established radiomics model are 
shown in Table 2. Among the selected features, the propor-
tion of peritumoral features and subtraction image features is 
significantly higher than that of intratumoral features. Fig. 4 
shows the numerical distribution of radiomics features. The 
heat map of the radiomics features of a selected patient was 
also visualized in Fig. 6. In the feature importance ranking, 
the top five features were the radiomics features of subtrac-
tion images, and among the top ten features, eight dimen-
sions were peritumoral radiomics features (Table E2).

Model evaluation

By integrating 5-dimensional clinical features and 
20-dimensional radiomics features, a hybrid prediction 
Model, Ecos Model, was obtained. In the training cohort, 
Delong test found that there was a significant differ-
ence between Clinical Model and Ecos Model (p-value 
= 0.003). There are also significant differences between 
Ori_sub_edge Model and Ecos Model (p-value = 0.032). 
In the testing cohort, the difference was marginal between 
the Clinical Model and the Ecos Model (p-value = 0.036), 
as well as between the Ori_sub_edge Model and the Ecos 
Model (p-value = 0.047), with significant differences. 

Table 1   The Clinical and Radiological Characteristics of all patients with HCC

AFP a-fetoprotein, ALT alanine aminotransferase, AST aspartate aminotransferase, HBV hepatitis B virus, MVI microvascular invasion, and 
TTPVI two-trait predictor of venous invasion

Clinical characteristics Training cohort Validation cohort

MVI− (n = 60) MVI+(n = 38) P-value MVI− (n = 26) MVI+(n = 16) P-value

Gender, n(%) 0.3675 0.215
 Male 45(75.00) 30(78.95) 23(88.46) 13(81.25)
 Female 15(25.00) 8(21.05) 3(11.54) 3(18.75)
 Age, years (mean±SD) 56.33±9.96 53.92±10.07 0.6432 54.96±8.91 52.81±14.63 0.042

Pseudo–capsule,n(%) <0.001 0.007
 No 7(11.67) 18(47.37) 5(19.23) 9(56.25)
 Yes 53(88.33) 20(52.63) 21(80.77) 7(43.75)

TTPVI, n(%) <0.001 <0.001
 No 55(91.67) 16(42.11) 23(88.46) 9(56.25)
 Yes 5(8.33) 22(57.89) 3(11.54) 7(43.75)

Peritumoral enhance, n(%) 0.0518 0.003
 No 52(86.67) 30(78.95) 23(88.46) 11(68.75)
 Yes 8(13.33) 8(21.05) 3(11.54) 5(31.25)

Margin, n(%) 0.1890 0.223
 No 42(70.00) 14(36.84) 19(73.08) 3(18.75)
 Yes 18(30.00) 24(63.16) 7(26.92) 13(81.25)

CHILD, n(%) 0.0214 0.112
 No 58(96.67) 38(100.00) 25(96.15) 16(100.00)
 Yes 2(3.33) 0(0.00) 1(3.84) 0(0.00)

Cirrhosis,n(%) 0.0536 0.611
 No 12(20.00) 11(28.95) 4(15.38) 2(12.5)
 Yes 48(80.00) 27(71.05) 22(84.62) 14(53.85)

HBV, n(%) 0.1733 0.103
 No 11(18.33) 5(13.16) 5(19.23) 5(31.25)
 Yes 49(81.67) 33(86.84) 21(80.77) 11(68.75)

AFP,ng/ml(mean±SD) 1182.59±4415.60 514.04±1134.36 0.0706 249.45±347.43 1578.98±4327.73 0.023
ALT,U/L(mean±SD) 39.29±34.19 44.22±31.24 0.9564 39.36±33.63 38.87±41.53 0.683
AST,U/L(mean±SD) 40.28±26.08 43.83±29.99 0.0973 37.97±23.08 43.81±24.26 0.354
Size, cm(mean+±SD) 3.25±1.92 4.98±3.29 <0.001 4.68±3.42 6.36±3.20 0.059
Tumor number,n(%) 0.1097 0.001
 1 59(98.33) 38(100.00) 25(96.15) 13(81.25)
 2 1(1.67) 0(0.00) 1(3.84) 3(18.75)
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Calibration curves of Ecos Model on training set and test-
ing set show optimal calibration, the confusion matrix 
represents the overall performance of the model in distin-
guishing between MVI− groups and MVI+ in the training 
and testing queues.

In addition, a series of comparative tests were con-
ducted to verify the optimal peri-tumor expansion distance 
(Fig. 3C). The results of 10 peritumoral expansion compari-
son models are shown in Table E1. In the training set, the 
6mm region around the tumor outperformed the other nine 
models on AUC, Sen, and NPV. In the test set, the 6mm 
peritumor region performed optimally on AUC, accuracy, 
specificity, and PPV among the 10 models. In addition, the 
optimal values of the remaining evaluation indicators in both 
training set and testing set were mainly concentrated around 
the 10 and 12mm peritumoral models, marginal significantly 
(p-value < 0.15). In the 12–20mm model, the AUC of the 
testing set is all lower than 0.9, while the average value 

of other indicators is lower than that of the model within 
10mm.

Clinical utility

DCA (Fig. 5c–d) shows that in both the training set and 
testing set, using all five LDA-based models to distinguish 
MVI− from MVI+ was more beneficial than the “treat all” 
approach and the “treat none” approach, respectively. Addi-
tionally, the Ecos model outperforms other four models in a 
relatively large threshold range.

Discussion

This study developed a hybrid model which combined radi-
omic features and clinical features to predict preoperative 
MVI. Proposed hybrid model achieved good discrimination 

Table 2   Selected clinical and 
radiomics features in Ecos 
Model

f1–f24 correspond to 24 radiomics features respectively and represent the horizontal axis coordinate values 
in Figure 4

Modal Feature name

Clinic Pseudo–capsule
TTPVI
Margin
AFP
Size

Ori a_log-sigma-1-0-mm-3D_glszm_LowGrayLevelZoneEmphasis(f1)
a_log-sigma-3-0-mm-3D_firstorder_Kurtosis(f2)

Sub ad_wavelet-HLL_firstorder_Maximum(f3)
ad_wavelet-HHH_glszm_ZoneEntropy(f4)
av_wavelet-LLH_firstorder_Uniformity(f5)
av_square_firstorder_Mean(f6)
na_wavelet-HLL_firstorder_Mean(f7)
nd_wavelet-LLH_firstorder_Kurtosis(f8)
nd_wavelet-LHL_firstorder_Skewness(f9)
nd_wavelet-HLL_firstorder_Mean(f10)
nv_wavelet-LHL_glszm_SmallAreaEmphasis(f11)
nv_wavelet-HHL_firstorder_Median(f12)
nv_wavelet-HHH_glszm_ZoneEntropy(f13)

Edge a_wavelet-LLH_glcm_Correlation(f14)
a_logarithm_glcm_Idmn(f15)
d_log-sigma-1-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis(f16)
d_wavelet-HHH_gldm_SmallDependenceHighGrayLevelEmphasis(f17)
v_log-sigma-2-0-mm-3D_glcm_MaximumProbability(f18)
v_log-sigma-2-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis(f19)
v_log-sigma-4-0-mm-3D_glszm_SmallAreaLowGrayLevelEmphasis(f20)
v_wavelet-LHH_gldm_LargeDependenceLowGrayLevelEmphasis(f21)
v_wavelet-HHL_firstorder_Mean(f22)
v_wavelet-HHH_glszm_LowGrayLevelZoneEmphasis(f23)
v_gradient_firstorder_Minimum(f24)
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in both training (AUC = 0.96) and test datasets (AUC = 
0.91), and outperformed the clinical model (AUC = 0.86 
and 0.84 for training and test datasets, respectively) and radi-
omics model (AUC = 0.90 and 0.87). The proposed hybrid 
model achieved the state-of-the-art classification level, and 
provided an automated non-invasive tool to discriminate 
MVI- patients from MVI+ patients.

Co-registration between different CT phases improved 
both manual delineation and automated segmentation 
of tumors [17, 18]. Because of movement during CT 

examination, tumors can locate at various positions between 
different phases, which calls for tedious manual delineation 
on all CT phases [19]. Co-registration compensated effects 
of movement, therefore only one manual delineation is 
required for one patient. Information of different CT phases 
can be utilized at the same time, and thus improvinged the 
quality and intra-subject consistence of delineation [20]. In 
the actual situation, the problem of inconsistent delineation 
between phases of CT at different periods can be avoided 
to a large extent. Moreover, a deep learning method was 

Fig. 4   Violin maps of the radiomics features included in the construction model (f1–f24 represents 24 radiomics features, as shown in Table 2 
respectively)

Table 3   Diagnostic performance of models in the training and testing sets

Model naming consists of volume of interest (VOI) or image type + Model. Use all image phases unless otherwise stated
ACC​ accuracy, AUC​ area under subject operating characteristic curve, Sen sensitivity, Spe specificity. Data in parentheses are 95% CIs.

AUC(%95 CI) ACC(%95 CI) Sen(%95 CI) Spe(%95 CI) PPV(%95 CI) NPV(%95 CI)

Training Ori model 0.84 (0.75–0.91) 0.77 (0.62–0.81) 0.58 (0.52–0.71) 0.88 (0.75–0.93) 0.76 (0.68–0.83) 0.77 (0.69–0.82)
Ori_sub model 0.85 (0.77–0.92) 0.78 (0.69–0.84) 0.71 (0.62–0.79) 0.82 (0.71–0.88) 0.71 (0.63–0.81) 0.82 (0.75–0.90)
Ori_sub_edge model 0.90 (0.83–0.95) 0.86 (0.77–0.91) 0.82 (0.72–0.86) 0.88 (0.79–0.95) 0.82 (0.74–0.89) 0.88 (0.81–0.92)
Clinical model 0.86 (0.78–0.92) 0.79 (0.68–0.86) 0.63 (0.59–0.72) 0.88 (0.76–0.94) 0.77 (0.69–0.83) 0.79 (0.72–0.85)
Ecos Model 0.96 (0.89–0.99) 0.89 (0.81–0.94) 0.87 (0.78–0.93) 0.90 (0.82–0.97) 0.85 (0.78–0.92) 0.92 (0.83–0.94)

Testing Ori model 0.77 (0.62–0.89) 0.69 (0.57–0.80) 0.69 (0.60–0.82) 0.70 (0.61–0.81) 0.58 (0.52–0.72) 0.78 (0.62–0.89)
Ori_sub model 0.83 (0.68–0.93) 0.76 (0.64–0.87) 0.63 (0.52–0.75) 0.85 (0.71–0.93) 0.71 (0.58–0.83) 0.79 (0.66–0.90)
Ori_sub_edge model 0.87 (0.73–0.95) 0.86 (0.71–0.91) 0.75 (0.63–0.87) 0.92 (0.81–0.97) 0.86 (0.75–0.95) 0.86 (0.74–0.92)
Clinical model 0.84 (0.70–0.94) 0.76 (0.63–0.86) 0.75 (0.62–0.85) 0.77 (0.66–0.89) 0.67 (0.57–0.89) 0.83 (0.70–0.91)
Ecos model 0.91 (0.79–0.98) 0.86 (0.75–0.92) 0.88 (0.77–0.94) 0.85 (0.73–0.94) 0.78 (0.65–0.88) 0.92 (0.81–0.94)
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implemented to segment tumors based on all 4 co-regis-
tered CT phases [21]. The proposed segmentation method 
can capture comprehensive tumor features from different 
CT phases, and thus can outperform single-phase- based 
methods [22]. As far as we know, this is the first automatic 
segmentation method based on multiple CT phases to dis-
tinguish MVI− and MVI+.

In this study, dynamic features between CT phases were 
investigated by subtraction images. Radiomic features of 
subtraction images dramatically improved discrimination of 
MVI− and MVI+. Our finding is in consistence with previ-
ous study studies that subtraction of CT images improved 
detection of HCC [23–25]. Furthermore, radiomic features 
of subtraction images played a more important role than 
differences between radiomic features of original phases. 
Dynamic information, referred by radiomic features of 
subtraction images, was closely related to MVI pathology. 

It implied that more attention should be payed paid to the 
dynamic changes between CT phases in clinical diagnosis 
of liver tumors.

Results showed that tumor size, pseudo–capsule, TTPVI, 
margin, and AFP were important predictors of MVI, which 
was consistent with previous studies [26, 27]. Furthermore, 
radiomic features were extracted to improve the discrimina-
tion between MVI+ and MVI−. In the pool of radiomic fea-
tures, the selected radiomics features of subtraction images 
focus on the first-order statistical features and GLSZM fea-
tures after wavelet transformation. First-order statistics can 
provide information about the overall brightness and contrast 
of the tumor, and GLSZM represents information about dif-
ferent gray levels and continuous pixel region distribution, 
respectively. First-order statistics can be used to evaluate the 
perfusion of tumor, in accordance with the fact that micro-
vascular invasion is often associated with the blood supply 

Fig. 5   ROC and AUC of five MVI− and MVI+ discrimination mod-
els were presented in training set (a) and testing set (b). Training set 
(c) and testing set (d) show the interrelation of decision curves of the 

five models. The black and blue lines represent the assumption that 
MVI is absent and present in all patients, respectively
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Fig. 6   MVI− patients versus MVI+ cancer patients. A, B, and C 
respectively represent post-registration images of arterial phase, sub-
traction images of arterial phase and delay phase, and 6mm images 
of peritumoral dilatation of arterial phase. Some characteristic heat 
maps of three kinds of images are shown respectively. A_I to A_IV, 
B_I to B_IV, and C_I to C_IV were all male 1 (57 years old, MVI−); 
A_V to A_VIII, B_V to B_VIII, and C_V to C_VIII were male 2 (63 
years old, MVI+) (both patients were from ***). A_III, A_VII and 
A_IV, A_VIII are the features of log-sigma-1-0-mm-3D_glszm_Low-

GrayLevelZoneEmphasis and log-sigma-3-0-mm-3D_firstorder_Kur-
tosis in the arterial period, respectively. B_III, B_VII and B_IV, 
B_VIII are the characteristics of wavelet-HHH_glszm_Zone Entropy 
and the wavelet-HLL_firstorder_Maximum in the subtracted image 
(a–d) of the arterial period minus the delay period, respectively. C_
III, C_VII and C_IV, C_VIII are the characteristics of 6mm wavelet-
LLH_glcm_Correlation and logarithm_glcm_Idmn in the peritumoral 
area, respectively. It can be seen that the features of different images 
have a good complementary effect
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to the tumor [28]. GLSZM features quantify distribution 
of different gray levels and the size of contiguous regions 
within tumor regions, possibly related to the diffusion and 
density of blood vessels. Proposed model concentrated on 
features from subtraction images more than those from 
original images (features number = 11 vs. 2). The wavelet 
transform features of subtraction images greatly improved 
the model, and the top five features of mRMR screening 
all belonged to features of subtraction images. It means 
subtraction images can enhance the visibility of vascular 
structures and highlight the tumor's internal composition, 
leading to more accurate and detailed radiomic features that 
can aid in better characterizing the tumor and guiding clini-
cal decision-making.

In addition, the model also focused on peritumoral radi-
omics features extracted from the surrounding region of the 
tumor. These periphery features included GLCM features 
and GLDM features. GLCM provides statistical information 
about the relationships between gray levels of different pix-
els in the image, while GLDM describes the gray level dif-
ferences between different pixels in the image. The GLCM 
features represent the texture characteristics in the peritu-
moral area, giving insights into the patterns and structures 
of the neighboring tissues. On the other hand, the GLDM 
features offer valuable information about the arrangement 
of microvessels and changes in blood perfusion in the peri-
tumoral region. These radiomics features provide a more 
comprehensive understanding of the peritumoral environ-
ment, enhancing the model's ability to analyze and predict 
tumor behavior and treatment outcomes.

Our study also evaluated peritumoral regional features 
for MVI discrimination [29]. The quantitative evaluation 
showed that peritumoral 6mm model showed consistent 
and excellent results in both training set and testing set, 
which means that the radiomics features of the peritumoral 
6mm ring region contributed the most to the final prediction 
model, and the imaging features in the peritumoral 8mm-
12mm region had a good prediction effect, which was in 
line with clinical experience [30–32]. Our finding is con-
sistent with previous study that proved portal vein phase 
within 12mm of the tumor core and peripheral areas as 
potential quantitative imaging biomarkers [32]. Moreover, 
peritumoral parts larger than 12mm also have vascular inva-
sion. Due to a certain degree of overfitting, it is not enough 
to improve the prediction results of the model. However, 
theoretically, resection is required in clinical surgery, which 
requires further discussion and experimentation [33–35]. In 
conclusion, this study provides a good quantitative reference 
for the clinician to delimit the lesion area before surgery and 
resection during surgery [36]. At the same time, peritumoral 
dilation can alleviate, to a certain extent, the problems such 
as the loss of effective features or the extraction of invalid 

features caused by the inaccurate edge of the lesion caused 
by automatic segmentation error.

There are still several limitations in this study. First, 
although this study included more patients compared with 
previous studies (140 vs 128 and 111) [26, 32], the sam-
ple size could still be relatively small. Second, different CT 
scans from two centers may affect selection of radiomic 
features. This issue could be partially solved by image nor-
malization in this study, however, alignment of radiomic 
features needs further studies. Third, this study mixed the 
patients from two centers and randomly assigned them to 
a training and a testing dataset, future studies may include 
more patients from multiple centers to validate the findings 
of this study.

In summary, we have developed an end-to-end automated 
diagnostic process that facilitates preoperative differentia-
tion between MVI− and MVI+. This model quantified mul-
timodal image features including clinical features, dynamic 
features, peritumoral and intratumoral radiomics features, 
and thus could comprehensively represent image character-
istics of HCC. Results showed that proposed Ecos model 
can efficiently distinguish MVI− from MVI+ to facilitate 
clinical decision-making.
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