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Abstract
Purpose To retrospectively evaluate the performance of different manual segmentation methods of placenta MR images 
for predicting Placenta Accreta Spectrum (PAS) disorders in patients with placenta previa (PP) using a Machine Learning 
(ML) Radiomics analysis.
Methods 64 patients (n=41 with PAS and n= 23 without PAS) with PP who underwent MRI examination for suspicion of 
PAS were retrospectively selected. All MRI examinations were acquired on a 1.5 T using T2-weighted (T2w) sequences 
on axial, sagittal and coronal planes. Ten different manual segmentation methods were performed on sagittal placental 
T2-weighted images obtaining five sets of 2D regions of interest (ROIs) and five sets of 3D volumes of interest (VOIs) from 
each patient. In detail, ROIs and VOIs were positioned on the following areas: placental tissue, retroplacental myometrium, 
cervix, placenta with underneath myometrium, placenta with underneath myometrium and cervix. For feature stability test-
ing, the same process was repeated on 30 randomly selected placental MRI examinations by two additional radiologists, 
working independently and blinded to the original segmentation. Radiomic features were extracted from all available ROIs 
and VOIs. 100 iterations of 5-fold cross-validation with nested feature selection, based on recursive feature elimination, were 
subsequently run on each ROI/VOI to identify the best-performing method to classify instances correctly.
Results Among the segmentation methods, the best performance in predicting PAS was obtained by the VOIs covering the 
retroplacental myometrium (Mean validation score: 0.761, standard deviation: 0.116).
Conclusion Our preliminary results show that the VOI including the retroplacental myometrium using T2w images seems 
to be the best method when segmenting images for the development of ML radiomics predictive models to identify PAS in 
patients with PP.
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Introduction

Placenta accreta spectrum (PAS) disorders cover a range of 
clinical conditions where the placenta is abnormally attached 
to the uterus and does not spontaneously separate at delivery, 
resulting in massive haemorrhage, which can be life-threat-
ening and usually necessitates hysterectomy [1, 2]. Based on 
the different grades of clinical and histological findings, PAS 
has been recently classified into three categories by the Inter-
national Federation of Gynecology and Obstetrics (FIGO) 
in order to differentiate between abnormal adherence and 
abnormal invasion among the spectrum of disorders [3]. The 
pathogenesis of most cases of PAS is thought to be placental 
implantation at an area of defective decidualisation caused by 
pre-existing damage to the endometrial-myometrial interface 
[4]. Indeed, the most important risk factors related to the devel-
opment of PAS are the placenta previa (PP) and the number of 
previous caesarean deliveries [5, 6]. The antenatal detection of 
PAS in high-risk patients is crucial to establish the most appro-
priate obstetrician management and avoid the occurrence of 
haemorrhage during delivery [7, 8]. Current placental imaging 
techniques rely on ultrasound (US) and magnetic resonance 
imaging (MRI) [9–11]. Given its high contrast resolution, MRI 
enables the characterisation of the uterus and placental tissues, 
thus delineating the entire placental-myometrium interface [12, 
13]. The major challenge of MR placental imaging is related 

to the high inter-reader variability in interpreting abnormal 
morphological signs of PAS disorders, which requires imaging 
expertise and methodology [14–17]. Radiomics is a multistep 
process that converts medical images into multi-dimensional 
data to quantify tissue heterogeneity in terms of grey-level 
patterns and pixel inter-relationships within the image, thus 
potentially overcoming the limitations of traditional qualitative 
image assessment [18]. Recent advances in PAS imaging have 
leveraged the feasibility of the radiomics approach combined 
with machine learning algorithms in developing high-perfor-
mance computational systems for the extraction and analysis 
of quantitative features from medical imaging data to support 
diagnosis and prognosis tasks [19, 20]. An increasing num-
ber of radiomic studies exploring the use of placental MRI 
radiomics for the detection and prognosis of PAS disorders 
have shown encouraging results [21–23]. Nevertheless, the 
most critical issues limiting the clinical translation of such 
approaches concern the reproducibility and generalizability 
of the various steps that compose the radiomics pipeline, in 
particular, a major methodological drawback is represented 
by the lack of features robustness testing for multiple segmen-
tations across delineation techniques and regional anatomy 
variabilities [24, 25].

In this work, we aimed to retrospectively evaluate the per-
formance of different manual segmentation methods of pla-
centa MR images for predicting PAS disorders in patients with 
PP using a radiomics analysis empowered with ML technique.
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Materials and methods

Patient selection

The local Institutional Review Board approved this retro-
spective study, and the requirement for informed consent 
was waived.

Consecutive pregnant patients at high risk for PAS who 
underwent MR examinations at our institution between 
January 2018 to January 2020 were retrieved. The standard 
of reference was based on the clinical diagnostic criteria 
and confirmed histopathological diagnosis, according to 
the recent FIGO classification [3]. The following clinical 
data were collected from medical records for each patient: 
maternal and gestational age as well as number of previous 
caesarean deliveries. Inclusion criteria were: >18-year-old 
patients with PP; patients with available clinical intraop-
erative findings and histological proof of PAS after CS or 
total hysterectomy. We excluded: 1) patients for whom MR 
images were incomplete for the retrospective evaluation; 
2) MR examinations significantly affected by mother/fetal 
motion artifacts; and 3) patients with incomplete clinical 
and/or histological data.

MR acquisition protocol

Placental MRI was performed using a 1.5 T scanner 
(Gyroscan, Intera, Philips, Best, The Netherlands) with a 
phased-array body coil. The following MR sequences were 
acquired: Single-shot Turbo-Spin-Echo (TSE) T2-weighted 
(T2w) sequence (FOV 405 × 321 mm, matrix: 232 × 164, 
slice thickness 5–6 mm, number of slice 40, Flip angle: 
90°, GAP 1, TR/TE = 381/80 ms) on axial, sagittal and 
coronal planes; breath-holding was requested to minimize 
respiratory motion artifact; and Thrive Spectral Attenuated 
Inversion Recovery (SPAIR) T1-weighted sequence (FOV: 

395 × 280x340 mm, matrix: 192 × 192, slice thickness 4 mm, 
number of slice 60, Flip angle: 10°, GAP 2, TR/TE = 3.6/1.7 
ms). Contrast agent was not administered. Total MR exami-
nation duration time was around 20 min.

Segmentation methods

MR images were reviewed and analysed by an experienced 
radiologist (>10 years) who ensured the recognition of the 
different uterine, placental and cervical tissues. The best 
delineation of entire placental–myometrial interface occurs 
on sagittal T2w planes. Thus, ten different manual segmen-
tations methods were performed on sagittal placental T2w 
images obtaining the following sets of 2D regions of interest 
(ROIs) and 3D volumes of interest (VOIs) from each patient. 
In detail, ROIs and VOIs were positioned in the following 
anatomical areas:

– placental tissue
– retroplacental myometrium
– cervix
– placenta with underneath myometrium
– placenta with underneath myometrium and cervix.

On sagittal T2w images, VOIs were manually delineated 
slice-by-slice on the entire tissue of interest whereas ROIs 
segmentation was performed in the midline of the uterus 
where the placental tissue, retroplacental myometrium and 
cervix were better represented. The segmentation process 
was performed using a freely available segmentation soft-
ware (ITKSnap v3.8.0). Figure 1 shows the ROIs positioned 
on the different tested anatomical structures. Figure 2 reports 
an example of retroplacental myometrium delineation using 
2D and 3D approaches. The same process was repeated for 
feature stability on 30 randomly selected placental MRI 
examinations by two additional radiologists, working inde-
pendently and blinded to the original segmentations testing. 

Fig. 1  An example of ROI delineation on the different uteroplacen-
tal anatomical structures of the same patient in T2-weighted sagittal 
images: a placental tissue; b retroplacental myometrium; c cervix; d 

placenta with underneath myometrium; E placenta with underneath 
myometrium and cervix
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These additional segmentations were exclusively employed 
to conduct feature reproducibility analysis. The segmenta-
tions used to build the classification model were all per-
formed by the first reader.

Radiomics feature extraction and selection

Image pre-processing and feature extraction were conducted 
according to the Image Biomarker Standardisation Initiative 
(IBSI) guidelines using an open-source Python radiomics 
software package (PyRadiomics, v3.0.1) [26].

The following pre-processing steps were applied. First, all 
images and corresponding segmentation masks were resa-
mpled to a 3 × 3 mm resolution for ROI sets and 3 x 3 x 3 
mm resolution in VOI sets, to ensure rotational invariance 
of texture features. Grey-level intensity values were normal-
ized by subtracting the mean intensity and dividing by the 
standard deviation. Then, scaling by a factor of 100 and an 
array shift of +300 were performed, resulting in an expected 
[0, 600] final intensity range. Discretization was performed 
using a fixed bin count method (bin number = 7). To take 
into account the effect on radiomic feature robustness of 
image filtering, wavelet decomposition with all possible 
combinations of high- and low-pass filtering were applied as 
well as Laplacian of Gaussian edge enhancement (sigma = 
3, 4 and 5), thus generating additional image sets for feature 
extraction. All available radiomic features for 2D and 3D 
masks were extracted from both original and filtered images, 
subdivided into the following classes: first-order (histogram 
analysis), 2D or 3D shape-based (for ROIs and VOIs, respec-
tively), Gray Level Co-occurrence Matrix, Gray Level Size 
Zone Matrix, Gray Level Run Length Matrix, Neighbouring 
Gray Tone Difference Matrix and Gray Level Dependence 

Matrix (as defined in https:// pyrad iomics. readt hedocs. io/ en/ 
latest/ featu res. html).

Subsequently, a multistep selection process was carried 
to reduce the dimensionality of the dataset. First, non-repro-
ducible features were excluded through feature stability ICC 
analysis, applied on data extracted from the multi-reader 
annotations. Features were considered stable if the ICC 95% 
confidence interval lower bound was ≥ 0.75. Then, low vari-
ance (< 0.1) and high pairwise Pearson correlation (≥ 0.80) 
were removed from the dataset. The final step of the feature 
selection process was based on data class labels and there-
fore nested within the ML pipeline described in the follow-
ing section.

Machine learning analysis

Given the sample size available, a ML pipeline based on a 
nested cross-validation approach was employed. In particu-
lar, the following steps were iteratively performed within a 
5-fold cross validation process: 1) scaling with a MinMax 
scaler (range = 0-1), 2) class balancing through Synthetic 
Minority Oversampling Technique, 3) recursive feature 
elimination with a nested 5-fold cross-validation, 4) hyper-
parameter tuning through random search with a nested 5-fold 
cross-validation. Given the tabular nature of the data and 
sample size, an ExtraTrees ensemble classifier was selected. 
Regarding the last step, the search grid parameters were as 
follows:

– Number of trees = 100–1000
– Criterion = entropy, Gini
– Maximum tree depth = 1–10
– Maximum tree features = 1–5

Fig. 2  Example of ROI (a) 
and VOI (b) positioning on the 
T2-weighted images retropla-
cental myometrium

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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– Bootstrap = True, false
– Class weight = None, balanced
– Maximum samples = 0–100%.

The ML pipeline was repeated for 100 iterations on each 
segmentation dataset. The classifier performance was esti-
mated using the mean validation score with related standard 
deviation values. The analysis was performed by using the 
“numpy”, “pandas”, “imbalanced-learn” and “scikit-learn” 
Python packages [27].

Results

Patient population

Seventy-seven consecutive MRI examinations of high-risk 
patients with for PAS who underwent Caesarean section 
in our institution were retrieved. Thirteen patients were 
excluded because MRI scans were early interrupted due to 

claustrophobia (n = 5) or affected by fetal/mother motion 
artifact (n = 5) and for the lack of complete clinical/histolog-
ical data (n = 3). Therefore, a final population of sixty-four 
patients was enrolled having a mean age 34.4 ± 4.9 years 
and mean gestational age 34.6 ± 2.3 weeks. Based on the 
FIGO classification criteria, 41 patients were confirmed to 
have PAS.

Feature selection and machine learning analysis

A total of 737 and 1106 radiomics features were extracted 
respectively from overall 2D and 3D delineation datasets. 
Stable features selected at ICC analysis for each segmenta-
tion methodology are reported in Table1. The mean vali-
dation scoring obtained by the best ML model in all seg-
mentation approaches is summarized in Table 2. Among 
the tested segmentation approaches, the best performance in 
predicting PAS in patients with PP was obtained by the VOIs 
covering the retroplacental myometrium achieving a mean 
validation score of 0.761 (Standard Deviation = 0.116). The 

Table 1  Selected stable features 
at ICC analysis from repeated 
annotations

ICC intraclass correlation coefficient; CI confidence interval

Manual segmentation 
method

Delineated anatomical area Number of stable 
features at ICC (95% CI 
≥ 0.75)

2D Placental tissue 314
2D Retroplacental myometrium 54
2D Cervix 737
2D Placenta with underneath myometrium 388
2D Placenta with underneath myometrium and cervix 416
3D Placental tissue 686
3D Retroplacental myometrium 360
3D Cervix 506
3D Placenta with underneath myometrium 772
3D Placenta with underneath myometrium and cervix 782

Table 2  Computing cross-
validated metrics of the 
Machine Learning (ML) 
classifier at each segmentation 
approach

* The highest mean validation scoring was obtained by the 3D delineation of retroplacental myometrium

Manual segmenta-
tion method

Delineated anatomical area Mean validation 
score

Standard 
deviation

2D Placental tissue 0.682 0.100
2D Retroplacental myometrium 0.713 0.123
2D Cervix 0.516 0.109
2D Placenta with underneath myometrium 0.730 0.109
2D Placenta with underneath myometrium and cervix 0.651 0.065
3D Placental tissue 0.678 0.142
3D Retroplacental myometrium 0.761* 0.116
3D Cervix 0.642 0.167
3D Placenta with underneath myometrium 0.671 0.149
3D Placenta with underneath myometrium and cervix 0.696 0.121
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Supplementary Table include the final selected features from 
the 3D retroplacental myometrium segmentation method 
after the dimensionality reduction process.

Discussion

In this retrospective methodological study, we tested ten dif-
ferent segmentations methods built on MRI-based radiomic 
ML analysis demonstrating that 3D delineation of retropla-
cental myometrium obtained the best performance for the 
prediction of PAS in patients with PP.

One of the major challenges for reliable radiomics is the 
lack of feature reproducibility testing to variations in the seg-
mentation methodology, especially for manual techniques, 
which might lead to poorly generalizable radiomics models 
hindering their introduction in clinical practice [24, 28, 29].

Efforts towards a radiomics harmonization framework 
have been embraced by exploratory works in oncological 
imaging which investigated the influence of segmentation 
variability on each step of the radiomics feature workflow 
in terms of boundaries variations [30, 31], tumour site [32], 
the adoption of 2D or 3D annotations [33], and the use of 
manual or (semi)automatic method [34].

In this perspective, Kocak et  al. [35] systematically 
reviewed feature reproducibility strategies implemented 
in the original studies evaluating the radiomics profiling 
of renal lesions, pointing out that reproducibility analysis 
focused on segmentation variability was applied only in less 
than half of the revised investigations (18/44) .

In a recent systematic review [36], a quality appraisal of 
MRI-based radiomic studies focused on the detection and 
prognosis of PAS disorders revealed an overall heteroge-
neous and suboptimal methodological quality. Commonly 
encountered reproducibility concerns regarded the report-
ing of calibration statistics, the employment of validation 
strategies and the analyse of feature robustness to segmen-
tation variabilities. Of note, different 2D or 3D approaches 
have been adopted in delineating uterine and placental tissue 
among the nine reviewed studies, without testing the feature 
robustness to regional anatomy variabilities or to repeated 
segmentations [36].

To our knowledge, our work is the first rigorously evaluat-
ing manual image segmentation in different areas of the uter-
ine–placental environment, using the same feature selection 
algorithm and ML classifier, in order to identify the most 
robust and informative ROI/VOI delineation criteria. This 
might facilitate higher generalizability of radiomics features 
extraction in terms of regional variations and interobserver 
variations. In this light, the findings in our cohort suggest 
that VOIs delineation encompassing MRI retroplacental tis-
sue may be the most efficient and reproducible segmentation 
method, possibly setting a standard for future studies in the 

field. As reported in Table 2, the 2D retroplacental myo-
metrium segmentation method was slightly less performing 
than to the corresponding 3D sampling. In detail, among 2D 
segmentation approaches, 2D retroplacental myometrium 
(0.713) was the second-best approach shortly behind 2D pla-
centa with underneath myometrium (0.730) and overall (2D 
and 3D) third in terms of average accuracy. Interestingly, the 
2D approach slightly outperforming 2D retroplacental myo-
metrium still included the retroplacental myometrium (i.e., 
2D placenta with underneath myometrium). These findings 
can be explained by the number of pixels included in the 
ROIs/VOIs and thus in the analysis. Having more pixels to 
compute radiomics features can make them more informa-
tive and noisier; conversely, fewer pixels might not be suf-
ficient to compute clinically valuable features but decrease 
the noise of non-relevant pixels. Since retroplacental myo-
metrium is a thin structure and 2D segmentation inherently 
collects fewer pixels, it is likely that when working with 2D 
data, including additional information from the placental 
tissue is also beneficial. On the other hand, when working 
with 3D data, the number of included pixels from the more 
biologically relevant structure (retroplacental myometrium) 
is sufficient per se to provide clinically relevant information, 
and adding more pixels merely generates noise.

Our results are reasonably on the same line of recent 
evidence-based histopathologic findings arguing that 
rather than abnormal invasion, the main factor responsible 
of abnormal placentation in PAS is due to a defect in the 
uterine wall [37, 38]. Indeed, these emerging insights chal-
lenge the historical concept of abnormal placentation shift-
ing the pathophysiologic paradigm of PAS from a destruc-
tive villous “invasive model” to the uterine “dehiscence 
model” in which myometrium disarray is induced by uter-
ine scarification process such as caesarean section, leading 
to altered spatial relationship between the uterine wall and 
the anchoring villi implanted within and around the scar 
[39–41]. Therefore, our results identifying the retroplacental 
myometrium sampling as the most performing segmenta-
tion-based radiomics method are supported by these recent 
histopathological findings corroborating the primary role 
of the defective myometrium uterine and subsequent utero-
placental interface abnormalities in the development of PAS; 
of course, additional similar studies are required to confirm 
this hypothesis.

Some limitations of the present study need to be acknowl-
edged and discussed. First of all, the relatively small sample 
size did not allow to validate the final segmentation method 
performance on an external dataset. Nevertheless, a 5-fold 
cross-validation resampling procedure was used to estimate 
the ML model performance with nested feature selection 
based on recursive feature elimination method in order to 
prevent the risk of overfitting and avoid information leak 
between training and test folds. As a second limitation, we 
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did not evaluate to what degree radiomic feature robustness 
can be influenced by the use of semi- or automatic methods. 
However, given the high variability in annotation approaches 
for uteroplacental tissue in radiomics focused literature [36], 
we believe that establishing a reliable delineation criteria 
could increase standardization regardless of segmentation 
methodology (e.g., automated Deep Learning networks). 
Finally, for PAS disorders diagnosis we considered the 
recent FIGO classification guidelines, which propose inte-
grated criteria combining clinical finding at delivery and his-
topathologic criteria which not be applied on just delivered 
placenta tissue [3]; albeit the adoption of this system may 
lead to overestimating positive cases, it is the only interna-
tionally recognized classification thus enabling the appropri-
ate comparison of different specialist centres and different 
management strategies.

In conclusion, on the basis of this preliminary experi-
ence, the VOIs including the retroplacental myometrium 
using T2-weighted images seems to be the best method 
when segmenting images for the development of repro-
ducible ML radiomics predictive models to identify PAS 
in patients at high risk. In particular, our results in terms 
of pixel computation analysis might reflect the underlying 
microscopic morphologic alterations occurring in abnormal 
placentation which lies in the distortion of utero-placental 
interface induced by myometrial scarification events. Future 
investigations on multiple datasets are needed to confirm our 
findings and encourage the adoption of a common segmenta-
tion standard method to analyze MR images.
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