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Abstract
Background  Microsatellite instability (MSI) is detected in approximately 15% of colorectal carcinoma (CRC) patients, which 
has emerged as a predictor of patient response to adjuvant chemotherapy. Rectal carcinoma (RC) is the most common type 
of CRC. Therefore, prediction of MSI status of RC is significant for personalized medication. The purpose of this article was 
to develop an integrative model that combines clinical characteristics and computed tomography-based (CT-based) tumoral/
peritumoral radiomics to predict the MSI status in RC.
Methods  A cohort of 788 RCs with 97 high-MSI status (MSI-H) and 691 microsatellite stable status (MSS) were enrolled 
between January 2015 and January 2021 in this retrospective study. Clinical characteristics were recorded, and CT-based 
tumoral/peritumoral radiomic features were calculated after segmenting volume of interests. The patients were randomly 
divided into training and validation sets in a 7:3 proportion. Logistic models of single tumoral radiomics (LM-tRadio), peri-
tumoral radiomics (LM-ptRadio), and combined tumoral/peritumoral radiomics (LM-Radio) were constructed to distinguish 
MSI-H from MSS, and a relevant radiomic score was calculated. An integrative nomogram (LM-Nomo) was developed, 
including significant clinical characteristics and CT-based tumoral/peritumoral radiomics. The area under receiver operator 
curve (AUC) was calculated to evaluate the efficacy of prediction.
Results  The AUCs of LM-Radio were 0.785 (95%CI 0.732–0.837) in the training set and were 0.628 (95%CI 0.528–0.723) 
in the validation set, which were higher than those of LM-tRadio and LM-ptRadio. The AUCs of single LM-ptRadio were 
slightly higher than those of LM-tRadio (0.724 vs. 0.708 in the training set, 0.613 vs. 0.602 in the validation set). The LM-
Nomo containing carcinoembryonic antigen (CEA), hypertension, and CT-based tumoral/peritumoral radiomic score showed 
the highest AUCs of 0.796 (95%CI 0.748–0.843) in the training set and 0.679 (95%CI 0.588–0.771) in the validation set in 
predicting the MSI-H status of RC.
Conclusion  The AUCs of LM-ptRadio were slightly higher than LM-tRadio to evaluate the MSI-H status of RC. The LM-
Nomo, which includes significant clinical characteristics and CT-based tumoral/peritumoral radiomics score, demonstrated 
the best performance in predicting MSI-H status of RC.
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Introduction

Colorectal carcinoma (CRC) is among the most frequently 
diagnosed cancers and the primary cause of cancer-related 
mortality [1]. Rectal carcinoma (RC) constitutes approxi-
mately 29% of newly diagnosed CRC cases between 2012 
and 2016, and is the most common type of CRC in indi-
viduals below 50 years of age [2]. The prognosis of CRC 
is dependent on the tumor’s biology and heterogeneity [3]. 
Routine computed tomography (CT) and magnetic reso-
nance imaging (MRI) examination preoperatively predict 
the stages and degrees of RCs with different accuracy [4], 
which affected the clinical decision-making. The sub-
tle information underlying these images may reflect the 
genetic status of RCs.

Microsatellite instability (MSI) is a crucial biomarker 
of CRC with prominent diagnosis, prognosis, and predic-
tion significance. MSI determines whether RCs respond 
well to immunotherapy, patients with MSI generally do not 
benefit from preoperative 5-fluorouracil-based adjuvant 
therapy [5]. Tumors that show loss of one or more mis-
match repair (MMR) proteins upon immunohistochemistry 
testing are classified as high-MSI (MSI-H) [6], while those 
with intact MMR proteins are likely to be microsatellite 
stable or low-MSI (MSS or MSI-L). MSI is detected in 
approximately 15% of CRC patients and has emerged as 
a predictor of patient response to adjuvant chemotherapy 
[7]. MSI, which exhibits clinicopathological characteris-
tics distinct from MSS ones, has been reported to be more 
prevalent in stage II CRC [8] and associated with a better 
prognosis [9].

Radiomics, which extracts quantitative high-through 
image data from conventional images to improve diagnos-
tic and predictive accuracy [10], is gaining considerable 
attention in medical research. Entropy features reflect the 
invasiveness and heterogeneity of tumor, texture features 
represent the appearance of the surface and the distribu-
tion of elements, factor parameters describe the size and 
shape of tumor region, and so on. Previous studies have 
demonstrated that radiomics analysis based on CT [11] or 
MRI [12] imaging can help predict MSI status in CRC. 
To the best of our knowledge, only several articles have 
investigated the MR-based [13, 14] and T2WI-based [15] 
radiomic signature for predicting the MSI phenotype of 
RCs. The established radiomics model based on contrast-
enhanced T1WI or multiparametric MRI has similar pre-
dictive performance to predict MSI status in RCs [16]. The 
radiomics model based on logistic regression algorithm 
performed best to preoperatively identifying MSI status 
of RCs based on MRI after comparing different machine 
learning algorithms [17]. However, there was no CT rel-
evant radiomic analysis in this field. This article aims to 

develop a non-invasive, reproducible CT-based radiomic 
approach to evaluate the MSI-H status of RCs. The objec-
tive of this article is to construct and confirm an integra-
tive model that combines clinical and tumoral/peritumoral 
radiomic features to evaluate the MSI-H status of RCs 
based on preoperative CT images.

Materials and methods

This retrospective study was conducted with the permis-
sion of the Medical Ethics Committee of our hospital (No. 
2021QT339) and in conformity to the Declaration of Hel-
sinki. The informed consent was waived for this retrospec-
tive study.

Patient selection

From January 2015 to January 2021, a total of 1103 patients 
with pathologically proven to be RCs were identified through 
a search of the surgical database in our hospital. The inclu-
sion criteria required that patients have pathological confir-
mation of RCs, including classical adenocarcinoma, mucous 
adenocarcinoma, and signet-ring cell carcinoma. All CT 
examinations were conducted within 2 weeks prior to sur-
geries. Additionally, patients with tumors originating from 
the rectum to the adjacent sigmoid colon were also recruited. 
The exclusion criteria included patients who received preop-
erative therapy such as radiation, chemotherapy, or chemo-
radiotherapy, those with metachronous or recurrent cancer, 
and those with lesions in the ascending, descending, and sig-
moid colon or in the junction of the rectosigmoid. Patients 
without MSI evaluation were also excluded. Ultimately, a 
total of 788 patients, consisting of 97 MSI-H and 691 MSS, 
were retrospectively enlisted in this analysis.

Clinical characteristics of RC patients

Baseline clinical variables for analysis included age, gender, 
body mass index (BMI), CT-displayed long diameter, tumor 
location (low RC refers to the lesion within 5cm from anal 
margin, middle RC refers to the lesion 5–10 cm from anal 
margin, high RC refers to the lesion more than 10cm away 
from the anal margin), carcinoembryonic antigen (CEA) 
with threshold values of 5.0 μg/L [18], carbohydrate anti-
gen 19-9 (CA19-9) with threshold values of 37.0 U/mL [18], 
history of diabetes, hypertension, and liver metastasis. Addi-
tionally, tumors originating from the rectosigmoid region 
and those with a distance greater than 10cm from the anal 
margin were classified as high RC [19].
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Evaluation of MSI status

The immunohistochemistry method was used to test MMR 
proteins, including MLH1, MSH2, MSH6, and PMS2. 
Tumors displaying a lack of one or more MMR proteins 
were collectively classified as defective mismatch repair 
(dMMR) and expected to be MSI-H, while those with intact 
MMR proteins were considered proficient mismatch repair 
(pMMR) and estimated to be MSS or MSI-L. After referring 
to the revised Bethesda guideline for MSI, the MSI-L type 
for CRCs was revised and categorized as MSS tumors for 
clinical purposes [20]. Therefore, our study divided all RC 
patients into two groups based on the MMR proteins: the 
MSI-H cohort and the MSS cohort.

CT examination

All 788 RC patients underwent three-phase CT examinations 
using 64/128 slices CT scanners (Siemens, Somatom Defi-
nition AS). The three-phase examination included an unen-
hanced phase, arterial phase, and venous-phase achieved 
through computer-aided bolus tracking. Contrast media 
(iomeprol 350, GE Healthcare) was administered at a rate 
of 3.0 mL/s, with a dose of 1.3 mL/kg. The arterial phase 
was scanned after 35 s after injection, and the venous-phase 
was obtained 25 s later. The images of venous-phase were 
taken for radiomic analysis. The specific parameters were 
as follows: 120 Kv of tube voltage, 200 mA of tube current, 
360mm field of view, 64*0.625mm of collimation, 0.75 s of 
the rotation time, 5mm of slice and interval thickness, and 
300HU of window width, 40HU of window level.

Tumor segmentation and radiomic features 
selection

The original CT images were obtained from our picture 
archiving and communication system in DICOM for-
mat. After standardizing the original images using the 
software of “A.K. 3.0.0” (Artificial Intelligence Kit, GE 
Healthcare), the tumoral volume of interests (VOIs) were 

manually segmented using the software of “itk-SNAP 
3.4.0” (http://​www.​itksn​ap.​org/) by two radiologists 
with 7 and 10 years of experience, respectively (Fig. 1a). 
The peritumoral VOIs were then automatically obtained 
by expanding 5 mm from the tumor contour (Fig. 1b). 
Regions of necrosis, intraluminal air, non-invaded rectal 
wall, vessel, and peri-rectal fat were manually eliminated 
from contours of VOIs.

The tumoral and peritumoral radiomic features were auto-
matically calculated by A.K. software. The intraclass cor-
relation coefficients (ICCs) of radiomic features from two 
radiologists were calculated to assess interobserver agree-
ment between the two radiologists, with all ICCs greater 
than 0.75, indicating good agreement [21]. The mean values 
of radiomic features from two radiologists were calculated 
for subsequent research. Since the sample sizes of two sets 
were not balanced, the synthetic minority over-sampling 
technique (SMOTE) was used to balance them. SMOTE is 
a straightforward approach used to regulate the ratio between 
the unbalanced groups [22]. The cohort (97 MSI-H and 
691 MSS) was randomly partitioned into a training set (68 
MSI-H and 484 MSS) and a validation set (29 MSI-H and 
207 MSS) at a proportion of 7:3. The CT-based tumoral and 
peritumoral models were constructed according to the train-
ing set and were tested in the validation set to predict the 
MSI-H status of RCs. Before analysis, variables with zero 
variance were excluded, and outlier values were replaced 
by the median. The data were standardized by the method 
of standardization. Hereafter, the methods of variance, cor-
relation analysis, gradient boosting decision tree (GBDT), 
and multivariate logistic analysis with stepwise selection 
were performed to select optimal radiomic features. A ten-
fold cross-validation approach was used in both the training 
and validation cohorts to construct the model with the best 
performance. The accuracy of the algorithm was tested using 
tenfold cross-validation, where the dataset was divided into 
10 pieces, with 9 pieces used as training data and 1 piece as 
test data. The average of the correct or error rate of each trial 
yields of 10 times was used as an estimate of the accuracy 
of the algorithm.

Fig. 1   The VOIs were manu-
ally segmented in the software 
of “itk-SNAP.” a shows the 
tumoral VOI segmentation in 
the axial image. b shows the 
peritumoral VOI segmentation 
in the sagittal image

http://www.itksnap.org/
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Construction the prediction models

After the selection of radiomic features and resampling the 
data with 100 bootstrapped replication, the corresponding 
logistic models of tumoral radiomics (LM-tRadio), peritu-
moral radiomics (LM-ptRadio), and tumoral/peritumoral 
radiomics (LM-Radio) were constructed and the tumoral 
radiomic score (t-Radscore), peritumoral radiomic score 
(pt-Radscore), and tumoral/peritumoral radiomic score 
(Radscore) were quantified. The Radscore was calculated 
based on linearly combining the selected radiomics fea-
tures with their respective coefficients. All models were 
constructed and validated with 10-fold cross-validation.

The clinical characteristics were analyzed using inde-
pendent t test or χ2 test. An integrative clinical and CT-based 
tumoral/peritumoral radiomics nomogram (LM-Nomo) with 
significant clinical characteristics and Radscore was then 
constructed to evaluate the MSI-H status of RC. The area 
under curves (AUCs) of the receiver operator curve (ROC) 
calculated using the Delong test were applied to assess the 
efficiency of all logistic models.

Statistical analysis

The radiomic features selection and logistic model construc-
tion methods were proceeded using R software (https://​
www.r-​proje​ct.​org/). A Hosmer-Lemeshow test (HL-test) 
was used to evaluate the goodness-of-fit and accuracy of the 
model. The analysis of clinical characteristics was executed 
in SPSS software (https://​spss-​64bits.​en.​softo​nic.​com/) 
using the independent t test or chi-square test. The ICCs 
were utilized to assess the consistency of VOI segmentation 
between two radiologists. The Delong test was carried out 

in MedCalc software (https://​www.​medca​lc.​org/), and the 
corresponding AUC and 95% confidence interval (CI) were 
recorded. A two-tailed p value < 0.05 indicated statistical 
significance.

Results

Baseline clinical and pathological characteristics

The baseline clinical characteristics are presented in Table 1. 
There were 97 patients in MSI-H cohort including 33 
females and 64 males, with an average age of 64.04 ± 11.01 
years old with a mean BMI of 22.93 ± 3.01 kg/m2, while 
691 patients recruited in MSS group including 256 females 
and 435 males, and an average ages of 63.32 ± 11.52 years 
old with a mean BMI of 22.93 ± 3.32 kg/m2. In terms of 
clinical characteristics, the variables of CEA (p = 0.043) and 
history of hypertension (p = 0.036) showed significant dif-
ferences. The MSI-H cohort tended to have normal CEA lev-
els (71.1%) and a higher incidence of hypertension (45.4%) 
compared to the MSS cohort.

Performance of the tumoral and peritumoral 
radiomic model

The LM-tRadio (p value of HL-test was 0.879) containing 55 
radiomic features was developed, and the AUCs of the train-
ing set and validation set were 0.708 (95%CI 0.648–0.766) 
and 0.602 (95%CI 0.515–0.687). There were 25 peritumoral 
radiomic features remained in LM-ptRadio (Fig. 2). The 
AUCs of LM-ptRadio (p value of HL-test was 0.375) in 
both the training (Fig. 3a) and validation set (Fig. 3b) were 
slightly higher than those of LM-tRadio as 0.724 (95%CI 

Table 1   The baseline clinical 
characteristics

Data with statistical differences are given in bold
The measurement data of age, BMI, and long diameter were analyzed by the method of independent t test. 
The counting data of gender, location, CEA, CA19-9, diabetes, hypertension, and liver metastasis were 
analyzed by the method of χ2 test. A two-tailed p value < 0.05 indicated a statistical difference

MSI-H cohort (n = 97) MSS cohort (n = 691) p

Age (mean ± SD) 64.04 ± 11.01 63.32 ± 11.52 0.564
Gender (female/male) 33/64 256/435 0.562
BMI (mean ± SD, kg/m2) 22.93 ± 3.01 22.93 ± 3.32 0.987
Long diameter (mean ± SD, mm) 3.92 ± 1.48 3.77 ± 1.47 0.336
Location, n (%)
(low/middle/high)

21 (21.6%)/40 (41.2%)/36 (37.1%) 160 (23.2%)/266 
(38.5%)/265 (38.4%)

0.868

CEA (normal/abnormal), n (%) 69 (71.1%)/28 (28.9%) 418 (60.5%)/273 (39.5%) 0.043
CA19-9 (normal/abnormal), n (%) 85 (87.6%)/12 (12.4%) 606 (87.7%)/85 (12.3%) 0.984
Diabetes, n (%) 9 (9.3%) 83 (12.0%) 0.432
Hypertension, n (%) 44 (45.4%) 238 (34.4%) 0.036
Liver metastasis, n (%) 1 (1.0%) 28 (4.1%) 0.242

https://www.r-project.org/
https://www.r-project.org/
https://spss-64bits.en.softonic.com/
https://www.medcalc.org/
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0.668–0.778) and 0.613 (95% 0.514–0.714). After the 41 
radiomic features from venous-phase CT images were 
extracted, the LM-Radio was developed (p value of HL-test 
was 0.263). The AUCs of 0.785 (95%CI 0.732–0.837) in the 

training set and 0.628 (95%CI 0.528–0.723) in the valida-
tion set were the highest compared those of LM-tRadio and 
LM-ptRadio. The heatmap of LM-Radio in the training set 
is listed in Fig. 4.

Fig. 2   The coefficient of 25 
peritumoral radiomic features in 
LM-ptRadio

Fig. 3   The comparison of AUCs in the training (a) and validation (b) set of LM-tRadio (yellow line) and LM-ptRadio (green line) by Delong 
test
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Performance of the clinical and tumoral/peritumoral 
radiomics nomogram

The significant clinical characteristics of CEA and hyper-
tension integrated with Radscore constituted the LM-
Nomo (Fig.  5). The AUCs of LM-Nomo were 0.796 
(95%CI 0.732–0.837) in the training set and 0.679 (95%CI 
0.588–0.771) in the validation set. The non-significant HL-
test (p = 0.438) showed the goodness-of-fit of the model.

Discussion

MSI-H is a biomarker for predicting the clinical outcomes 
of RCs. Unlike MSS CRCs, the MSI-H CRCs are associated 
with abundant lymphocyte infiltration, a poor differentiation 
pattern, longer postoperative survival, and predominantly 
occur in the proximal colon [23], and mucous or signet-
ring cell component [24]. They may have a mildly better 
prognosis and not benefit from 5-FU-based chemother-
apy compared to patients with MSS [25]. Previous study 
focused on CT-based radiomics analysis has found that a 
clinic-radiomics nomogram model combining clinical risk 
factors, qualitative imaging data, and radiomics features may 
effectively predict the MSI status of CRC [26]. Another CT-
based radiomics study in CRC found that a radiomics nom-
ogram incorporating radiomics signatures, tumor location, 
patient age, high-density lipoprotein expression, and platelet 
counts showed good discrimination of MSI status [11]. An 
MRI-based radiomics analysis concluded that T2WI and 
DWI radiomics were significant in predicting the MSI sta-
tus of RC [27]. Very few published studies have evaluated 
the clinical and tumoral/peritumoral radiomic differences 
between MSI-H and MSS status in RCs. Hence, the pre-
operative predicting MSI-H status from these fields in RCs 
could facilitate adjuvant therapy strategies, follow-up moni-
toring, and management. In this analysis, we merely focused 
on RCs to reduce bias between the ascending, descending, 
and sigmoid colon. Although not statistically significant, 
tumors with MSI-H are more common in right-sided colon 
tumors than left-side colon and rectum [28]. Heterogeneity 
in clinical and radiomic manifestation of MSI-H in RCs is 
the more commonly observed than being exceptional. Clini-
cal characteristics such as CEA and hypertension history, 
as well as the tumoral and peritumoral radiomics, showed 
statistical differences. RCs with MSI-H were founded to be 
easier to have a history of hypertension and normal CEA 
levels. It emphasized the importance of medical history. In 
contrast, the characteristics of location, histological type, 
and differentiation pattern did not differ significantly from 
those observed in CRCs.

The peritumoral region immediately surrounding the 
tumor mass has remained relatively unexplored and may 
offer unique information, which cannot be effectively cap-
tured from the bulk of tumoral parenchyma. The character-
istics of peritumoral tissue provided the additional infor-
mation of tumor infiltration and pathological stage, which 
may affect the therapeutic regimen. This article aimed to 
calculate the CT-based radiomic features of tumor and 
peritumoral tissue to explore their relationship with the 
MSI-H status. Regarding that, CT has been suggested as 
the most commonly used modality to evaluate the RC. 
After calculating the tumoral and peritumoral CT radiomic 

Fig. 4   The heatmap of LM-Radio in the training set after the method 
of GBDT, there were 41 radiomic features extracted

Fig. 5   The integrative clinical and tumoral/peritumoral radiomics 
nomogram including variables of CEA, hypertension, and Radscore 
was developed
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features, the corresponding logistic models in predicting 
the MSI-H status of RCs were constructed. Then the effi-
ciency of the logistic models of clinical, radiomics, and 
the integrative nomogram was quantified as AUC values to 
evaluate the MSI-H status. To elucidate which factors con-
tribute to a more favorable prediction of MSI-H tumors, 
clinical characteristics as well as the CT radiomic features 
were analyzed in 788 patients with 97 MSI-H and 691 
MSS. Since radiological images were closely connected 
with its pathological characteristics [29], the quantita-
tive radiomic features showed the potential for predict-
ing MSI-H status of RCs in our study. However, only a 
few previous publications on peritumoral radiomics of RC 
have been reported, and intratumoral and peritumoral radi-
omics can help predict the lymph node metastasis status of 
RCs [19]. This study provided new insights into tumoral 
and peritumoral radiomics to evaluate the MSI-H status 
of RC. Interestingly, the predictive efficacy of simple LM-
tRadio and LM-ptRadio was approaching and acceptable 
with AUCs of 0.708 and 0.724 compared with LM-Radio 
with AUCs of 0.785 in the training set and was suboptimal 
with AUCs of 0.602 and 0.613 compared with LM-Radio 
with AUC of 0.628 in the validation set. The heatmap of 
LM-Radio visualized the correlation of selected CT radi-
omic features in this data matrix by the varying color, 
which helped us to grasp the research focus and further 
analyze its difference. Interestingly, the predictive efficacy 
of simple LM-ptRadio and LM-tRadio was approaching 
both in the training and validation set, and was disappoint-
ing compared to LM-Radio. Our research explores, for 
the first time, the effects of peritumoral radiomics of CT 
images in distinguishing the MSI-H status from MSS sta-
tus in RC patients.

Therefore, an integrative nomogram comprising clini-
cal characteristics and Radscore became an important 
modality to predict the MSI-H status of RCs, noninva-
sively. Previous studies have almost exclusively focused 
on evaluating the MSI-H phenotype of CRCs, ignoring 
specialized analysis of RCs. Data from the study of YT 
Cao et  al. [29] suggested that the radiomics signature 
of triphasic enhanced CT was a reliable method to pre-
dict MSI in CRCs, and the clinical-radiomics nomogram 
including age, location, CEA, and radiomics has shown 
promising prediction. Our integrative clinical and tumoral/
peritumoral radiomics nomogram, including CEA, hyper-
tension, and Radscore, was the most meaningful model 
for predicting MSI-H phenotype of RCs, with the highest 
AUCs of 0.796 (95%CI 0.748–0.843) in the training set 
and 0.679 (95%CI 0.588–0.771) in the validation set, com-
pared to simple LM-tRadio, LM-ptRadio, and LM-Radio. 
The p values of HL-test of all models were non-significant, 
indicating the goodness-of-fit of models.

Despite some strengths, there were several limitations. 
First, this retrospective analysis existed several biases 
including single-center design, an unbalanced sample size, 
and limited universality. Thus, future multi-center studies 
are necessary to validate and improve the performance of 
the predictive nomogram. Second, we only evaluated the 
tumoral and peritumoral radiomics of venous-phase CT 
images to predict the MSI-H phenotype of RCs. The reason 
for our choice of venous-phase is that, after referring the 
previous literature [30] and our preliminary on some cases, 
we found that venous-phase performed better and was more 
conducive to delineating the areas of interest of RC lesions. 
So the CT images of unenhanced and arterial phases should 
be emphasized by providing additional information to bet-
ter predict the MSI-H status. Third, the irregular shape of 
RCs may lead to bias between manual segmentation, which 
could affect the radiomic analysis, despite efforts to reduce 
intra-observer difference through ICC calculations. There-
fore, an automatic approach to segment the RCs for radiomic 
analysis needed to be further explored.

Conclusion

In conclusion, our study demonstrated that an integrative 
clinical and CT-based tumoral/peritumoral radiomics nomo-
gram including a history of hypertension, CEA levels, and 
Radscore showed an encouraging performance in predict-
ing MSI-H status of RCs, and may provide a non-invasive 
tool for clinical decision-making. However, both specific 
additional research on multi-phase CT images and external 
validation were needed to improve confidence in predicting 
MSI-H status of RC in this nomogram.

Funding  Funding was provided by Medical and Health Research Pro-
jects of Health Commission of Zhejiang Province (Nos. 2022KY040, 
2023KY472).
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