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Abstract
Purpose  To assess the performance of a machine learning model trained with contrast-enhanced CT-based radiomics fea-
tures in distinguishing benign from malignant solid renal masses and to compare model performance with three abdominal 
radiologists.
Methods  Patients who underwent intra-operative ultrasound during a partial nephrectomy were identified within our insti-
tutional database, and those who had pre-operative contrast-enhanced CT examinations were selected. The renal masses 
were segmented from the CT images and radiomics features were derived from the segmentations. The pathology of each 
mass was identified; masses were labeled as either benign [oncocytoma or angiomyolipoma (AML)] or malignant [clear 
cell, papillary, or chromophobe renal cell carcinoma (RCC)] depending on the pathology. The data were parsed into a 70/30 
train/test split and a random forest machine learning model was developed to distinguish benign from malignant lesions. 
Three radiologists assessed the cohort of masses and labeled cases as benign or malignant.
Results  148 masses were identified from the cohort, including 50 benign lesions (23 AMLs, 27 oncocytomas) and 98 malig-
nant lesions (23 clear cell RCC, 44 papillary RCC, and 31 chromophobe RCCs). The machine learning algorithm yielded an 
overall accuracy of 0.82 for distinguishing benign from malignant lesions, with an area under the receiver operating curve 
of 0.80. In comparison, the three radiologists had significantly lower accuracies (p = 0.02) ranging from 0.67 to 0.75.
Conclusion  A machine learning model trained with CT-based radiomics features can provide superior accuracy for distin-
guishing benign from malignant solid renal masses compared to abdominal radiologists.
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Introduction

Solid renal masses are commonly detected on medical imag-
ing studies either in the workup of hematuria or as an inci-
dental finding [1]. Such solid renal masses include malignant 
entities, such as renal cell carcinoma (RCC), but also benign 
lesions, such as oncocytomas and angiomyolipomas (AMLs) 
[2, 3]. Unfortunately, radiologists have limited sensitivity 
and specificity for distinguishing benign from malignant 
entities via cross-sectional imaging (Fig. 1) [4].

The clinical management of solid renal masses is vari-
able across institutions. Some institutions employ ultra-
sound-guided percutaneous biopsy for the diagnosis of 
renal masses. Biopsy is an invasive procedure and can fail 
to provide a diagnosis in up to 20% of cases [5]. Compli-
cations from biopsy, such as bleeding and tumor seeding, 
are rare but do occur [6]. Nevertheless, many institutions 
forego biopsy and proceed directly to surgical resection, 
which is within the standard of care [7]. A study by Frank 
et al. demonstrated in a cohort of 2770 patients that 12.8% 
of resected solid renal masses were benign entities [8]; the 
proportion of benign entities was greater for small lesions, 
approximately 19.9% for tumors < 4 cm, 22.0% for < 3 cm, 
22.4% for < 2 cm, and 46.3% for < 1 cm. A reliable method 
for distinguishing benign from malignant solid renal masses 
is desired to reduce the need for biopsy and mitigate the 
unnecessary resection of benign entities.

Radiomics is a field of image analysis and interpretation 
that extracts quantitative imaging features, and which has 
the potential to identify complex patterns beyond that which 
is detectable by the human eye [9, 10]. Radiomics features 
can be correlated with clinical information in an attempt 
to predict patient prognosis, response to therapy, or tumor 
biology from the images alone. The application of radiom-
ics to solid renal masses may provide a means to distinguish 
benign from malignant lesions.

Machine learning algorithms can be used to process 
radiomics data [11] and construct a model to predict the 
likelihood of benignity versus malignancy. Multiple studies 
have been conducted using radiomics and machine learn-
ing to compare RCCs versus oncocytomas or RCCs versus 

fat-poor angiomyolipomas [12]; however, these comparisons 
are of limited utility in clinical workflow, as only a single 
benign entity instead of the corpus (fat-poor angiomyoli-
pomas + oncocytomas) of benign entities is evaluated, and 
such a focused conundrum is not encountered clinically. Fur-
thermore, several studies have used radiomics and machine 
learning to distinguish the histologic subtypes of RCC, i.e., 
clear cell, chromophobe, and papillary subtypes [13, 14]. 
Yet, such a study is also incongruent with clinical work-
flow, as it assumes that benignity is already excluded. Some 
studies with radiomics and machine learning have focused 
on the more clinically applicable problem of comparing the 
aggregate of benign (fat-poor angiomyolipomas and onco-
cytomas) lesions to the aggregate of malignant (clear cell, 
chromophobe, and papillary RCCs) lesions [12]. However, 
many of these studies have either a small sample size and/
or the inclusion of masses that are obviously malignant and 
therefore not a diagnostic dilemma.

The purpose of this study was to investigate the use of 
radiomics and a machine learning model to distinguish 
benign from malignant solid renal masses on contrast-
enhanced pre-operative CT data. The cohort used in this 
study is sourced from our database of patients who under-
went partial nephrectomy and required intra-operative 
ultrasound. As a result, most of the lesions tended to be 
small (< 4 cm) and ambiguous on pre-operative imaging, 
and therefore a formidable challenge for a radiomics and 
machine learning approach. Furthermore, for comparison 
three radiologists assessed the cohort of renal masses and 
attempted to label the masses as benign or malignant. The 
performances of the machine learning model and the radi-
ologists were compared.

Materials and methods

This Health Insurance Portability and Accountability Act—
compliant study was approved by our institutional review 
board. The need for written informed consent was waived 
given the retrospective nature of the study.

Fig. 1   Representative benign and malignant lesions of the kidneys, 
including an angiomyolipoma (AML), oncocytoma, and clear cell, 
chromophobe, and papillary renal cell carcinomas (RCCs). Renal 

masses on CT often appear similar to one another despite underlying 
histologic differences
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Study population

The patient population included in this study was comprised 
of patients who required intra-operative ultrasound guid-
ance during a partial nephrectomy between January 2002 
and March 2020. Intra-operative ultrasound is routinely 
requested for localization of renal masses and to delineate 
lesion margins for surgical planning of all partial nephrec-
tomies performed at our institution. Inclusion criteria were 
as follows: adults ≥ 18 years of age; patients who underwent 
partial nephrectomy for a renal mass; diagnostic pathology 
reported from the resected mass, with a final diagnosis of 
angiomyolipoma, oncocytoma, clear cell RCC, papillary 
RCC, or chromophobe RCC; and those patients who had 
a pre-operative contrast-enhanced CT irrespective of scan-
ner vendor or imaging parameters, such as peak voltage or 
available slice thickness. Our institution does not routinely 
perform ultrasound-guided biopsy of renal masses and there-
fore the initial tissue diagnosis is via the resected samples. 
None of the angiomyolipomas had gross fat on cross-sec-
tional imaging and therefore could not be identified via this 
criterion.

Image acquisition

Patients underwent contrast-enhanced CT examinations via 
a variety of scanner manufacturers and imaging protocols, 
depending on whether the patients were scanned within our 
own institution or referred from an outside facility. Indi-
vidual were scanned with a multidetector CT from either 
GE Healthcare (n = 42), Philips (n = 10), Siemens (n = 85), 
or Toshiba (n = 11) at 100–140 kVp with a variable tube cur-
rent (mA). The thinnest available slices were used for analy-
sis, and ranged from 0.625 to 5 mm. All subjects received 
iohexol 300 mgI/mL for contrast.

Analysis

CT datasets were imported into a radiomics research pro-
totype (syngoVia Frontier, Siemens Healthineers, Forch-
heim, Germany) [15]. Volumetric segmentation of each 
lesion was performed semi-automatically by the software, 
with small manual adjustments performed as needed by a 
radiologist (AW) with 4 years of experience. The segmen-
tations encompassed the entire mass to the margins and 
included any calcifications, cystic components, or areas of 
central hypoattenuation if present. The entire segmented 
volumes were used for analysis. Segmentations were con-
firmed by an abdominal fellowship-trained radiologist with 
15 years of experience (AK). Radiomics features were 
computed from the built-in PyRadiomics framework and 
were subsequently exported from the software. Radiom-
ics features included 28 gray-level co-occurrence matrix 

features, 16 gray-level size zone matrix features, 16 gray-
level run length matrix features, and 19 first order features.

The maximum cross-sectional diameter of each lesion 
was computed from the segmentations. These maximum 
cross-sections were averaged for the entire cohort and 
also among the groups of benign and malignant lesions. 
Cross-sectional size was compared between the benign 
and malignant lesions using an unpaired equal variance 
Student’s t-test (p < 0.05).

Machine learning predictive modeling

The 148 renal lesions were grouped into benign (angio-
myolipoma and oncocytoma) and malignant (clear cell, 
papillary, and chromophobe RCC) categories. Data were 
divided into a 70/30 train/test split [16] in a random fash-
ion with stratification based on class labels.

Model building was performed on the segmented 
lesions. A random forest machine learning classifier [17, 
18] was implemented in Python via the sklearn toolkit 
and was validated with fivefold cross-validation on the 
training set. Receiver operating characteristic (ROC) and 
precision-recall curves were created, and summary statis-
tics were computed for the model performance, including 
sensitivity (recall), specificity, positive predictive value 
(precision), negative predictive value, and accuracy, along 
with area under the curve (AUC), Matthews correlation 
coefficient, Youden’s J statistic, and a weighted F1 score.

Radiomic feature ranking for the random forest model 
was performed to determine which features were the great-
est contributors to model performance. Feature impor-
tances were computed.

Reader evaluation

The cohort of renal masses was randomized such that 
the list of subjects was not grouped by pathology. This 
randomized list of 148 subjects was provided to three 
abdominal radiologists for independent review. The read-
ers were aware that each subject had a renal mass but were 
blinded to the existence of follow-up imaging, subsequent 
surgery, and pathologic diagnosis. The three radiologists 
(Readers 1, 2, 3) had 40 years (RBJ), 15 years (AK), and 
2 years (LS) of experience, respectively. Each radiolo-
gist labeled the cases as either benign or malignant renal 
masses. The number of true negative, true positive, false 
negative, and false positive cases was determined for each 
reader. The sensitivity (recall), specificity, positive predic-
tive value (precision), negative predictive value, accuracy, 
and F1 score were computed for each reader.
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Results

From the database, our search criteria yielded 236 patients. 
Of these, 88 patients did not have pre-operative contrast-
enhanced CT; these patients had an MRI, ultrasound, or 
non-contrast CT instead of a contrast-enhanced CT, or the 
imaging was unavailable due to referral from an outside 
institution (Fig. 2). As a result, 148 patients were included 
in the study (87 male, 61 female; mean age ± standard devia-
tion = 57.5 ± 12.1 years; age range = 25–87 years). Of these 
148 patients, 23 had AMLs (15.5%), 27 had oncocytomas 
(18.2%), 23 had clear cell RCC (15.5%), 44 had papillary 
RCC (29.7%), and 31 had chromophobe RCC (20.9%). Each 
of the 148 patients had a single renal mass. None of the 
masses demonstrated tumor in vein or other local invasion.

In maximum dimension, the overall cohort of lesions was 
on average 3.1 ± 1.5 cm (range 1.2–11.6 cm). Benign lesions 
were on average significantly smaller than malignant lesions 
[p = 0.02; 2.7 ± 1.1 cm (range 1.2–5.6 cm) vs. 3.3 ± 1.6 cm 
(range 1.2–11.6 cm)].

The random forest machine learning classifier for distin-
guishing benign from malignant solid renal masses yielded 
an overall accuracy of 0.82 (Fig. 3), with an AUC of 0.80 
(Fig. 4). The model had a sensitivity of 0.87, a specificity 

Fig. 2   Patient selection flowchart for the identification of 148 solid renal masses that had pre-operative contrast-enhanced CT and subsequent 
partial nephrectomy

Fig. 3   Confusion matrix for a random forest machine learning clas-
sifier distinguishing benign from malignant solid renal masses. The 
model yielded an overall accuracy of 0.82, a sensitivity of 0.87, a 
specificity of 0.71, a positive predictive value of 0.87, and a negative 
predictive value of 0.29
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of 0.71, a positive predictive value of 0.87, and a negative 
predictive value of 0.29 (Table 1). The Matthews correlation 
coefficient was 0.59, the Youden’s J statistic was 0.58, and 
the weighted F1 score was 0.82. On average, cross-validation 
analysis of the model demonstrated a test accuracy of 0.72.

An analysis of radiomic feature ranking for the random 
forest model demonstrated that wavelet transforms were 
overwhelmingly the greatest contributing features for the 
model. Nine of the top ten features were wavelet transform 

variations with importances ranging from 0.0064 to 0.0089 
(Table 2).

The three abdominal radiologists analyzed the cohort of 
renal masses for benignity versus malignancy and yielded 
overall accuracies ranging from 0.67 to 0.75 (Table 1) com-
pared to 0.82 for the machine learning model (p = 0.02). The 
sensitivities of the radiologists ranged from 0.85 to 0.98 and 
were therefore similar to or greater than the sensitivity of 
the machine learning model (0.87). The specificity tended 
to be low among the radiologists, ranging from 0.27 to 0.33 
compared to 0.71 for the machine learning model. The over-
all F1 score was similar among the radiologists (0.78–0.84) 
compared to the machine learning model (0.82).

Discussion

Solid renal masses are commonly encountered by radiolo-
gists in clinical practice. For fat-poor solid renal masses, 
cross-sectional imaging provides limited accuracy and reli-
ability for distinguishing benign from malignant lesions [4], 
and as a result most solid renal masses are further evaluated 
via biopsy or surgical resection [7]. Reliable imaging-based 
diagnosis of solid renal masses is sorely needed in clinical 
practice. Our study demonstrated that CT-based radiomics 
fed into a machine learning model can differentiate benign 
from malignant solid renal masses with an overall accuracy 
of 0.82 and an AUC of 0.80. The performance of the model 
exceeded the performances of three abdominal radiologists 
who span from early to mid to late career (overall accuracies 
ranging from 0.67 to 0.75).

Radiomics-based machine learning models may be used 
as a non-invasive tool for characterizing renal masses and 
therefore may be beneficial to clinical workflow [19]. A 
newly identified renal mass can be evaluated with a trained 
machine learning model, and the model can provide a prob-
ability of benignity versus malignancy. The provided prob-
ability can be weighed against the patient’s comorbidities in 
deciding whether active surveillance, biopsy, or resection is 
the optimal course of action.

A number of studies have been performed to differenti-
ate renal masses using radiomics derived from CT and MR 
images [12, 20]. In a recent study by Nassiri et al. [21], 
in a large cohort of 684 subjects, their overall CT-based 

Fig. 4   Receiver operating characteristic (A) and precision-recall (B) 
curves for a random forest machine learning classifier distinguish-
ing benign from malignant solid renal masses. The random forest 
machine learning classifier yielded an AUC of 0.80 and average pre-
cision (AP) of 0.89

Table 1   Diagnostic 
performance of three 
radiologists and a machine 
learning model in distinguishing 
benign from malignant renal 
masses on contrast-enhanced 
CT examinations

PPV positive predictive value; NPV negative predictive value; ML machine learning

Sensitivity Specificity PPV NPV Accuracy F1 score

Reader 1 0.98 0.30 0.73 0.12 0.75 0.84
Reader 2 0.85 0.27 0.72 0.55 0.67 0.78
Reader 3 0.92 0.33 0.76 0.35 0.74 0.83
ML Model 0.87 0.71 0.87 0.29 0.82 0.82
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radiomics machine learning model yielded an AUC of 
0.84, and when evaluating the sub-selection of small renal 
masses, the AUC was 0.77. The results of the Nassiri study 
are overall similar to the performance of our machine learn-
ing model. A study by Deng et al. [22] performed an analy-
sis of CT-based radiomics features (i.e., texture analysis) 
to differentiate benign from malignant renal masses in a 
cohort of 501 subjects; no machine learning algorithm was 
employed. Their radiomics features yielded AUCs ranging 
from 0.58 to 0.62. A similar analysis using MRI-based radi-
omics in 125 subjects [14] achieved an AUC of 0.73. Uhlig 
et al. [23] in a relatively small cohort of 94 patients achieved 
similar performance compared to our study for distinguish-
ing benign from malignant masses via a CT-based radiom-
ics random forest machine learning model—achieving an 
AUC of 0.83 and a radiologist AUC of 0.68. A study by 
Sun et al. [24] developed a CT-based radiomics machine 
learning model and also compared the model performance 
to radiologists; however the evaluation did not compare the 
conglomerate of benign versus malignant masses, but rather 
compared the ability to differentiate specific pathologic enti-
ties (such as clear cell RCC versus AMLs and oncocytomas). 
Such comparisons are not applicable in clinical practice, as 
they assume that the other pathologic entities are already 
excluded.

Our study has several strengths and unique aspects com-
pared to prior published works. Given that our cohort was 
sourced from cases requiring intraoperative ultrasound, 
the tumors tended to be small (average 3.1 ± 1.5 cm) and 
diagnostically indeterminate on cross-sectional imaging. 
Since most of the tumors were relatively small, all patients 
specifically underwent partial laparoscopic nephrectomy; 
larger tumors or tumors that are frankly malignant would 
have proceeded for radical nephrectomy instead. None of the 
cases included in our cohort were obviously malignant, such 
as demonstrating frank invasion or necrosis. All included 
AMLs were without gross fat and therefore could not be 

definitely diagnosed by imaging alone. Furthermore, com-
parison of machine learning model performance to radiolo-
gist performance in distinguishing benign from malignant 
solid renal masses has been limited in the literature.

This study had several limitations. The data included for 
training the machine learning model was acquired with a 
variety of scanners, slice thicknesses, and peak voltages. 
Such variability has been shown to affect model perfor-
mance [25]. Additionally, CT technology evolved over the 
18-year time period from which our data were acquired, such 
as the implementation of iterative reconstruction methods 
with resultant reduced image noise. However, this variability 
in imaging parameters and scanner technology does allow 
for a more generalizable model. Further attempts to account 
for this variability and assess the generalizability would 
require additional training and/or assessment of the machine 
learning model from an outside institution. Although the 
segmentations were confirmed by a senior radiologist, the 
lesion segmentation was not repeated due to time con-
straints, which may affect the results. The machine learning 
model in this study was trained on contrast-enhanced CT 
images; not all patients can receive contrast and therefore 
non-contrast examinations cannot be evaluated with our 
model. The cohort in this study only included AMLs, onco-
cytomas, and the three most common RCC subtypes. As a 
result, the performance of the model is unknown if it were 
to encounter other entities, such as metastasis, lymphoma, 
abscess, or rare RCC subtypes. Furthermore, the machine 
learning algorithm used in this study was solely defined with 
a random forest classifier. A support vector machine (SVM) 
approach was considered, given that SVM is intrinsically 
two-class, whereas random forest is intrinsically suited for 
multiclass problems. However, five pathologies are included 
in the study cohort, and while they are grouped into a binary 
problem of benignity versus malignancy, inherently each 
pathologic entity has a potentially unique radiomic signa-
ture that is more appropriately classified with a random 
forest approach. A five-class machine learning model was 
considered instead of the binary benign versus malignant 
classifier presented; however, the number of cases for each 
of the five pathologic entities was considered too small for 
a five-class model, particularly given the need to split the 
cases into training and testing sets. The machine learning 
algorithm trained in this study specifically targeted lesions 
that proceeded to surgical resection and required intraopera-
tive ultrasound. As a result, there is inherent and intentional 
selection bias, as lesions that were grossly aggressive, AMLs 
with macroscopic fat, or lesions not taken for surgical resec-
tion were excluded in the training of the model. A larger 
and multicenter cohort would likely improve model perfor-
mance and generalizability. On a similar note, the radiolo-
gists’ performance is likely biased, as the lesions included 
in this study were relatively small; there is likely a higher 

Table 2   Top ten ranked radiomics features for a random forest model 
trained to distinguish benign from malignant solid renal masses

Feature Importance

1 Wavelet-HHH_glcm_JointAverage 0.0089
2 Wavelet-HHL_firstorder_Median 0.0086
3 Wavelet-LHL_ngtdm_Contrast 0.0086
4 Wavelet-LLL_firstorder_10Percentile 0.0079
5 Wavelet-HHH_firstorder_Skewness 0.0073
6 Wavelet-LLL_firstorder_90Percentile 0.0070
7 Original_firstorder_RootMeanSquared 0.0069
8 Wavelet-LHH_gldm_HighGrayLevelEmphasis 0.0068
9 Wavelet-HLL_firstorder_Variance 0.0065
10 Wavelet-LHL_ngtdm_Strength 0.0064
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pretest probability for benignity than would be expected if 
all renal masses were evaluated without exclusion criteria. 
The radiologists’ accuracies presented here are likely arti-
factually low compared to what would be expected for all 
renal masses in general because the cohort did not include 
fat-containing solid masses or cystic renal masses, which are 
more easily recognizable as benign.

In conclusion, our study demonstrated that a machine 
learning model trained from CT-based radiomics features 
can differentiate benign from malignant fat-poor solid renal 
masses with a high degree of accuracy, and which exceeds 
the performance of abdominal radiologists.
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