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Abstract

Molecular imaging plays a vital role in the management of neuroendocrine neoplasms (NENs). Somatostatin receptor
(SSTR) PET is critical for evaluating NENSs, ascertaining peptide receptor radionuclide therapy (PRRT) eligibility, and
treatment response. SSTR-PET/MRI can provide a one-stop-shop multiparametric evaluation of NENs. The acquisition of
complementary imaging information in PET/MRI has distinct advantages over PET/CT and MR imaging acquisitions. The
purpose of this manuscript is to provide a comprehensive overview of PET/MRI and a current review of recent PET/MRI

advances in the diagnosis, staging, treatment, and surveillance of NENs.

Keywords PET/MRI - Neuroendocrine neoplasm - PET/CT - PPRT - SSTR

Introduction

Neuroendocrine neoplasms (NENs) accounts for approxi-
mately 0.5% of malignancies, most commonly occurring in
the gastrointestinal tract [1, 2]. Though most NENs have
sporadic pathogenesis, in about 20% of cases, a familial
component is recognized mainly in Multiple Endocrine
Neoplasia type 1 (MEN1), Tuberous Sclerosis (TSC), Neu-
rofibromatosis (NF) type 1, or Von Hippel Lindau (VHL)
[3-5]. The overall incidence of NENS is approximately 5.86
per 100,000 per year, and 12-22% of tumors are metastatic
at diagnosis [2, 3]. There was a nearly 6.4-fold increase in
the prevalence of gastroenteropancreatic NENs (GEP-NENGs)
between 1975 and 2015, attributed to earlier detection and
improved treatments with a resultant rise in survival [6].
The World Health Organization (WHO) established a set
of pathological criteria to differentiate these two entities
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based on histologic differentiation, neuroendocrine marker
expression, Ki-67 index, and mitotic activity [4, 7]. Estab-
lishing these diagnostic criteria has demonstrated a benefit
in developing treatment strategies and improving the patient
prognostication [8—11].

Most (> 80%) NENs share an over-expression of the
somatostatin receptor (SSTR) [12]. This characteristic has
shown utility in diagnostics with the advent of SSTR-PET/
CT and, most recently, the PET/MRI [4]. SSTR imaging
aids in the staging and development of therapeutic strategies
for NENs. The European Neuroendocrine Tumor Society
(ENETS) consensus guidelines recommend molecular and
morphological imaging techniques for diagnosing NENSs,
depending on the primary tumor [13]. SSTR-PET/CT has
been largely integrated into clinical practice due to the
increased availability of radiotracer and PET/CT scanners,
ease of image acquisition, and high accuracy for detecting
NENSs [1, 13, 14]. PET/MRI, a modality first introduced in
2010, has been a topic of research in recent years mainly
due to the superior ability of the modality to characterize
soft tissues and evaluate subtle metastatic lesions [4, 14,
15]. There are several inherent benefits regarding the use of
MRI compared to CT, including a lack of ionizing radiation
and superior soft tissue contrast. MRI has been established
as the modality of choice for initial lesion characterization,
disease staging, and assessment of treatment response for a
variety of intra-abdominal solid organ malignancies. With
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the addition of PET, this modality could essentially be a one-
stop shop for the oncological imaging [16, 17].

The purpose of this manuscript is to provide a compre-
hensive overview of PET/MRI and a current review of recent
PET/MRI advances in the diagnosis, staging, treatment, and
surveillance of NENs.

Technical considerations in PET/MRI

In the United States, there are three manufacturers of PET/
MRI machines that are available for medical use: SIGNA
(GE Healthcare), uPMR 790 (United Imaging), and the
Biograph mMR (Siemens) [16]. PET/MRI is a hybrid
imaging technique that simultaneously acquires PET and
MRI images. Each system utilizes a 3 T magnet and a lute-
tium scintillator. PET/MRI requires carefully selecting and
administering the correct radiotracer and a collaborative
effort between technologists and interpreting providers to
protocol each study correctly. Based on the administering
institution, there remains a range of PET/MRI acquisition
parameters, the most widely used is 2 min of data acquisition
per bed position [16]. High-quality coregistration follow-
ing the simultaneous acquisition of imaging dataare due to
advances in technical respiratory gating and motion artifact
correction, owning to superior imaging quality compared
to PET/CT [18-20]. Motion correction becomes increas-
ingly essential when imaging intra-abdominally near the
diaphragm because PET images are acquired during free
breathing. At the same time, breath-holding is conducted
during some MRI sequence acquisition [21]. Additional
methods of respiratory motion reduction include MRI-based
motion modeling, compressed sensing methods, and utiliza-
tion of free breathing MRI sequences [21-23]. PET/MRI
offers superior soft tissue characterization compared to PET/
CT and even more so when the CT is acquired without IV
contrast. In PET/CT, CT images are used for attenuation
correction, and PET/MRI creates MR-attenuation correction
images, a method that utilizes attenuation coefficient maps
from acquired image data [16, 24].

A thorough review of the processes of motion and attenu-
ation correction in the acquisition of MRI images is beyond
the intended scope of this paper. Although there is some
variation in NET PET/MRI imaging, protocoling can be
separated into a whole-body PET/MRI protocol and a com-
prehensive region-specific protocol (Fig. 1). The whole-body
protocol includes a multi-bed position PET acquisition. The
complete protocol consists of the following sequences: axial
T1 gradient recall echo (in and out of phase), axial T2 fat-
saturated fast spin echo, diffusion-weighted images (up to
b700), pre-contrast T1 fat-saturated, and post-contrast T1
fat-saturated. For the evaluation of liver metastasis, the focus
of the MRI would be only on the liver. A partial-body PET
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Fig.1 Whole-body PET/MRI protocol with focused/abbreviated
abdominal MRI

examination with 4-5 bed positions at 2-3 min/bed position
could be performed quickly [25]. Additionally, a hepatobil-
iary phase post-contrast T1 sequence and magnetic reso-
nance cholangiopancreatography (MRCP) may be obtained.
An abbreviated protocol focused on metastatic disease may
consist of diffusion-weighted images and hepatobiliary
phase post-contrast T1 sequences [26].

PET/MRI

Several studies have examined the utility of PET/MRI in
detecting NETs and metastatic disease.

Table 1 summarizes the important characteristics of stud-
ies that evaluate the role of PET-MRI in NENs (Figs. 2,
3, and 4). A dedicated meta-analysis of these prospective
studies demonstrated a higher overall detection rate with the
use of PET/MRI (93.5%) when compared to SSTR-PET/CT
(76.8%) [14, 19, 27-30]. Specificities in detecting metastatic
liver disease ranged from 95.6 to 100% for PET-MRI and
88.2% to 100% in SSTR-PET/CT [27]. This data and study
confirmed general congruence in the literature on the diag-
nostic ability of PET/MRI in detecting NET liver metastatic
lesions (Fig. 5). Studies have shown improved detection of
liver metastases with MRI when a hepatobiliary contrast
agent is used [31-33]. A retrospective study comparing
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Fig.2 A 44-year-old woman
with poorly differentiated neu-
roendocrine carcinoma (small
cell) of the cervix. A Sagit-

tal, B axial T2 weighted MRI
images, C sagittal and D axial
T2 weighted PETMR images
demonstrate a large FDG avid
cervical mass (arrowhead) with
parametrial extension

Cc

Fig.3 A 28-year-old pregnant woman was diagnosed with poorly dif-
ferentiated neuroendocrine carcinoma (small cell) involving the left
breast. A Axial T2 weighted image shows a small T2 hypointense
nodule (arrowhead) in the left breast region. B Axial T2 weighted

@ Springer

PET/MR image, C axial, and D attenuation corrected PET images
show an FDG avid nodule in the breast region (arrowhead) in keeping
with the primary lesion, with no evidence of metastatic disease
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Fig.4 A 14-year-old boy with hyperinsulinemia is being evaluated fused PETMR image, C axial, and D attenuated corrected PET
for insulinoma. A The axial T2 weighted image shows no focal lesion images demonstrate a small area of intense focal uptake in the pan-
in the pancreatic tail (arrowhead). B Axial T2 weighted F-DOPA creatic tail (arrowheads). Findings are consistent with an insulinoma

Fig.5 A 51-year-old male with )

poorly differentiated neu-

roendocrine carcinoma (large @
cell) involving the ileum. A

Axial T2 weighted, B axial T1
weighted MRI images, C axial
T2 weighted, and D axial T1
weighted PETMR images dem-
onstrate avid hepatic metastases
(arrowhead)

fast, nonenhanced PET/MRI protocols (T2 haste, T2 TSE,  characterizing liver lesions [35]. In a study assessing the
and diffusion-weighted imaging, DWI) with SSTR-PET/CT  value of image fusion in PET/MRI compared to standard
demonstrated at least comparable effectiveness in overall ~ DWI MRI, fused PET/MRI was superior in detecting liver
detection rates in metastatic GEP-NENs and superior detec-  metastasis [36]. This study also described PET/CT superi-
tion in metastatic bone and liver lesions [34]. Similar results ority over standard MRI without DWI [36]. Because most
were found by Alshammari et al., confirming the compa-  patients undergo liver MRI and PET during the routine
rable accuracy in detection and staging as an advantage in  staging of GEP-NENSs and in the assessment of treatment
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response, combined PET/MRI, including DWI, has promise
as a comprehensive study in managing these tumors. In addi-
tion, Beiderwellen et al. conducted a study to evaluate the
role of PET-MR enterography in the assessment of intesti-
nal pathologies [37]. They reported high image quality with
good co-registration of PET and MRI, enabling high-quality
assessment of malignant and inflammatory intestinal lesions.

Radiomics is a rapidly growing field that has shown
promise in GEP-NET analysis. A review article by Saleh
et al. described radiomics utility in diagnostics, risk stratifi-
cation, management, and treatment response assessment of
pancreatic neuroendocrine tumors [38]. Radiomics, or the
extraction of quantitative features from cross-sectional imag-
ing, has been a promising research area for many solid organ
malignancies. PET/MRI radiomics has been explored in the
literature regarding GEP-NETs, and studies are described
in Table 2. In a study utilizing a quantitative 3D assess-
ment of ®®Ga-DOTATOC with DWI, a ratio of PET-derived
mean SUV and apparent diffusion coefficient (ADC) created
a combined variable that could predict grade 2 GEP-NETs
with a sensitivity and specificity of 86% and 100%, respec-
tively [39]. PET/MRI textural analysis showed a weak cor-
relation with NENs with low Ki-67 index, but these metrics
may be suitable in the high-grade neoplasms [40]. Metrics
such as relative T1 weighted hyperintensity (when compared
to muscle), arterial phase hyperenhancement, SUV . (when
compared to the liver), and diffusion restriction were asso-
ciated with a more aggressive tumor biology [41]. In a ret-
rospective study by Mapelli et al., second-order radiomic
data and SUV parameters demonstrated an ability to predict
lymph node involvement in pancreatic NETs with an AUC
of 0.992 [42].

Table 2 PET/MRI radiomics evaluation of GEP-NETs

A recent meta-analysis was conducted to assess the diag-
nostic performance of PETMRI for NENs in five studies,
with 105 patients reporting equal or superior liver metas-
tases detection by PET/MRI over PET/CT [27]. Another
study reported a higher proportion of correct identifica-
tion of lesions in whole-body staging Ga-DOTATOC PET/
MRI of NET patients than ®*Ga-DOTATOC PET/CT [29].
Jawlakh et al. reported that the overall tumor detection rate
and reader's confidence on PET/MRI with ®Ga-DOTATOC
and ''C-5-Hydroxy-tryptophan (!!C-5-HTP) were superior
to that of ®*Ga-DOTATOC-PET/CT for NENs imaging
[14]. A study by Berzaczy et al. reported that whole-body
%Ga-DOTANOC PET/MRI appears comparable to **Ga-
DOTANOC PET/CT for detecting distant metastatic disease
in patients with well-differentiated NETs [28]. Another study
reported that a non-enhanced fast MR protocol comprising
T2 HASTE, T2 TSE, and DWI for SSR-PET/MRI had com-
parable effectiveness in lesion detection as PET/CT [34].

Molecular imaging techniques

There are six different subtypes of SSTRs that are widely
expressed in human cells [43]. NENs are a group of tumors
with the highest level of SSTR expressions and are present
in 80-100% of GEP-NENs [44]. Successful molecular imag-
ing techniques of GEP-NENs utilize this inherent overex-
pression of somatostatin receptors. GEP-NENs most likely
express the 2A subtype SSTR [43]. In the past, the radi-
opharmaceutical of choice for somatostatin receptor imag-
ing was !!'In-pentetreotide (OctreoScan®), used primarily

Num-
ber of
patients

Study Study design

Type of DOTA-SSA  Objective

Result

Bruckmann et al. (2021) Prospective 26 %8Ga-DOTATOC

Mapelli et al. (2022) Retrospective 16 %8Ga-DOTATOC

Odds ratio association with
aggressive tumor biology:

First order radiomic data: T1lw
hyperintensity compared

to muscle, arterial phase
hyperenhancement, diffusion
restriction, and SUV_,. above

T1w hyperintensity (12.7),
arterial hyper-enhancement
(1.4), diffusion restriction

hepatic level (2.8), and SUV .. (7.0)
First order radiomic data: Predicted lymph node

SUV, can and SUV involvement: SUV_ ..
Second order radiomic data: (AUC=0.850)

GrayLevelVariance and High-  SUV_, (AUC 0.783)

GrayLevelZoneEmpbhasis GrayLevel Variance and High-
GrayLevelZoneEmphasis

(AUC=0.992)

PET positron emission tomography, ADC apparent diffusion coefficient, AUC Area under the ROC curve

*DOTATATE gallium (Ga-68) is a somatostatin-2 receptor analog which is radiolabeled with gallium-68 as a positron-emitting radioisotope.
Ga-68 DOTATATE has a high affinity for somatostatin-2 receptor and it is rapidly excreted from the nontarget sites which gives it an ideal candi-

date for imaging neuroendocrine tumors
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Table 3 Indications for SSTR-PET

Diagnostics

Treatment planning/surveillance

Baseline staging after histological diagnosis

Localizing lesions in patients with NEN and unknown primary location

Evaluation of a mass suggestive of NEN but not amenable to tissue sampling

Biochemical evidence of NEN with negative CI
Restaging for clinical/biochemical progression

New indeterminate lesion on CI with unclear progression

Selection of patients for PRRT

Pre-surgical staging

Monitoring of NENSs best seen on SSTR-PET
Restaging after completion of PRRT

SSTR somatostatin receptor, NEN neuroendocrine neoplasm, PRRT peptide receptor radionucleotide therapy, CI conventional imaging

in planar imaging and SPECT [4]. These techniques were
replaced for almost all clinical indications (Table 3) follow-
ing the advent of PET/CT, partially due to the low spatial
resolution of images and high false negative rate in organs
that exhibit substantial physiologic uptake.

In today’s clinical practice, octreoscan has been replaced
by **copper (®*Cu) and ®gallium (°®Ga) tagged peptides
for PET tracers such as -TATE (Tyr3-octreaotate), -TOC
(TyI3-octreotide), and -NOC (Nal3-octreotide). Chelation
of the molecules with -DOTA (1, 4, 7, 10-tetra-azacyclo-
dodecane-1, 4, 7, 10-tetraacetic acid) is conducted in the
creation of ®*Ga-labeled DOTApeptide octreotide deriva-
tives (DOTATATE, DOTATOC, and DOTANOC) used in
imaging [4, 45]. In a study comparing **Cu-DOTATATE
and ®*Ga-DOTATOC, **Cu-DOTATATE had a distinctive
advantage in detecting more NET lesions, though both radi-
otracers had similar patient-based sensitivities [46]. %4Cu-
DOTATATE has a longer half-life (12.7 h) and a lower posi-
tron range, allowing for increased practicality in a clinical
setting and improved image quality, respectively [46]. In a
meta-analysis of 416 patients comparing *Ga-DOTATATE
and *Ga-DOTATOC, their pooled sensitivities for diagnos-
ing NET lesions were 96% and 93%, with specificities at
100% and 85% demonstrating ®*Ga-DOTATATE as a more
accurate diagnostic radiotracer molecule [47]. Mayerhoefer
et al. showed similar performance of gadoxetate-enhanced
and diffusion-weighted sequences for ®Ga-DOTATOC PET/
MRI in diagnosing intraabdominal neuroendocrine tumors
[48]. Newer SSTR agents with a higher affinity for the 2A
receptor subset are actively being investigated in the litera-
ture. One of these agents, %8Ga-OPS202, has shown promise
in terms of safety and sensitivity for detecting neuroendo-
crine tumors compared with %8Ga-DOTATOC [49].

Tumor scoring systems

Somatostatin receptor analogs used in the imaging of GEP-
NETs can be utilized in treating these tumors by linking a
therapeutic isotope in place of those used for imaging, a
technique termed peptide receptor radionucleotide therapy,

PRRT [50]. The Krenning score was initially developed
for somatostatin receptor scintigraphy (SRS) to determine
whether a patient would be an excellent candidate for this
therapy. In the Krenning score, tumors are assigned grades
between 1 and 4 based on SSTR tracer uptake relative to
background, liver, and spleen activity [51].

A five-point scale titled Somatostatin receptor PET-
reporting and data system (SSTR-RADS) was piloted in
2018 by Werner et al. as a standardized objective framework
for diagnosing and treatment planning of NENs [52]. Based
on tracer uptake patterns, lesions are classified into five
groups, 1 (benign) through 5 (almost certainly malignant
NET), that ultimately dictate patient management (Table 4).
SSTR-RADS guided assessment has demonstrated a high
concordance rate amongst readers with varying levels of
expertise, indicating the system’s versatility and readiness to
be implemented/studied on a larger-scale [53]. SSTR-RADS
utilizes data on whole tumor burden rather than only com-
paring the Krenning score's uptake in the lesion of interest to
the liver and spleen. SSTR-RADS considers multimodality
(conventional cross-sectional and molecular imaging) data
when assigning a score to a particular patient.

BE_.FDG PET/CT is complementary to SSTR imaging
in cases of high-grade and poorly differentiated GEP-NEN.
It is typical for low-grade well-differentiated NENs to have
little glucose metabolism, though, in 40% of these tumors,
FDG uptake can be seen [54]. As dedifferentiation occurs,
upregulation of glucose receptors and downregulation of
SSTR occurs, termed a “flip-flop phenomenon” [4]. Signifi-
cant inter and intra-tumoral variation occurs in patients with
GEP-NENSs. This led to the combined clinical use of both
FDG and SSTR-PET to aid in characterizing tumor hetero-
geneity, risk stratification, and predicting tumor response to
PRRT. A NETPET score was developed, combining imaging
findings from '"®F-FDG and SSTR-PET, which has shown
promise as a prognostic biomarker and warrants investiga-
tion in future larger studies [55, 56].
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Table4 SSTR-RADS overview

SSTR-RADS category Findings Uptake level Recommendations Candidate for PRRT?
1 (Benign) Known benign lesions (biopsy proven or No
pathognomonic on CI)
1A Benign lesion, characterized by biopsy 1 No
or in accordance with imaging and no
abnormal uptake
1B Benign lesion characterized by biopsy or  2-3 No
in accordance with imaging but exhibits
focal increased uptake
2 (Likely benign) Low level or nonspecific SSTR uptake at 1 No

site atypical for NET metastasis

3 (Indeterminate) Findings that are suggestive of but not

definitive for NEN
3A Equivocal uptake in soft tissue sites typi- 1-2
cal for NET metastasis
3B Bone uptake that is not atypical for NET  1-2
3C Suggestive of an SSTR expressing, non- 3

NET benign tumor or malignant process
3D Highly suspicious of malignant NEN, but
no SSTR uptake

Intense tracer uptake in a typical location 3
without common features on CI

4 (NET highly likely)

5 (NET almost certain) Intense tracer uptake in a typical location 3
with corresponding CI features

Further workup indicated
Biopsy or 3 month follow-up imaging No

3 month follow-up imaging Yes (if multiple)

Biopsy No
8F_FDG PET may be of further value No
No biopsy needed Yes

Negative biopsy likely false negative ~ Yes

Levels of uptake: 1: less than or equal to blood pool, 2: greater than blood pool but less than or equal to the liver, and 3: greater than the liver

SSTR-RADS somatostatin receptor PET-reporting and data system, PRRT peptide receptor radionucleotide therapy, CI conventional imaging,

NET neuroendocrine tumor

PRRT and monitoring treatment response

PRRT is a tailored therapeutic technique that utilizes the
specific biological activity of the targeted lesion. The
National Comprehensive Cancer Network (NCCN) endorsed
the use of SSTR imaging in determining patients' eligibility
to receive PRRT [57]. Only patients with tumors showing
adequate expression of SSTR, typically a Krenning score
of greater than 2, are eligible to receive this therapy [58].
The development of criteria for determining response to
therapy is challenging due to the heterogeneity of NENs
and slow growth rate [59]. The WHO and ENETS classi-
fication systems, which were widely popularized, lacked
large data registries for analysis and did not account for
tumor heterogeneity [60]. Additional criteria, such as the
Response Evaluation Criteria in Solid Tumors (RECIST)
and the modified RECIST, have limitations when describ-
ing slow-growing tumors, particularly those with small vol-
ume, inflammatory characteristics, fibrosis, or hemorrhage
[60, 61]. Multigene liquid biopsy (NETest) is a blood-based
biomarker detection system that analyzes 51 circulating
mRNA sequences that are common in GEP-NENs [4]. The
test involves a dual-step protocol (mRNA isolation, cDNA
production, and polymerase chain reaction) from EDTA-
collected whole blood. In addition, it utilizes mathematical

@ Springer

tools such as a support vector machine, linear discriminant
analysis, k-nearest neighbors, and the naive Bayes algorithm.
The test successfully identifies eight biologically relevant
genes “omic” clusters (SSTRome, proliferome, signalome,
metabolome, secretome, epigenome, plurome, and apop-
tome), which define the tumor fingerprint and constitute the
oncobiome of the cell [62]. The clinical interpretation of this
information is presented as a diagnostic score ranging from
0% (low activity) to 100% (high activity). The utilization
of NETest has been demonstrated in the literature to have
a high accuracy in determining treatment response in GEP-
NETs, predicting recurrence following surgical resection
[59, 60, 63-66]. Few studies have evaluated the role of the
standardized uptake value (SUV) parameter of ®*Ga-DOTA-
TATE PET/CT in predicting PFS and response to the treat-
ment [67, 68]. The mean SUV , was significantly higher
in responders than non-responders [67, 68] and was higher
in patients with PFS > 18 months [68]. A study involving
128 patients with NENs of all WHO grades reported that
%4Cu-DOTATATE SUV,, in tumor lesions was significantly

max

associated with the PFS [69].
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Table 5 Advantages and weaknesses of PET/MRI

Advantages

Weakness

Improved lesion detection in the brain, breast, liver, kidneys, and bone

Better alignment of simultaneously acquired PET-MRI data compared to PET-CT

Improved quantifications by MRI-based motion correction without additional radiation

No ionizing radiation

Single appointment for patient who requires both PET and MRI

Expanded capabilities with multiparametric sequences such as DWI, perfusion MRI and spectroscopy

Increase acquisition time
Limited availability

High capital cost

Lack of standardized protocol

Limited evaluation of smaller
pulmonary nodules and osseous
lesions

Special training to technologists
Lack of reimbursement

PET/MRI challenges

Understanding the pitfalls of SSTR imaging is essential
because of its effect on imaging interpretation and, ulti-
mately, patient care Table 5. The spleen exhibits the high-
est amount of physiologic uptake of ®®Ga-DOTATATE
and, to a lesser degree, the liver, kidneys, adrenals, stom-
ach, prostate, and small intestine [39]. Of note, it is com-
mon to encounter patients with physiologic tracer uptake
in the uncinate process and tail of the pancreas [70]. Physi-
ological uptake in this area can usually be differentiated
from tumor due to its more diffuse and elongated appear-
ance rather than a focal area of tracer activity. Though, in
some cases, this may be a difficult distinction to make. A
study utilizing dynamic PET/CT acquisition in calculat-
ing the net influx (Ki) successfully differentiated physi-
ological uptake in the uncinate process from pancreatic
neuroendocrine tumors [70]. The liver is a common pri-
mary location for NEN metastasis. Physiologic uptake of
SSTR compounds may hide underlying metastatic liver
lesions. Using hepatobiliary-specific contrast agents such
as gadoxetate disodium can aid in identifying GEP-NET
hepatic metastasis with high sensitivity [20, 48, 71, 72].
PET/MRI has a low sensitivity for detecting bone lesions
largely because MRI attenuation techniques may under-
estimate tracer uptake values in densely sclerotic lesions
[73]. In addition, MRI is less sensitive in detecting pulmo-
nary lesions due to the low resolution of the lung paren-
chyma [16, 74].

Several issues have arisen which have limited the use of
PET/MRI. Acquiring PET/MRI requires technologists to
have dual training in PET and MRI. Having two technolo-
gists present, each with one of these two proficiencies may
solve this problem but will be more costly. Another issue
relates to the lack of reimbursement for PET/MRI services.
There is also no specific Current Procedural Terminology
(CPT®) codes for PET/MRI. As such, this requires submit-
ting individual codes for whole-body PET and MRI. In a
European study of the management and cost considerations

between PET/CT and PET/MRI, PET/MRI costs 50% more
per examination [75]. This study demonstrated that PET/
MRI provides additional clinical value in changes to more
appropriate management in 8% of cancer patients who
undergo PET/CT in routine clinical practice [75]. Patient
comfort is another consideration in PET/MRI, with the
modality having longer image acquisition times. Optimiza-
tion of PET/MRI protocols can aid in overcoming this time
constraint.

Future perspectives and trials

A list of the currently ongoing clinical trials regarding the
diagnostic utility of PET/MRI in neuroendocrine tumors can
be found in Table 6. These trials are recruiting participants
as of the time of writing this manuscript and hopefully will
provide better larger-scale data regarding the use of PET/
MRI in patients with NETs.

Conclusion

The advent of advanced molecular imaging techniques has
led to improvement in diagnostic abilities and patient prog-
nosis in those affected with solid organ malignancies. SSTR-
PET/MRI has shown promise in the diagnosis, staging, and
treatment assessment of GEP-NETS, especially those with
hepatic involvement. The utilization of hepatobiliary-spe-
cific contrast agents is key to accurate diagnostic abilities for
these tumors. There is a shortcoming of PET/MRI regarding
detecting sclerotic bony and lung lesions; for those cases,
PET/CT is superior. Advances in MRI radiomics have shown
promise in the preoperative staging of GEP-NETs. PET/MRI
does not come without challenges. Technical requirements
for imaging acquisition, reimbursement coding, and scan
time must be considered when utilizing PET/MRI services.

@ Springer
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PET/MRI offers the potential to become a comprehensive
modality for GEP-NET imaging. However, future studies
using novel radiotracers, radiomic trending, and a more
considerable population prospective analysis demonstrat-
ing efficacy are warranted to solidify the modalities used on
a widespread scale.
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