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Abstract
Purpose To explore values of intra- and peritumoral CT-based radiomics for predicting recurrence in high-grade serous 
ovarian cancer (HGSOC) patients.
Methods This study enrolled 110 HGSOC patients from our hospital between Aug 2017 and Apr 2021. All patients under-
went contrast-enhanced CT scans before treatment. The least absolute shrinkage and selection operator (LASSO) regression 
was used to select radiomics features from intra- and peritumoral areas. Radiomics signatures were built based on selected 
features from Intra-RS, Peri-RS, and in Com-RS. A nomogram was constructed by combining radiomics signatures and clini-
cal parameters with predictive potential. Receiver operating characteristics (ROC), calibration, and decision curve analyses 
(DCA) curves were used to evaluate performance of the nomogram.
Results The intra- and peritumoral combined Com-RS showed effective ability in predicting recurrent HGSOC in the 
training (AUCs, Intra-RS vs. Peri-RS vs. Com-RS, 0.861 vs. 0.836 vs. 899) and validation (AUCs, Intra-RS vs. Peri-RS vs. 
Com-RS, 0.788 vs. 0.762 vs. 815) cohort. The Federation of International of FIGO stage, menstruation, and location were 
found to be strongly associated with tumor recurrence. The nomogram has the best predictive ability in the training (AUCs, 
Com-RS vs. clinical model vs. nomogram, 0.899 vs. 0.648 vs. 0.901) and validation (AUCs, Com-RS vs. clinical model vs. 
nomogram, 0.815 vs. 0.666 vs. 0.818) cohort.
Conclusion Our findings suggested values of intra- and peritumoral-based radiomics for predicting recurrent HGSOC. The 
constructed nomogram may be of importance in clinical application.
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Introduction

Ovarian cancer (OC) has been the deadliest cancer among 
women and the second most common gynecological malig-
nancy worldwide [1]. Epithelial ovarian cancer (EOC) is the 
most common type of OC, and HGSOC accounts for 75% 
of all EOC which is the most represented in the prognostic 
studies of OC [2]. The prognosis of patients with HGSOC 
is poor because of high recurrence rate, and the median 
recurrence time of advanced stage HGSOC is usually less 
than 18 months [3, 4]. Clinical reports have shown that a 
proportion of HGSOC patients obtain a good postoperative 
response after receiving cytoreductive surgery and platinum-
based chemotherapy [5, 6]. However, postoperative recur-
rence rates for advanced (stage III or IV) and early stage 
(stage I or II) HGSOC have been reported to be 60–80% and 
20–25%, respectively [7]. Therefore, an effective method 
for pretreatment assessing and predicting the risk of cancer 
recurrence for HGSOC is of clinical importance to develop 
follow-up treatment plans and improve prognosis. The role 
of medical imaging technologies in HGSOC patients is fast 
evolving in recent years [8]. The contrast-enhanced com-
puted tomography (CT) is routinely clinically used for stag-
ing and evaluating treatment follow-up in HGSOC [7]. How-
ever, radiologists can still hardly predict patients’ responses 
or prognosis by visual inspection of pretreatment CT images 
due to the absence of predictive biomarker.

Radiomics is an emerging field in quantitative medical 
imaging for objectively describing tumor characteristics and 
phenotypes [9]. In recent years, the radiomics have been 
introduced to reveal quantitative predictive or prognostic 
associations between images and clinical outcomes by cap-
turing and selecting important imaging-based features [10]. 
There have been many radiomics approaches on HGSOC, 
which have confirmed that medical images contain a wealth 
of potential information that is relevant to prognosis of 
patients [11–13]. A recent study showed that radiomics fea-
tures derived from magnetic resonance imaging images were 
correlated with prognosis of HGSOC [14]. Another recent 
report suggested significant associations between CT-based 
features and the risk of disease progression [15].

However, previous studies only focused on intratumoral 
area and ignored values of peritumoral area of HGSOC, 
which have inherent limitations. Pathological studies have 
demonstrated that peritumoral stroma surrounding HGSOC 
may also hold great biological information related to distinct 
biological characteristics of the tumor [16, 17]. Peritumoral 
radiomics has also been proofed to increase the efficiency 
of the prediction for the risk of recurrence in many types 
of malignant tumors, such as lung cancer [18], intrahepatic 
cholangiocarcinoma [19], and colorectal cancer [20]. To 
our knowledge, peritumroral radiomics for predicting recur-
rent HGSOC have not been studied. We hypothesized that 
peritumoral regions of HGSOC seen on CT images could 
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hold potential biomarkers to cancer recurrence, and mer-
its investigation. The study enrolled patients with HGSOC, 
aiming to explore values of CT-based features for predicting 
recurrence in these patients. We aim to analyze both intra- 
and peritumoral areas of HGSOC and develop a radiomics-
clinical nomogram that may have potential applications to 
provide personalized treatment for patients with HGSOC.

Materials and methods

Patients

This retrospective study was approved by our institutional 
review committee. A total of 110 HGSOC patients were 
recruited between Aug 2017 and Apr 2021. The inclusion 
criteria were as follows: (1) patients were pathologically 
confirmed as HGSOC and treated with cytoreductive surgery 
and 6–8 cycles of platinum-based chemotherapy; (2) patients 
aged 18–70 years; (3) with complete follow-up (disease his-
tory, procedure and course records, etc.), clinical and patho-
logical information; and (4) received contrast-enhanced CT 
scans before surgery. The exclusion criteria were as follows: 
(1) with other tumor diseases; (2) received other treatments, 
including preoperative chemotherapy, neoadjuvant chemo-
therapy, or immunotherapy; and (3) poor quality of preop-
erative CT images. The patient screening process is summa-
rized in Fig. 1. The final patients included in the experiment 
were randomly divided into a training cohort (n = 74) and 
a test cohort (n = 36) in a 2:1 ratio. Clinical characteristics 

of patients including age, Federation of International of 
Gynecologists and Obstetricians (FIGO), preoperative car-
bohydrate antigen 125 (CA125), menstruation status, tumor 
side, and tumor diameter were collected by reviewing medi-
cal records and CT images.

Follow‑up and clinical endpoints

The follow-up period in our study is 12 to 24 months. The 
PFS was defined as the time interval between the date of 
surgery to the date of disease recurrence or end of follow-
up. Clinical endpoint is disease recurrence or progression. 
Follow-up data are obtained from two main sources: medi-
cal records and telephone inquiries by physicians. CA125 
elevation above normal range and abnormal CT images are 
considered as cancer recurrence.

Imaging acquisition and tumor segmentation

Patient’s contrast-enhanced CT data were obtained from 
a Siemens CT scanner (Magnetom V erioio, Erlangen). 
The scanning parameters were as follows: tube voltage, 
120 kVp; tube current, 350 mA; slice thickness, 5 mm; 
slice spacing, 5 mm; matrix, 512 × 512; rotating speed, 
0.5 s/rot;  and contrast medium, 80–100 mL injector rate, 
2.5–3.5 mL/s. Arterial and portal vein enhancement scans 
were performed 25 s and 70 s after the contrast injection. 
The scanned full enhanced CT images were stored in digi-
tal imaging and communications in medicine (DICOM) 
format. A radiologist with 17 years of experience used 

Fig. 1  Flowchart of the patient screening process in our study
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the open source software ITK-SNAP V.3.8 to manually 
delineate the region of interest (ROI) on each CT slice to 
generate the mask and stored in a NII format. To explore 
potential information in the peritumoral region of ovarian 
cancer, the original mask of the tumor were radially dilated 
with a distance of 1 cm outside the tumor using Python 
v.3.6. The ROI of the peritumoral region was obtained by 
subtracting the original ROI from the dilated ROI.

Extraction and selection of radiomics features

Radiomics features for each patient were calculated from 
both intra- and peritumoral regions using the “Pyradiom-
ics” package in Python v.3.6 (https:// pyrad iomics. readt 
hedocs. io) [21]. Eight transform filters (wavelet, square, 
squareroot, localbinarypattern2D, Laplacian of Gauss-
ian, logarithm, exponential, and gradient) were required 
for the CT images. In total, 1967 features were extracted 
from the intratumoral and peritumoral regions, respec-
tively. These include three major categories: first order, 
shape based, and texture features. In addition, all texture 
features extracted are shown in Table S1. Among them, 
the first order and texture features were derived from the 
transformed CT images.

To evaluate the reliability of the extracted features and 
to exclude unstable features, 30 patients were randomly 
selected for intra-class correlation coefficient (ICC) analy-
sis [22], 15 patients had disease recurrence, and the other 15 
patients were without disease recurrence during the follow-
up period. To perform the ICC analysis, another radiologist 
with 2-year experience was invited to segment the ROIs in 
the CT image. Features with ICC > 0.85 were retained and 
further selected by three steps. First, the Mann–Whitney U 
test was used to select features with P < 0.05. Second, the 
least absolute shrinkage and selection operator (LASSO) 
regression and tenfold cross-validation are used to select 
features with the best predictive performance, and lambda 
is the best parameter chosen by LASSO and tenfold cross-
validation [23]. Finally, logistic regression of the remaining 
features using Akaike information criterion (AIC) as a stop-
ping criterion [24].

Development of radiomics signatures 
and nomogram

The radiomics signature was developed by integrating the 
selected features with non-zero coefficients based on LASSO 
regression. To help clinicians predict disease recurrence in 
ovarian cancer patients, a radiomics nomogram was con-
structed by combining the radiomics signature with most 
important clinical factors.

Statistical analysis

For categorical and continuous clinical factors, the Chi-
square [25] and Mann–Whitney U tests [26] were applied 
for statistical analysis using IBM SPSS Statistics 24. Clini-
cal factors with P > 0.05 were excluded and not used for 
modeling. Receiver operating characteristic (ROC) curves 
were plotted using the “pROC” package in R v.3.6 and opti-
mal cutoff values were calculated using Youden index [27]. 
The area under the ROC curve (AUC), accuracy, sensitivity, 
and specificity as metrics were calculated to evaluate pre-
dictive performance of the radiomics models. ROC curves 
were evaluated with the DeLong test [28]. Decision curves 
(DCA) [29] were plotted using the “rms” package for assess-
ing potential clinical values of the models. Figure 2 shows 
the workflow of our study.

Results

Patient characteristics

We finally enrolled 110 patients with HGSOC: mean age, 
53.65 ± 10.18 years. Significant differences were observed in 
FIGO Stage, menstruation, and location between recurrence 
and no recurrence groups in the training set (P < 0.05); the 
differences were later confirmed in the validation set as well 
(P < 0.05). There was no difference observed for age and 
tumor diameter (P > 0.05), except for preoperative CA125 
that showed P < 0.05 in the training set. Results of statisti-
cal analysis of clinical characteristics are listed in Table 1.

Feature selection and development of radiomics 
signatures

The ICC, Mann–Whitney U test, and LASSO regres-
sion were used to select CT-based radiomics features that 
were most strongly associated with recurrence of HGSOC 
patients. A total of five and four CT features were selected 
from intra- and peritumoral areas to generate an intratumoral 
area (Intra-RS) and a peritumoral area (Peri-RS), respec-
tively. The features from intra- and peritumoral areas were 
combined and further selected to generate a combined radi-
omics signature (Com-RS) with six most predictive features, 
four from intra-, and two from peritumoral areas, respec-
tively. Predictive performance of the finally identified fea-
tures is compared and presented in Table 2. Formulas of the 
developed radiomics signatures are shown below:

Intra-RS = 4.831–26.367 × log.sigma.5.0.mm.3D_
g l s z m _ S i z e Z o n e N o n U n i f o r m i t y N o r m a l i z e d 
−  4.717 × original_shape_Flatness + 4.726 × wavelet-

https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
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LLH_glszm_LowGrayLevelZoneEmphasis − 0.105 × wave-
l e t - L H H _ f i r s t o r d e r _ Ku r t o s i s   −   2 . 1 9 8  ×  l o g .
sigma.3.0.mm.3D_glcm_ClusterShade

P e r i - R S  =  2 . 3 5 5  +  3 . 3 2 7  ×  s q u a r e _ g l c m _
M C C   −   0 . 5 9 5  ×  l o g a r i t h m _ g l s z m _ Z o n e E n -
tropy − 5.052E − 07 × wavelet-HLL_glszm_LargeAreaL-
owGrayLevelEmphasis − 4.144 × original_shape_Flatness

Com-RS = 5.655–7.544 × or iginal_shape_Flat-
ness  −  0.099 × wavelet-LHH_firstorder_Kurtosis 
− 24.370 × log.sigma.5.0 mm.3D_glszm_SizeZoneNonUni-
formityNormalized − 3.155 × log.sigma.3.0 mm.3D_glcm_
ClusterShade − 1.138E-06 × wavelet-HLL_glszm_LargeA-
reaLowGrayLevelEmphasi + 5.025 × wavelet-LLH_glszm_
LowGrayLevelZoneEmphasis.

Fig. 2  Radiomics workflow in our study

Table 1  Statistical analysis results of clinical characteristics

SD standard deviation, FIGO Federation of International of Gynecologists and Obstetricians, Pre-CA125 preoperative carbohydrate antigen 125
*P < 0.05

Characteristic Training (n = 74) P Validation (n = 36) P

Recurrence (n = 31) No recurrence (n = 43) Recurrence (n = 14) No recurrence (n = 22)

Age (mean ± SD) 54.00 ± 9.19 52.74 ± 9.88 0.662 56.71 ± 10.45 52.95 ± 12.05 0.665
Pre-CA125 (median 

(range))
936.00 (60.30, 

7038.20)
317.30 (9.30, 8790.10) 0.005* 622.10 (121.90, 

4578.60)
642.60 (7.70, 5551.20) 0.810

Tumor diameter 
(mean ± SD)

85.78 ± 22.00 87.52 ± 26.93 0.930 83.95 ± 26.31 86.34 ± 36.15 0.810

FIGO Stage, n. (%)
 Stage I–II 4 (5.41) 20 (27.03) 0.003* 1 (2.78) 8 (22.22) 0.003*
 Stage III–IV 27 (36.49) 23 (31.08) 13 (36.11) 14 (38.89)

Menstruation status, 
n. (%)

 Menopause 24 (32.43) 33 (44.60)  < 0.001* 12 (33.33) 19 (52.78)  < 0.001*
 Premenopausal 7 (9.46) 10 (13.51) 2 (5.56) 3 (8.33)

Location, n. (%)
 Unilateral 10 (13.51) 16 (21.62) 0.011* 3 (8.33) 8 (22.22) 0.020*
 Bilateral 21 (28.38) 27 (36.49) 11 (30.56) 14 (38.89)
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Table 3 lists comparisons of predictive performance for 
each radiomics signature. Our developed Intra-RS from the 
intratumoral area outperformed Peri-RS from the peritu-
moral area in terms of AUC and specificity in both train-
ing and validation cohorts. The intra- and peritumoral area 
combined Com-RS achieved the highest AUC in training and 
validation cohorts, indicating that the intra- and peritumoral 
areas may provide complementary information correlated to 
recurrence. Figure 3 shows waterfall plots for each patient 
based on the multi-area combined model. In waterfall plots, 
most patients can be correctly distinguished according to 
Com-RS in both training and validation cohorts, which sug-
gests that our model is effective on differentiating patients 
with recurrence from those with no recurrence.

Construction and evaluation of the nomogram

As shown in Fig. 4a radiomics nomogram was constructed 
combining the Com-RS, FIGO stage, menstruation status, 

and location to visualize the predictive performance of the 
model. The first row represents points, and rows second to 
fifth represent radiomics signature, FIGO stage, menstrua-
tion status, and location, respectively. The risk of recurrence 
of HGSOC is read from the last row of the scale by verti-
cally drawing a line from the total points. Figure 4b and c is 
calibration curves, showing differences between predicted 
probabilities of our nomogram and actual values. The closer 
red-dotted line to the blue solid line indicate the better the 
performance of nomogram. Our nomogram model has better 
predictive performance in the training and validation cohort. 
Comparisons of the Com-RS, clinical model and nomogram 
are summarized in Table 4. The predictive performance of 
Com-RS is generally improved with the addition of clinical 
factors. AUCs of the nomogram reached 0.901 and 0.818 
in the training and validation set, respectively, which were 
higher than those of Com-RS and clinical model. The results 
of Delong test showed that there were significant differences 
(P < 0.05) between the clinical model and Com-RS and 

Table 2  Performance of the features for predicting recurrent OC

SD standard deviation, Intra, intratumoral, Peri peritumoral

Feature Region Cohort Mean ± SD AUC P

Recurrence No recurrence

Wavelet.LHH_firstorder_Kurtosis Intra Training 5.30 ± 3.50 10.83 ± 12.42 0.695 0.004
Validation 7.06 ± 9.78 18.28 ± 29.11 0.662 0.109

Log.sigma.5.0.mm.3D_glszm_Size-ZoneNonUniformi-
tyNormalized

Intra Training 0.10 ± 0.03 0.12 ± 0.04 0.647 0.032
Validation 0.11 ± 0.07 0.12 ± 0.06 0.655 0.395

Log.sigma.3.0.mm.3D_glcm_Clust-erShade Intra Training 0.08 ± 0.24 0.20 ± 0.20 0.519 0.024
Validation 0.14 ± 0.24 0.18 ± 0.18 0.699 0.860

Wavelet.LLH_glszm_LowGrayLeve-ZoneEmphasis Intra Training 0.23 ± 0.22 0.13 ± 0.14 0.642 0.038
Validation 0.18 ± 0.13 0.14 ± 0.19 0.705 0.041

Original_shape_Flatness Peri Training 0.20 ± 0.10 0.31 ± 0.16 0.742  < 0.001
Validation 0.23 ± 0.10 0.40 ± 0.21 0.740 0.016

Wavelet.HLL_glszm_LargeAreaLo-wGrayLevelEmpha-
sis

Peri Training 6.10 ×  105 ± 5.84 ×  105 1.48 ×  106 ± 1.84 ×  106 0.643 0.037
Validation 8.61 ×  105 ± 7.39 ×  105 1.40 ×  106 ± 1.56 ×  106 0.558 0.575

Table 3  Predictive performance of each radiomics model

AUC  area under the receiver operating characteristic curve, CI confidence interval, ACC  accuracy; SEN: sensitivity, SPE specificity, Intra-RS 
intratumoral radiomics signature, Peri-RS peritumoral radiomics signature, Com-RS combined radiomics signature
*P < 0.05

Training set Validation set

Model AUC (95% CI) ACC SEN SPE P AUC (95% CI) ACC SEN SPE P

Intra-RS 0.861 (0.778–0.943) 0.757 0.810 0.750 0.788 (0.633–0.941) 0.694 0.867 0.800
Peri-RS 0.836 (0.744–0.928) 0.736 0.846 0.743 0.762 (0.582–0.941) 0.722 0.829 0.700
Com-RS 0.899 (0.831–0.966) 0.811 0.774 0.884 0.815 (0.668–0.962) 0.722 0.929 0.682
Intra-RS vs. Peri-RS 0.697 0.832
Intra-RS vs. Com-RS 0.486 0.800
Peri-RS vs. Com-RS 0.283 0.653
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between the clinical model and nomogram, in the training 
set.

ROC curves for the three radiomics models are plotted in 
Fig. 5. DCA curves (Fig. 6) represent the potential for clini-
cal application of each model. With a threshold probability 
range of 0.58–0.80, the red line is higher than the other lines 
which represents a greater net benefit in our nomogram pre-
dicting disease recurrence.

Discussion

Previous reports related to our research focused solely within 
the extent of the HGSOC tumor itself [11–13, 15], which 
ignored information from areas surrounding the tumor. We 
evaluated and compared predictive values of intratumoral 
and peritumoral regions and found that the established Intra-
RS derived from intratumoral area showed higher predictive 
performance than Peri-RS from peritumoral area in terms 
of AUC and specificity, suggesting the intratumoral area 
is more predictive than peritumoral area in HGSOC. Our 
findings suggested that peritumoral area of HGSOC can 
provide complementary information correlated with can-
cer recurrence. This was partially consistent some studies 
that demonstrated values of peritumoral area for predicting 
recurrence in malignant tumors [19, 20].

For each patient, the amount of imaging features ana-
lyzed in our study was much greater than published studies 
[11, 13]. We finally selected a total of six features that were 
highly associated with tumor recurrence, four of which were 
derived from intratumoral area and two were from peritu-
moral area. These features included one first-order statis-
tics feature, one gray-level co-occurrence matrix (GLCM) 

feature, three gray-level size zone (GLSZM) features, and 
one shape feature (3D). Our findings regarding the associa-
tion between the four types of features and cancer recur-
rence were supported by some previous studies [11, 13, 15]. 
The first-order statistics features quantify the distribution of 
voxel-based intensities in the tumor [13]. Four textural fea-
tures (one GLCM feature and three GLSZM features) allow 
objective and quantitative assessments of tumor heterogene-
ity [30]. This was consistent with a previous study that sug-
gested the heterogeneity represents a key feature of HGSOC 
regarding tumor recurrence [31]. The original shape flatness 
feature quantifies relationship between the largest and small-
est principal components in the ROI shape. We found that 
values of this feature in the non-recurrent group were greater 
than those in the recurrent group, which may indicate that 
the tumor with a rounder shape is more tend to recurrent 
after treatment.

We identified FIGO stage, menopausal status, and tumor 
location to be the most predictive on recurrent HGSOC by 
statistical analysis. This was consistent with some previous 
researches that also considered the three factors (FIGO 
stage [11, 13, 15], menopausal [11] and location [12] as 
high-risk clinical factors for recurrent HGSOC. Although 
the CA125 was considered to be an important clinical pre-
dictor according to previous reports [11, 15], we found 
no difference for CA125 (P > 0.05) in the validation set, 
which may be due to the limited sample size. By integrat-
ing the FIGO stage, menopausal status, and tumor loca-
tion, we built a clinical model and generated predictive 
AUCs ranging from 0.648 to 0.666, which was similar 
with recently proposed clinical models that yielded AUCs 
of 0.632–0.691) [13] and 0.670–0.670 [12] for predicting 
recurrent HGSOC. To help clinicians visualize predictive 

Fig. 3  Waterfall diagram analysis of the developed Com-RS. The 
Com-RSs for each patient is represented by colored bars. Red bars 
indicate patients without recurrent cancer, whereas blue bars indi-

cate patients with recurrent cancer. The x-axis represents the patient, 
whereas y-axis represents the Con-RS of each patient
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Fig. 4  Radiomics nomogram combining the Com-RS and important 
clinical factors. a The developed nomogram. b and c Calibration 
curves of the nomogram in the training (b) and validation (c) cohort. 
The x-axis represents the model calculated, whereas y-axis represents 

the actual probabilities. The 45  degree blue line represents an ideal 
diagnosis, whereas red-dotted line represent the performance of our 
nomogram

Table 4  Comparisons of the Com-RS, clinical model, and nomogram

AUC  area under the receiver operating characteristic curve, CI confidence interval, ACC  accuracy, SEN sensitivity, SPE specificity, M1 Com-RS, 
M2 clinical model, M3 nomogram
*P < 0.05

Training set Validation set

Model AUC (95% CI) ACC SEN SPE P AUC (95% CI) ACC SEN SPE P

M1 0.899 (0.831–0.966) 0.811 0.774 0.884 0.815 (0.668–0.962) 0.722 0.929 0.682
M2 0.648 (0.527–0.769) 0.581 0.710 0.512 0.666 (0.582–0.941) 0.611 0.786 0.500
M3 0.901 (0.835–0.967) 0.824 0.806 0.837 0.818 (0.499–0.833) 0.694 0.786 0.818
M1 vs. M2  < 0.001* 0.160
M1 vs. M3 0.890 0.878
M2 vs. M3  < 0.001* 0.114
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risks of tumor recurrence in HGSOC patients, an easy-
to-use radiomics-clinical nomogram was constructed 
incorporating image-based features and high-risk clini-
cal factors. Compared to Com-RS and clinical model, our 
nomogram had the best prediction performance and gen-
erated AUCs of 0.818–0.901, which were much higher 
than a previous report yielded AUCs of 0.749–0.769 [13]. 
DCA confirms that more benefits can be provided by our 
nomogram, which suggested good potential in clinical 
applications.

There are some limitations in this study. First, the 
HGSOC patients were enrolled from a single hospital. The 
findings should be validated with multicenter samples. Sec-
ond, we only analyzed CT data. While, a previous study 
showed that PET-CT may be more powerful for assessment 
of cancer recurrence in HGSOC compared to CT [32]. Third, 
due to incomplete records of genotypes for the patients, this 
study failed to explore associations between gene status 
and cancer recurrence. Fourth, although peritumoral dila-
tions were automatically addressed, intratumoral regions 
were manually segmented, which was subjective and time 
consuming. Therefore, automated or semi-automated meth-
ods for tumor segmentation are needed in our future study. 
Finally, our study included a peritumoral area with a dilata-
tion distance of 1 cm. In our future studies, performance of 
different dilatation distances should be evaluated.

Conclusion

This study investigated values of intra- and peritumoral 
regions of ovarian cancer for predicting cancer recurrence. 
Our constructed clinical-radiomics nomogram may be of 
potential significance for making early and appropriate treat-
ment decisions in patients with HGSOC.
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