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Abstract
Purpose  The aim of this study was to develop and validate a nomogram model to evaluate lymph node metastasis (LNM) 
in patients with rectal cancer (RC).
Methods  A total of 162 patients with RC were included in the study. The MRI reported model, the Radscore model, and 
the Complex model were constructed using the logistics regression (LR) algorithm. The DeLong test and decision curve 
analysis (DCA) were used to compare the prediction performance and clinical utility of these models. The nomogram model 
was constructed to visualize the prediction results of the best model. Model performance was evaluated in the training and 
validation groups, and the calibration curve and Hosmer–Lemeshow goodness of fit test were used to evaluate the calibration.
Result  All three models constructed by the LR algorithm were good at identifying LNM. The DeLong test and the DCA 
results showed that the Complex model outperformed the MRI reported model and the Radscore model in relation to their 
predictive performance and clinical utility. The nomogram of the Complex model had an area under the curve (AUC) of 
0.902 (95% confidence interval (CI) 0.848–0.957) in the training group and an AUC of 0.891 (95% CI 0.799–0.983) in the 
validation group. Meanwhile, the nomogram showed good calibration.
Conclusion  The nomogram model constructed based on T2WI radiomics and MRI reported had good diagnostic efficacies 
for LNM in patients with RC, and provided a new auxiliary method for accurate and individualized clinical management.
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Graphical abstract

A nomogram model based on MRI and radiomic features 
developed and validated for the evalua�on of lymph node 
metastasis in pa�ents with rectal cancer

Yexin Su, Hongyue Zhao et al; 2022

A nomogram model based on 
MRI and radiomic features was 
developed to assess lymph node 
metastasis in pa�ents with rectal 
cancer, comfirming the 
complementary role of 
radiomics in MRI structured 
repor�ng .
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Introduction

Rectal cancer (RC) is one of the most common malignancies 
in the digestive system, the Global Cancer Statistics 2020 
showed that colorectal cancer (CRC) has a high incidence 
(10.0%) and mortality (9.4%) [1]. In the past few decades, 
the incidence of the disease in the United States has gener-
ally declined, but has increased in the younger age [2]. The 
2016 China Cancer Statistics report showed that both the 
incidence and mortality of CRC have increased significantly 
in China [3]. Currently, patients with RC are classified by 
staging of the tumor/lymph node/metastasis (TNM) system 
validated by the American Joint Committee on Cancer [4]. 
Accurate preoperative identification of lymph node metas-
tasis (LNM) is an essential factor for guiding treatment 
decisions and predicting patient survival [4–7]. For patients 
with LNM, surgical resection accompanied by lymph node 
(LN) dissection is necessary, however, surgical treatment is 
invasive, expensive, and exhibits inevitable postoperative 
complications. Postoperative mortality for colorectal and 

rectal cancer surgery has been reported to be approximately 
3–6% [8, 9]. Therefore, in order to reduce or avoid the risk 
of invasiveness and complications in elective patients, endo-
scopic resection could be used as another option for patients 
with early T stage without LNM. It should be noted that the 
relationship between micrometastases and poor prognosis 
in patients with node-negative CRC remains controversial. 
Some immunological studies have shown no association 
between micrometastases and poor prognosis, while a few 
studies reported that there was a strong association between 
them [10]. Patients with LNM have a 5-year survival of 
50–68%, with a higher risk of locoregional recurrence. How-
ever, for patients without LNM, the 5-year survival increases 
to 95%, and the risk of loco-regional recurrence is relatively 
low [11]. Therefore, the prediction of LNs and the accurate 
assessment of LN state are essential for treatment decision 
making and prognostic assessments of patients with RC.

Magnetic resonance imaging (MRI) has been recom-
mended by the European Society for Medical Oncology 
as a part of the standard treatment program for RC [12]. 
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Traditionally, LNs can be evaluated based on their size 
and changes in internal signal, although due to reactive LN 
hyperplasia, which can cause changes in internal structures, 
it can be difficult to identify whether the LN is metastatic or 
not by observing the change in signal strength alone [13]. In 
recent years, the application of diffusion weighted imaging 
(DWI) has greatly improved the qualitative diagnostic accu-
racy of LNM. The LN detection rate using DWI was about 
6% higher than that using conventional T2WI. Seber et al. 
[14] proved that the apparent diffusion coefficient (ADC) 
can, to some extent, distinguish between benign and malig-
nant nodes. However, due to the sample size in that study, 
the choice of b value, ADC value mathematical algorithm 
model, and the region of interest (ROI), the ADC values 
have different predictive values for LNM in patients with 
RC. Other studies have aimed to explore the diagnostic 
accuracy of LMN in patients with RC by using dynamic 
contrast-enhanced MRI, magnetic resonance spectroscopy, 
and blood oxygenation level-dependent MRI [15–17]; how-
ever, such methods could not achieve a unified consensus 
and are greatly affected by the scanning parameters and the 
technology itself. Although some histopathological findings, 
such as LN infiltration and tumor differentiation, are known 
to be predictors of LNM, they are only available postopera-
tively [18].

Radiomics is the process of converting medical images 
into high-dimensional, exploitable data through high-
throughput quantitative feature extraction, followed by data 
analysis for decision-making support [19]. Radiomics has 
shown promising prospects in assessing tumor heterogene-
ity, predicting prognosis, and responding to the tumor micro-
environment [20]. Radiomics facilitates the exploration of 
deep hidden information from medical diagnoses at the 
macro level to promote precision medicine. Several studies 
have applied radiomics to study LNM in patients with RC, 
however, constructing a facilitative model for clinical use in 
patient management would be significant. The aim of this 
study was to further confirm the value of radiomic features 
based on T2WI in predicting LNM in RC patients, and to 
confirm the complementary role of radiomics in MRI struc-
tured reporting assessment of metastatic LN in RC, and to 
construct a visual and convenient nomogram model.

Materials and methods

Patients

This retrospective study was approved by the ethics review 
board of The First Affiliated Hospital of Harbin Medical 
University. A total of 290 consecutive patients with RC 
who were treated between January 2019 and August 2021 
were enrolled in the study. All patients underwent rectal 

MRI, then surgical resection and postoperative histopatho-
logical examination within 1 week. The inclusion criteria 
were as follows: (1) pathologically confirmed adenocarci-
noma < 15 cm from the anal verge, and (2) no history of 
pelvic surgery. A total of 128 patients were excluded for 
the following reasons: (1) they underwent neoadjuvant 
chemoradiotherapy, (2) they had a special histopathologi-
cal type, including mucinous adenocarcinoma and villotu-
bular adenoma, (3) their MRI scan was not performed or 
contained poor image quality, and (4) they did not undergo 
surgery. Ultimately, 162 patients were enrolled in the study. 
The patients were allocated to a training set (n = 114) and a 
validation set (n = 48) at a ratio of 7:3 using stratified rand-
omized sampling. The screening procedure for this study is 
shown in Fig. 1. Baseline prognostic clinical–pathological 
factors, including age, sex, and TN stage were derived from 
the patients' electronic medical records. The cohort consisted 
of 162 patients with RC, including 57 females (35.2%) and 
105 males (64.8%), with a mean age of 63.12 ± 9.95 years. 
A total of 54 patients had LNM in this study.

MRI parameters

MRI scans were performed using a 1.5 T MRI scanner 
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Ger-
many) with an 8-channel pelvic phased-array coil. Every 
patient fasted for 8 h prior to the scan to empty the con-
tents of their intestine. Transversal high-resolution T2W 
turbo spin echo images were acquired with the following 
parameters: TR/TE = 4500/110 ms, FOV = 180 × 180 mm2, 
matrix = 320 × 320, slice thickness = 3 mm, gap = 0 mm, 
acceleration factor = 3, echo train length = 16, and acquisi-
tion time = 4 min 10 s.

Image segmentation and radiomic feature 
extraction

Tumor segmentation was conducted using the Dr. Wise 
multimodal scientific research platform (version number: 
V1.6.2.1, website: keyan.deepwise.com). Region of inter-
est (ROI) delineation was performed by two independent 
radiologists (reader 1 with 3 years of experience in abdomi-
nal imaging, and reader 2 with 8  years in interpreting 
abdominal MRIs) who were aware of the inclusion criteria 
for the study, but were blinded to other histopathological 
findings. All ROIs were segments on the maximum slice 
in T2WI manually, which contained the chords and burrs 
surrounding lesions and excluded the fluid in the intesti-
nal lumen. To minimize the impact of different machine 
parameters on image analysis, image standardization used 
b spline interpolation sampling techniques for resampling 
of all MRI images to 2.0 × 2.0 × 2.0 mm3 voxels. A total of 
103 high-throughput data features based on feature classes 
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were automatically extracted by the Dr. Wise platform. The 
process followed image biomarker standardization initia-
tive (IBSI) [21], including 18 first order statistic features, 12 
shape-based (2D) features, 22 Gy-level co-occurrence matrix 
(GLCM), 16 Gy-level run-length matrix (GLRLM), 16 Gy-
level size zone matrix (GLSZM), 14 Gy-level dependence 
matrix (GLDM), and 5 Neighbouring gray tone difference 
matrix (NGTDM) features.

Manual segmentation may introduce a degree of uncer-
tainty during the determination of tumor ROI. Some features 
may have less reproducibility when the tumor ROI is manu-
ally described by different individuals or at different times 
[22]. To eliminate the features that were lowly reproducible, 
reader 1 completed the lesion segmentation for all patients. 
At 14 days apart, reader 2 randomly selected 20 patients to 
segment the ROI [23–25]. The intraclass correlation coef-
ficient (ICC) was used to assess the inter-observer reproduc-
ibility of feature extraction. When the ICC exceeded 0.75, 
it was considered as having good agreement. The range of 
the ICC between the two observers was 0.933 ± 0.070. Two 
features (ClusterShadeGLCM and ClusterProminenceGLCM) 
were poorly reproducible and were deleted. A total of 101 
features were retained.

Radiomics signature building

All features were processed using z-score standardiza-
tion. The least absolute shrinkage and selection operator 
(LASSO) method was used to screen the optimal features 
in the training set. Ten-fold cross-validation was used to 
compute the optimal lambda. The radiomic signature score 

(Radscore) was calculated based on the LASSO regression 
equation.

MRI structured reporting

Images reading and MRI structured reporting writing were 
performed by two radiologists with 10 years of experi-
ence in abdominal radiology diagnosis. The size of tumor 
lesion, degree of invasion, and number of metastatic LNs 
were included in the reports, and the diagnostic results 
were used as the basis for preoperative N staging of RC. 
Both radiologists observed images independently and were 
blinded to each other. The diagnostic criteria for LN status 
included the following: (1) nodal location, (2) the morpho-
logical features, such as nodal borders, the short-axis node 
diameter and an internal signal, (3) whether the evaluated 
LNs had chemical shift effects(CSE), and (4) restricted 
diffusion in the DWI sequences (the LNs showed a high 
signal). If none of the above diagnostic criteria were met, 
the patient was judged to have no metastatic LNs. LNM 
was considered when the suspicious LN had restricted 
diffusion in DWI and had irregular/absent CSE, accom-
panied with a short-axis node diameter of > 9 mm, rough 
borders and was located ipsilateral to the primary tumor. 
When the suspicious LN showed DWI restricted diffu-
sion but with regular CSE, the size, margin, and location 
were further evaluated. When the short-axis node diameter 
was increased and the border was not smooth, it was still 
considered as LNM. However, when not accompanied by 
such changes, the LN was more likely to be judged as 
inflammatory LN. Agreement in LN status diagnosis was 
reached through consultation when the reviewers’ opin-
ions were contradictory. The diagnostic results of the two 

Fig. 1   Flowchart showing the exclusion criteria for the study. RC rectal cancer, MRI magnetic resonance imaging, nCRT​ neoadjuvant chemoradi-
octherapy
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observers were compared with the histopathological vali-
dation. Patients with non-LNM were defined as label 0, 
and patients with LNM were defined as label 1. The inter-
pretation results were input into the logistic regression 
(LR) to construct a model named the MRI reported model.

Model establishment and comparison

The model was constructed using LR in the training group. 
The MRI reported model was based on MRI structured 
reporting, the Radscore model was based on the Radscore, 
and the Complex model was based on the MRI structured 
reporting and the Radscore. Model performance was evalu-
ated using the receiver operating characteristic (ROC) and 
calculating the area under receiver operating characteristic 
curve (AUC) values. The Delong test was used to determine 
whether AUC values were statistically different between the 
three models. The clinical utility of the prediction models 
was determined and compared using decision curve analysis 
(DCA) by quantifying the net benefit to the patient under 
different threshold probabilities in the queue.

Development and validation of the individualized 
nomogram

To develop a visually quantitative tool to predict LNM in 
patients with RC, we developed a nomogram based on the 
prediction model with the highest AUC value and the clini-
cal utility in the training set. The AUC [95% confidence 
interval (CI)], sensitivity, specificity, and accuracy of the 
model were calculated in the training and validation sets. 
Calibration curves were plotted to assess the calibration of 
the nomogram by bootstrapping (1000 bootstrap resamples) 
based on the internal (training set) and external (validation 
set) validity. The Hosmer–Lemeshow test was used to assess 
the goodness of fit of the nomogram model.

Statistical analysis

All statistical analyses and model building were performed 
in the R language (version 3.6.3, http://​www.r-​proje​ct.​
org). The R package was used to randomize the training 
and verification groups using “caret.” Clinical data were 
expressed as x ± s or percentage. An independent samples 
t-test or the Wilcoxon test was used for continuous variables, 
and the Fisher’s exact test or χ2 test was used for categori-
cal variables. The ICC analysis was performed using the 
R software packages “readr” and “irr.” LASSO regression 
and LR model building was performed using the R pack-
age, “glmnet.” ROC curve analysis was performed using the 
R software package, “pROC.” The nomogram model and 
the calibration curve were constructed using the R software 

package, “rms.” The Hosmer–Lemeshow goodness-of-fit test 
was performed using the R software package, “ResourceSe-
lection.” The DCA curves were plotted using the R software 
package, “dcurves.” A two-tailed P < 0.05 indicated statisti-
cal significance.

Results

Patient characteristics

The cohort was randomly divided into a training cohort 
(n = 114) and a validation cohort (n = 48) according to 7:3 
ratio. The clinical characteristics of the 162 patients in the 
training and validation cohorts are summarized in Table 1. 
There were no statistical differences in age (P = 0.335), sex 
(P = 0.298), T stage (P = 0.945), N stage (P = 1.000), or MRI 
structured reporting (P = 0.352) between the training and the 
validation cohorts.

Radiomic feature selection and Radscore building

Of all texture features, 101 features were selected on the 
basis of the 114 patients in the training cohort using the 
LASSO LR model. When log(lambda) was − 4.004, 
the AUC value corresponding to the LASSO model was 
the highest (Fig.  2A and B), and 12 potential predic-
tors with nonzero coefficients were retained, includ-
ing SurfaceVolumeRatioShape, MajorAxisLengthShape, 
MedianHistogram, Kur tosisHistogram, EnergyHistogram, 
Imc2GLCM, SmallAreaHighGrayLevelEmphasisGLSZM, 
S m a l l A r e a L o w G r a y L e v e l E m p h a s i s G L S Z M , 
L a r g e A r e a H i g h G r a y L e v e l E m p h a s i s G L S Z M , 
G r a y L e v e l N o n U n i f o r m i t y N o r m a l i z e d G L S Z M , 
C o a r s e n e s s N G T D M ,  a n d 
GrayLevelNonUniformityNormalizedGLRLM. Then, the 
Radscore for each patient was calculated according to the 
following formula:

 

Radscore = − 0.7394 − 0.3407 × SmallAreaHighGrayLevelEmphasisGLSZM

− 0.2482 × GrayLevelNonUniformityNormalizedGLRLM

− 0.0758 ×MajorAxisLengthShape − 0.0729

× SmallAreaLowGrayLevelEmphasisGLSZM

− 0.0695 × LargeAreaHighGrayLevelEmphasisGLSZM

− 0.0483 × GrayLevelNonUniformityNormalizedGLSZM

+ 0.1241 ×MedianHistogram + 0.1536

× SurfaceVolumeRatioShape + 0.2077

× CoarsenessNGTDM + 0.2258 × KurtosisHistogram

+ 0.2304 × Imc2GLCM + 0.3735 × EnergyHistogram

http://www.r-project.org
http://www.r-project.org
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In the training cohort (Radscore = − 0.436 vs − 0.891) 
and the validation cohort (Radscore = − 0.501 vs. − 0.859), 
the Radscore of RC patients with LNM was significantly 
higher than that of non-LNM patients (training cohort: 
P < 0.001; validation cohort: P = 0.003). The Radscores of 
the two groups are shown as violin plots in Fig. 3A and B.

Performance and clinical utility of the prediction 
models

The performance of the three models in predicting LNM in 
patients with RC was evaluated by ROC curves and com-
pared using the DeLong test. The performance of the pre-
diction models to identify LNM is shown in Fig. 4A. The 
MRI reported model, Radscore model, and Complex model 
all performed well in discriminating LNM, with AUC val-
ues of 0.882, 0.728, and 0.902, respectively. The Delong 
test showed that the AUC value of the Complex model was 
significantly higher than that of the MRI reported model 
(P = 0.001) and Radscore model (P < 0.001), while the MRI 
reported model had a higher AUC than the Radscore model; 
however, the difference was not significant (P = 0.159).

Comparisons of the clinical utility of the models were 
performed using DCA. The results revealed that the Com-
plex model outperformed the MRI reported model and Rad-
score model in a wide threshold range (Fig. 4B). Therefore, 
the Complex model was the most reliable clinical manage-
ment tool for predicting LNM in patients with RC.

Individualized nomogram construction 
and validation

Considering the Complex model's ability to predict LNM, 
we developed a nomogram to represent the individual pre-
diction based on the training cohort, and to visualize the pre-
diction results and the proportion of each factor (Fig. 5A). 
The AUC of the model in the training cohort (n = 114) was 
0.902 (95% CI 0.848–0.957), with a sensitivity of 0.798, a 
specificity of 0.868, and an accuracy of 0.842. The AUC of 
the model in the validation group (n = 48) was 0.891 (95% 
CI 0.799–0.983), with a sensitivity of 0.812, a specificity of 
0.843, and an accuracy of 0.833. The nomogram exhibited 
good agreement between the predicted and observed values 
of the training and validation sets (Fig. 5B and C). The Hos-
mer–Lemeshow goodness of fit test showed that there was 
no significant difference between the predicted and observed 
values in either the training cohort (χ2 = 6.533, P = 0.588) or 
the validation cohort (χ2 = 9.116, P = 0.333), thus, indicating 
a good fit. The example of model application was shown in 
Fig. 6. 

Discussion

Because the presence of LNM is an important factor in the 
recurrence of CRC, determining the presence of LNM is 
important for clinical management and the prediction of 
survival in patients with CRC [26]. However, the diagnos-
tic efficiency of the TNM staging system remains inade-
quate in that it cannot fully support the selection of preop-
erative treatment options [27]. Meanwhile, only adequate 

Table 1   The clinical 
characteristics of the 162 
patients in the training and 
validation cohorts

There is no statistically significant difference (P > 0.05) between the training and validation groups
a Student’s t test
b Chi-square test

Characteristic Training group (n = 114) Validation group (n = 48) P-value

Age, mean ± SD 63.61 ± 9.60 61.96 ± 10.74 0.335a

Sex, n (%) 0.298b

 Female 43 (37.7%) 14 (29.2%)
 Male 71 (62.3%) 34 (70.8%)

T stage,  n (%) 0.945b

 T1 and T2 35 (30.7%) 15 (31.3%)
 T3 and T4 79 (69.3%) 33 (68.7%)

N stage,  n (%) 1.000b

 N0 76 (66.7%) 32 (66.7%)
 N1 or N2 38 (33.3%) 16 (33.3%)

MRI Structured report-
ing,  n (%)

0.352b

 N0 73 (64.0%) 27 (56.3%)
 N1 or N2 41 (36.0%) 21 (43.7%)
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intraoperative dissection of 12 LNs can sufficiently confirm 
the presence of pathological LNM [8], and thus, the deter-
mination of the LN status may be inaccurate in patients with 
inoperable or inadequate LNs. Thus, more reliable quantita-
tive detection of LNM may provide a means of determining 
the optimal treatment for patients with RC.

Radiomics is a recently developed approach that extracts 
a massive number of quantitative features from medical 
images and comprehensively evaluates tumor heterogeneity. 
Radiomic characteristics (intensity, shape, texture, or wave-
let) provide information on the cancer phenotype and tumor 
microenvironment that is different, but complementary to 
other relevant data sources [20]. The results of numerous 

studies have suggested a potential correlation between the 
radiomic features of primary tumors and LNM [9, 13, 18, 
22, 28, 29]. The results of the present study also confirmed 
that the Radscore constructs based on T2WI differed signifi-
cantly between the different LN states of RC (P < 0.05). The 
above results suggested that radiomic features are potential 
biomarkers for predicting LNM in patients with RC. Such 
beneficial results thus facilitate the use of radiomics to pre-
dict LN status. It is worth noting, however, that the effect 
of assessing LN status using radiomic features alone was 
limited, and the model constructed using Radscores alone 
was good at predicting LNM in patients with RC, with an 
AUC lower than that of the MRI reported model. Ma et al. 
compared multiple classifier models for N staging, and the 
diagnostic efficiency of the random forest classifier was bet-
ter. However, the AUC was 0.74 [8]. Therefore, we believe 
that the value of radiomics alone as a marker of LNM needs 
to be further confirmed.

The assessment of LN status by conventional T2WI is 
performed based on the changes in size, morphology, and 
signal intensity of the LN. The diagnostic results are highly 
subjective and lead to low accuracy and reproducibility. With 
the development of functional MRI, studies have shown that 
the DWI detection rate for LNM was higher than 6% for 
conventional T2WI [30]. Two experienced physicians were 
added to our study to assess LNM based on a combination of 
T2WI and DWI. Therefore, the prediction based on the MRI 
model was good (AUC: 0.882), suggesting that the role of 
MRI in the detection of LNM is critical. However, the find-
ings do not mean that the imaging model of T2WI + DWI 
is without drawbacks. Seber et al. reported that the ADC 
of benign LN was higher than that of malignant nodes, and 
when the ADC was 0.8 × 10−3 mm2/s, the sensitivity for the 
diagnostic LNM was 76.4% compared to a specificity of 
85.7% and an accuracy of 80.6%. Thus, those data indicated 
that DWI contributed to the diagnosis of LNM. However, 
this diagnostic method remained insufficient as the ADC 
overlaps between non-LNM and LNM, and hence, it could 
not fully identify benign and malignant LNs [14].

To build a more accurate model, we found that the predic-
tive effect and clinical utility of the Complex model combin-
ing the Radscore and MRI structured reporting constructs 
was improved. We developed and validated a diagnostic 
and imaging-based nomogram model for the individualized 
prediction of LNM in preoperative patients with RC, distin-
guishing LNM from non-LNM in the training and valida-
tion groups (AUC: 0.902, AUC: 0.891) with high accuracy 
(0.842, 0.833). The calibration curve and the goodness of 
fit test showed good agreement between the predicted and 
observed values of the model. Based on the LR model, 
the nomogram model can integrate predictors and assign 
scores according to the contribution of predictors to the 
outcome variables (regression coefficient), thus providing 

Fig. 2   The LASSO algorithm and tenfold cross-validation were used 
to extract the optimal subset of radiomic features. A Optimal fea-
ture selection according to AUC value. When the value log (lambda) 
increased to -4.004, the AUC reached the peak corresponding to 
the optimal number of radiomic features. B LASSO coefficient pro-
files of the 101 radiomic features. The vertical line was drawn at the 
value selected by tenfold crossvalidation, where the optimal lambda 
resulted in 12 nonzero coefficients. LASSO least absolute shrinkage 
and selection operator, AUC​ area under receiver operating character-
istic curve
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a convenient way for clinical prediction of the risk of LNM 
in patients with RC. This advantage makes the nomogram 
get more extensive attention and application in the field of 
cancer research and clinical practice.

The results of previous studies suggest that nomo-
gram models constructed by combining radiomic features 
with clinical factors or imaging reports were valuable in 

predicting LNM in RC patients. Huang et al. combined his-
tological features with LN status and the carcinoembryonic 
antigen levels reported by computed tomography to establish 
a nomogram model that assessed LNM. The model exhibited 
better discrimination in the training and validation groups 
(C-index: 0.736, 0.778) [18]. Another study performed simi-
lar evaluations using MRI, where clinical risk factors were 

Fig. 3   Violin plot of Radscore 
for LNM and non-LNM patients 
in training (A) and validation 
(B) sets. The thick black line 
in the middle represents the 
median. The black line running 
up and down through the violin 
diagram represents the range 
from the smallest non-outlier 
value to the largest non-outlier 
value. LNM lymph node metas-
tasis

Fig. 4   ROC curves and DCA of the three prediction models. A ROC 
curves for the three prediction models in differentiating LNM in the 
training set. The green line indicates MRI reported model, the blue 
line indicates Radscore model, the purple line indicates the Complex 
model. B DCA of the three prediction models in the training set. The 
Y-axis and the X-axis represent the net benefit and threshold prob-
ability respectively. The green line indicates MRI reported model, 

the blue line indicates Radscore model, the purple line indicates the 
Complex model, the red oblique line indicates the hypothesis that all 
patients were LNM, the horizontal brown line represents the hypoth-
esis that all patients were non-LNM. ROC receiver operating charac-
teristic, MRI magnetic resonance imaging, DCA decision curve analy-
sis, Radscore radiomic signature score, LNM lymph node metastasis
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combined with high-resolution MRI factors and radiomic 
features to achieve good results (AUC: 0.90, 0.87) [31].

Many published predictive radiomic models are avail-
able to explain the factors associated with disease and treat-
ment, however, such models lack standardized assessments 
of their performance, reproducibility, and/or clinical util-
ity [32]. Although the current study was retrospective, we 
standardized the scanning parameters and procedures to 
ensure uniformity and to avoid selection bias. In addition, 

the maximum slice was chosen to segment the tumor in this 
study. Tumor segmentation methods are still inconclusive, 
with most studies choosing to segment the tumor maximum 
slice, the height of this method depends on the reader's 
choice of the maximum slice, and seems to lack an analysis 
of focal spatial heterogeneity. However, unlike solid organs, 
the volume of interest from the ROIs of continuous slices 
may not accurately represent the true shape of the primary 
lesion [6, 30] due to the growth properties of RC. Therefore, 

Fig. 5   Development and performance of a nomogram. A Nomogram 
based on MRI reported and Radscore. Calibration curves of the nom-
ogram in the training (B) and validation (C) sets. The horizontal axis 
is the predicted incidence of LNM. The vertical axis is the observed 

incidence of LNM. The gray line on the diagonal is the reference line, 
indicating that the predicted value is equal to the actual value and the 
blue line is the calibration curve. Radscore radiomics signature score, 
LNM lymph node metastasis
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the maximum slice of segmentation may be a more appropri-
ate way of segmentation.

This study also had the following limitations. First, the 
sample size was not sufficiently large, and thus, the sam-
ple size should be expanded to reduce the impact of the 
data size on the accuracy of the results. The proportion of 
LNM in the patients in this study was low, resulting in an 
unbalanced sample size. Second, manual segmentation was 
used when sketching the ROI. Compared with semi-auto-
matic and automatic segmentation methods, manual ROI 
segmentation introduces more subjectivity, which will then 
affect the accuracy of extracting radiomic features. Third, 
the proportion of LNM in the included patients was also 
low, which resulted in an unbalanced sample size. Last, our 
study was conducted based on a single institution without 
including the test set. To maximize the possibility of model 
repetition and reproduction by other institutions, the images 
were resampled, the feature extraction procedure followed 
that of the IBSI and the poorly reproducible features were 
excluded by ICC. Although the validation set, which is not 
involved in building the model, can play a role in testing the 
effect of the model. However, the best test method is to test 
the reproducibility and generality of the model through an 
independent external test set, for which multi-center study 
is an effective approach.

Conclusion

In conclusion, the nomogram model constructed based on 
T2WI radiomics and MRI had good diagnostic efficacy for 
LNM in patients with RC, and provided a new option for 
precise personalized clinical management.
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Fig. 6   The example of the nomogram model application. A meta-
static lymph node (white arrow) in the axial T2-weighted from a 
66-year-old male was shown in A. Nomogram model based on MRI 
structured reporting and Radscore was shown in B. The Radscore cal-
culated based on the LASSO regression equation was -0.492, which 
corresponded to the point 1 of 57.376 in the nomogram model. The 
N stage was diagnosed as N1 in the MRI structured reporting, and the 

corresponding point 2 in the nomogram was 45.813. The two points 
were added up to get a total point of 103.189, which corresponded 
to the LNM risk of 0.769. All the calculated scores were indicated 
by the red long arrow in B. MRI magnetic resonance imaging, Rad-
score radiomic signature score, LASSO the least absolute shrinkage 
and selection operator, LNM lymph node metastasis
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