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Abstract
Purpose  A wide array of benign and malignant lesions of the pancreas can be cystic and these cystic lesions can have overlap-
ping imaging appearances. The purpose of this study is to compare the diagnostic accuracy of a radiomics-based pancreatic 
cyst classifier to an experienced academic radiologist.
Methods  In this IRB-approved retrospective single-institution study, patients with surgically resected pancreatic cysts who 
underwent preoperative abdominal CT from 2003 to 2016 were identified. Pancreatic cyst(s) and background pancreas were 
manually segmented, and 488 radiomics features were extracted. Random forest classification based on radiomics features, 
age, and gender was evaluated with fourfold cross-validation. An academic radiologist blinded to the final pathologic diag-
nosis reviewed each case and provided the most likely diagnosis.
Results  214 patients were included (64 intraductal papillary mucinous neoplasms, 33 mucinous cystic neoplasms, 60 serous 
cystadenomas, 24 solid pseudopapillary neoplasms, and 33 cystic neuroendocrine tumors). The radiomics-based machine 
learning approach showed AUC of 0.940 in pancreatic cyst classification, compared with AUC of 0.895 for the radiologist.
Conclusion  Radiomics-based machine learning achieved equivalent performance as an experienced academic radiologist 
in the classification of pancreatic cysts. The high diagnostic accuracy can potentially maximize the efficiency of healthcare 
utilization by maximizing detection of high-risk lesions.
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Graphical abstract

Classifica�on of Pancrea�c Cys�c Neoplasms using Radiomic 
Feature Analysis

Chu LC et al; 2022

Accuracy of radiomics-based 
pancrea�c cyst classifica�on vs. 
experienced academic radiologist 
of 214 pancrea�c cys�c lesions
- Radiomics classifier: AUC 0.940
- Radiologist: AUC 0.895

Improved diagnos�c accuracy can 
poten�ally maximize the efficiency 
of healthcare u�liza�on

Keywords  Pancreatic cysts · Pancreatic neoplasms · Intraductal pancreatic mucinous neoplasm (IPMN) · Radiomics · 
Machine learning · CT

Introduction

Pancreatic cystic lesions are frequently identified inci-
dentally due to increased utilization of cross-sectional 
abdominal imaging and improvement in scanner technol-
ogy. The prevalence of incidental pancreatic cysts ranges 
from 2% on CT to 45% on MRI, with pooled estimated 
prevalence of 8% [1–3]. These pancreatic cysts are formed 
by a diverse group of lesions, ranging from benign neo-
plasms to neoplasms with the potential for aggressive clin-
ical behavior. The mucin-producing cysts (e.g., intraductal 
papillary mucinous neoplasms (IPMNs) and mucinous 
cystic neoplasms (MCNs)) are premalignant lesions that 
can transform into invasive pancreatic ductal adenocar-
cinoma (PDAC). Accurate diagnosis of pancreatic cystic 
lesions is important in determining appropriate treatment 
and surgical candidacy [4, 5]. However, these pancreatic 
lesions that form cysts can share overlapping clinical and 
radiological features making it difficult to differentiate 
among benign and potentially malignant lesions during 
preoperative evaluation. As evidenced in surgical data-
bases, 17–25% of patients who undergo surgical resection 
for a presumed mucin-producing cystic lesion are found to 
have a benign cyst [6, 7]. Pancreatic resections are some of 
the most complex abdominal operations that are associated 

with considerable morbidity, with approximately 40% of 
patients experiencing postoperative complications [8]. 
Patients with a pancreatic cyst that does not meet criteria 
for surgical resection at the time of diagnosis are often 
followed clinically for 10 years or even longer based on 
current guidelines [9], which can be a significant burden 
to patients and an increased cost to the healthcare system.

Recently, radiomics-based approaches have been explored 
to differentiate pancreatic cysts. Radiomics converts imaging 
data into high-dimensional mineable quantitative features 
[10] and has shown remarkable progress correlating image 
features and clinical features with patient outcomes [11]. 
Previous studies have mostly focused on risk stratification 
of IPMNs by identifying radiomic signatures that are predic-
tive of the grade of dysplasia [12–18]. Other studies aimed 
to discriminate between pancreatic serous cystadenoma 
(SCA), a benign neoplasm, from mucin-producing cystic 
neoplasms [19–23], mucin-producing cystic neoplasms from 
non-mucinous cysts [24], or among the 3–4 classes of pan-
creatic cystic lesions [25, 26].

To our knowledge, no study has examined a head-to-
head comparison of the relative accuracy between a radi-
omic analysis and an expert radiologist in determining cyst 
type with 5 cyst classes. This is an important void in the 
literature as it is yet unclear if a radiomic approach using 
available methodology has a potential advantage over the 



4141Abdominal Radiology (2022) 47:4139–4150	

1 3

current standard of care. The purposes of this study are to 
compare the diagnostic accuracy of a radiomics-based pan-
creatic cyst classifier to an experienced academic radiologist 
and to explore the added value of radiomics-based classifier.

Materials and methods

Patients and CT acquisition

This retrospective study was HIPPA compliant and 
was approved by our institutional review board. A total 
of 214 patients (69 male, 145 female, average age: 
54.8 ± 17.0 years) who underwent surgical resection for a 
pancreatic cyst(s) from 2003 to 2016 were randomly selected 
from our radiology and pathology databases, with enrich-
ment of the rarer types of pancreatic cysts (MCNs, SCAs, 
SPNs, and cystic PanNETs). The selected cases include 
64 patients with IPMNs, 33 MCNs, 60 SCAs, 24 SPNs, 
and 33 patients with cystic PanNETs (Table 1). The SCAs 
were resected based on clinical symptoms and/or diagnos-
tic uncertainty in the preoperative setting. Among the 214 
patients, 115 have been previously reported [25] in a study 
of the application of random forest and neural networks to 
the classification of IPMNs, MCNs, SCAs, and SPNs. In 
cases with multiple cysts within the pancreas, the pathologic 
diagnosis was labeled as the pathology of the dominant cyst.

One hundred and fifty-nine patients with cystic lesions 
were scanned with dual-source MDCT scanner (Somatom 
Definition, Definition Flash, or Force, Siemens Health-
ineers), 35 patients were scanned on a 64-slice MDCT 

scanner (Somatom Sensation 64, Siemens Healthineers), 
and 20 patients were scanned on a 16-slice MDCT scanner 
(Somatom Sensation 16, Siemens Healthineers). Patients 
were injected with between 100 and 120 mL of iohexol 350 
(Omnipaque, GE Healthcare) at an injection rate of 4–5 mL/
sec. Contrast dose weight based at a dose of approximately 
1.5 mL/kg, up to dose of 120 mL. Scan protocols were cus-
tomized for each patient to minimize dose but were on the 
order of 120 kVp, effective mAs of 270, and pitch of 0.6–0.8. 
The collimation was 128 × 0.6 mm or 192 × 0.6 mm or the 
dual-source scanner, 64 × 0.6 mm for the 64-slice scanner. 
Arterial phase imaging was performed with fixed delay or 
bolus triggering, usually between 30 and 35-s post-injection, 
and venous phase imaging was performed at 60–70 s. The 
venous phase images were used for the analysis in this study. 
All images were reconstructed with 0.5-mm increment and 
0.75-mm slice thickness.

Image Segmentation

Preoperative CTs were reviewed by an abdominal radiolo-
gist with > 7 years of experience to document the size and 
location of pancreatic cysts and presence of calcifications 
or pancreatic duct dilatation (> 3 mm in diameter). The 
214 CT exams were randomly divided between two trained 
researchers (3 years of experience) for image segmentation. 
The entire three-dimensional (3D) volume of the cystic 
lesion(s) and pancreas were manually segmented (Fig. 1) 
based on venous phase images using the Medical Imaging 
Interaction Toolkit (MITK) and a commercial annotation 
software (VelocityTM, Varian Medical Systems Inc.) [27]. 

Table 1   Demographic and image characteristics of the pancreatic cyst cases

IPMN intraductal papillary mucinous neoplasm, MCN mucinous cystic neoplasm, SCA serous cystadenoma, SPN solid pseudopapillary neo-
plasm, PanNET pancreatic neuroendocrine tumor, HU Hounsfield unit

All
(n = 214)

IPMN
(n = 64)

MCN
(n = 33)

SCA
(n = 60)

SPN
(n = 24)

Cystic PanNET
(n = 33)

p-value

Age, mean ± SD 54.8 ± 17.0 68.2 ± 11.1 46.4 ± 12.9 56.7 ± 12.7 28.8 ± 11.4 52.8 ± 13.4  < 0.001
Sex, N (%)
 Male
 Female

69 (32.2)
145 (67.8)

31 (48.4)
33 (51.6)

1 (3.0)
32 (97.0)

15 (25.0)
45 (75.0)

2 (8.3)
22 (91.7)

20 (60.6)
13 (39.4)

0.0003

Cyst size (cm), mean ± SD 4.28 ± 3.25 3.24 ± 2.02 5.65 ± 5.00 4.53 ± 2.61 5.59 ± 3.05 3.53 ± 3.40 0.001
Cyst attenuation (HU) 38.67 ± 27.66 24.53 ± 12.92 21.69 ± 9.19 41.22 ± 26.47 63.41 ± 21.32 64.29 ± 38.15  < 0.001
Whole pancreas attenuation (HU) 72.11 ± 28.52 69.22 ± 25.27 66.60 ± 36.77 72.71 ± 28.98 79.23 ± 23.20 78.71 ± 27.68 0.28
Location
 Head/uncinate (%)

77 (36.0) 40 (62.5) 0 (0) 20 (33.3) 10 (41.7) 7 (21.2) 0.004

 Neck (%) 14 (6.5) 2 (3.1) 0 (0) 8 (13.3) 1 (4.2) 3 (9.1)
 Body (%) 50 (23.4) 10 (15.6) 12 (36.4) 16 (26.7) 6 (25.0) 6 (18.2)

Tail (%) 73 (24.1) 12 (18.8) 21 (63.6) 16 (26.7) 7 (29.2) 17 (51.5)
Calcification, present—N (%) 54 (25.2) 8 (12.5) 10 (30.3) 21 (35.0) 11 (45.8) 4 (12.1) 0.044
Pancreatic duct dilatation (> 3 mm)—

N (%)
48 (22.4) 34 (53.1) 2 (6.1) 11 (18.3) 0 (0) 1 (3.0)  < 0.001
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The boundaries were verified by three abdominal radiolo-
gists with 7–30 years of experience. The researchers and the 
radiologists had face-to-face sessions to review each case to 
correct any errors in segmentation.

Computation of radiomics features can be affected by the 
segmentation accuracy, and the inter-observer variability in 
segmentation accuracy was analyzed. 20 cases among 214 
cases were randomly selected and segmented by two image 
labelers independently. The inter-observer variation between 
two image labelers was evaluated by two performance 
parameters, Dice-Sørenson similarity coefficient (DSC) and 
Jaccard index (JI) to measure the similarity of two regions. 1 
indicates perfect overlap and 0 indicates absence of overlap 
for both measures.

Image analysis and machine learning

A total of 488 radiomics features [10, 28] from the seg-
mented volume were extracted to define cystic lesion and 
pancreas phenotypes based on venous phase images (Fig. 2). 
Radiomics features used in this study included 14 first-order 
statistics of the volumetric CT intensities, 8 shape features 
of the target structure, 33 texture features from a gray-level 

co-occurrence matrix and a gray-level run-length matrix, 
376 texture features from the 8 filtered volumes by wavelets 
[28], and an additional 47 texture features form the filtered 
volume by Laplacian of Gaussian (LoG). Ten image features 
were extracted from the whole pancreatic region. Table 2 
represents the whole feature set used for cyst classification 
in this study. Two demographic features, age and gender, 
were also incorporated into the final model.

To effectively test the limited number of cases of less 
common cyst types, such as SPNs, fourfold cross-validation 
was performed in this study. Each type of cystic lesion was 
randomly divided to four groups and each group from all 5 
cyst types composed a fold. A random forest machine learn-
ing algorithm was used for cyst type classification. There 
were a total of a hundred thousand trees built. To test each 
fold and each decision node was divided until a unique case 
remained.

Radiologist interpretation

One academic abdominal radiologist (> 25 years of experi-
ence) who was blinded to the pathologic diagnosis reviewed 
the venous phase images for each case and provided their 

Fig. 1   Two example cases 
of manual segmentations of 
pancreas and cystic lesion. The 
boundary of cystic lesion is out-
lined in green and the boundary 
of the background pancreas is 
outlined in purple
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most likely diagnosis. The radiologist was provided the 
patient age and gender for each case, but was otherwise 
blinded as to the final pathology.

Statistical analysis

The diagnostic performance of the radiomics model was 
compared to the radiologist. The sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), accuracy, and area under the curve (AUC) of the 
receiver operating characteristics (ROC) curves were cal-
culated for each cyst type.

Results

The mean maximal 2D diameter of the cystic lesions 
was 4.28 ± 3.25 cm. The site of cystic lesions were the 
head and/or uncinate process (n = 77), neck (n = 14), 
body (n = 50), and tail (n = 73) of the pancreas. The 
demographic and cystic lesion features stratified by 
cyst type are summarized in Table  1. As expected, 
there were significant differences in the age (p < 0.001) 

and gender (p = 0.0003) for different cyst types. MCNs 
(97.0% female), SCAs (75.0% female), and SPNs (91.7% 
female) were more common in women, cystic PanNETs 
were more common in men (39.4% female), and IPMNs 
(51.6% female) did not have a stronger gender predilection 
in our sample. Patients with SPN (28.8 ± 11.4 years) were 
significantly younger than patients with other cyst types. 
MCNs were seen exclusively in the body and tail. MCNs 
(5.65 ± 5.00 cm) and SPNs (5.59 ± 3.05 cm) were larger 
than IPMNs (3.24 ± 2.02 cm), SCAs (4.53 ± 2.61 cm), 
and cystic PanNETs (3.53 ± 3.40 cm) (p = 0.001). SPNs 
(63.41 ± 21.32 HU) and cystic PanNETs (64.29 ± 38.15 
HU) showed the highest attenuation due to the presence 
of solid components and IPMNs (24.53 ± 12.92 HU) and 
MCNs (21.69 ± 9.19 HU) showed the lowest attenuation. 
Pancreatic duct dilatation was most frequently associated 
with IPMNs (53.1%) (p < 0.001).

The inter-observer similarity for pancreas segmenta-
tion was 90.44 ± 3.68% and 82.74 ± 6.10% in terms of DSC 
and JI, respectively. The similarity of cyst segmentation 
was 89.04 ± 11.88% and 81.14 ± 15.93% with DSC and JI, 
respectively. The boxplot of inter-observer variation is rep-
resented in Fig. 3. The inter-observer variation showed high 

Fig. 2   The radiomics-based classification process. Pancreatic cysts 
and background pancreas are manually segmented from abdominal 
CT (left column). Feature extraction process extracts first-order signal 
intensity statistics, shape features based on 3D surface mask, texture 

features among adjacent voxels, and filtered features using wavelet or 
Laplacian of Gaussian filters (middle column). Features are analyzed 
with machine learning techniques such as random forest classifier to 
predict clinical outcomes (right column)
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Table 2   The demographic and image features computed from the segmented pancreatic cystic lesion and the whole pancreas

IMC informational measure of correlation, IDMN inverse different moment normalized, IDN inverse difference normalized, LGLRE low gray-
level run emphasis, HGLRE high gray-level run emphasis, SRLGLE short run low gray-level emphasis, SRHGLE short run high gray-level 
emphasis, LRLGLE long run low gray-level emphasis, LRHGLE long run high gray-level emphasis

A. Demographic features (2)

Age Gender
B. Radiomics features for cystic lesion phenotype (478)
 B.1. First-order statistics (14) B.2. Shape features (8) B.3. Texture features (33) B.4. Features from Filtered 

Images (423)
 Energy Compactness1 Gray-level co-occurrence matrix 

based features (22)
Wavelet: LLL (47)

 Entropy Compactness2 Autocorrelation First-order statistics (14)
 Kurtosis Maximum 3D diameter Cluster prominence Texture features (33)
 Maximum Spherical disproportion Cluster shade Wavelet: LLH (47)
 Mean Sphericity Cluster tendency First-order statistics (14)
 Mean absolute deviation Surface area (mm2) Contrast Texture features (33)
 Median Surface-to-volume ratio Correlation Wavelet: LHL (47)
 Minimum Volume (cc) Difference entropy First-order statistics (14)
 Range Dissimilarity Texture Features (33)
 RMS Energy Wavelet: LHH (47)
 Skewness Entropy First-order statistics (14)
 Standard deviation Fractal dimension Texture Features (33)
 Uniformity Homogeneity1 Wavelet: HLL (47)
 Variance Homogeneity2 First-order statistics (14)

IMC Texture Features (33)
IDMN Wavelet: HLH (47)
IDN First-order statistics (14)
Inverse variance Texture Features (33)
Maximum probability Wavelet: HHL (47)
Sum average First-order statistics (14)
Sum entropy Texture Features (33)
Sum variance Wavelet: HHH (47)
Variance First-order statistics (14)
Gray-level run-length matrix 

based features (11)
Texture Features (33)

Short run emphasis Laplacian of Gaussian (47)
Long run emphasis First-order statistics (14)
Gray-level nonuniformity Texture Features (33)
Run-length nonuniformity
Run percentage
LGLRE
HGLRE
SRLGLE
SRHGLE
LRLGLE
LRHGLE

C. Additional image features for pancreas phenotype (10)
 Mean intensity Standard deviation of intensity Volume Length
 Tumor volume portion Entropy Uniformity Fractal dimension
 Spherical distortion Texture cluster shade
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similarity among the labelers as the segmentation was per-
formed under controlled protocols [27].

Among the whole 490 features (488 radiomics features 
plus age and gender), thirty features were found to reduce 
redundancy by the minimum-redundancy maximum-rele-
vancy feature selection [29] based on mutual information, 
which showed the best classification performance, with 
AUC of 0.940 (Table 3). Age and gender were included 
in the model due to the known gender and gender asso-
ciations for pancreatic cysts. These demographic features 
would be available to the radiologist at the time of exam, 
and this would simulate the real-world application. Age, 
median and mean intensities of the original images and 
wavelets, and fractal dimension were highly ranked for 

the classifications. Gender was ranked as 29th feature for 
the classification. The list of selected features is described 
in Table 4. The distribution of four representative features 
among the 30 selected features for each type is shown in 
Fig. 4.

The radiologist’s interpretation of the 214 cases showed 
AUC of 0.895 for overall cyst classification with AUC of 
0.889 for IPMNs, AUC of 0.842 for MCNs, AUC of 0.769 
for SCAs, AUC of 0.865 for SPNs, and AUC of 0.908 for 
cystic PanNETs. The radiomics-based machine learning 
approach showed AUC of 0.940 for overall cyst classi-
fication and AUC of 0.942 for IPMNs, AUC of 0.883 for 
MCNs, AUC of 0.851 for SCAs, AUC of 0.828 for SPNs, 
and AUC of 0.905 for cystic PanNETs. The confusion matrix 

Fig. 3   The boxplot of the inter-
observer variations of manual 
segmentation. DSC and JI 
percentage values are repre-
sented for the whole pancreas 
and pancreatic cyst lesions. 
The box represents the first 
quartile, median, and the third 
quartile from the lower border, 
middle, and the upper boarder, 
respectively, and the lower and 
the upper whiskers show the 
minimum and the maximum 
values. The dot point repre-
sents the average value of each 
performance measure

Table 3   Confusion matrix of radiologist’s and radiomics-based classification

The radiologist and radiomics-based classification are shown in rows. The ground truth pathologic diagnosis is shown in columns
PPV positive predictive value, NPV negative predictive value, AUC​ area under the receiving operating characteristics curve

Ground truth

IPMN MCN SCA SPN Cystic PNET Sensitivity Specificity PPV NPV Accuracy AUC​

Radiologist prediction
 IPMN 58 3 13 0 3 90.6 87.3 75.3 95.6 88.3 0.889
 MCN 1 24 7 0 0 72.7 95.6 75.0 95.1 92.1 0.842
 SCA 4 2 37 4 2 61.7 92.2 75.5 86.1 83.6 0.769
 SPN 0 2 2 18 0 75.0 97.9 81.8 96.9 95.3 0.865
 Cystic PNET 1 2 1 2 28 84.9 96.7 82.4 97.2 94.9 0.908
 Overall accuracy 87.3 90.6 95.6 75.3 88.3 0.895

Radiomics prediction
 IPMN 60 2 3 2 1 93.8 94.7 88.2 97.3 94.4 0.942
 MCN 0 26 3 0 1 78.8 97.8 86.7 96.2 94.9 0.883
 SCA 3 3 48 6 3 80.0 90.3 76.2 92.1 87.4 0.851
 SPN 0 0 2 16 0 66.7 98.9 88.9 85.9 95.3 0.828
 Cystic PNET 1 2 3 0 28 84.9 96.1 80.0 97.2 94.4 0.905

Overall accuracy 94.7 93.8 97.3 88.2 94.4 0.940
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is summarized in Table 3 and the ROC curves for radiologist 
and radiomics classification are shown in Fig. 5

The radiologist and radiomics feature-based classifica-
tion showed similar distribution in the confusion matrix. 
Although the AUC for overall cyst classification of the 
radiomics-based classification was slightly higher than 

the radiologist classification (AUC of 0.940 vs. 0.895), it 
failed to reach statistical significance due to the small sam-
ple size. Examples with discordant predictions between 
radiologist and radiomics-based model are shown in 
Figs. 6 and 7.

Table 4   Radiomics features 
highly dependent on cyst types

Top 30 features are listed with related categories (Table 2)

No Category Features No Category Features

1 A Age 16 B.4 Wavelet HHH LTLHLR
2 B.1 Median of cyst 17 B.4 LoG Energy
3 B.1 Mean of cyst 18 B.4 Wavelet LLL Entropy
4 B.1 RMS 19 B.4 Wavelet LLL Run percentage of wavelet
5 B.4 Wavelet LLL Median intensity 20 B.4 LoG Sum entropy
6 B.4 Wavelet LLL Mean intensity 21 B.4 LoG Entropy
7 B.4 Wavelet LLL RMS 22 B.2 Compactness (type1)
8 B.4 LoG Median intensity 23 B.2 Compactness (type 2)
9 B.4 LoG Mean intensity 24 B.4 Wavelet HHL Gray-level nonuniformity
10 B.4 LoG Fractal dimension 25 C Tumor volume portion
11 B.4 Wavelet LLL Short run emphasis 26 B.4 Wavelet LLL Difference entropy
12 B.4 LoG Uniformity 27 B.4 Wavelet HHL Run-length uniformity
13 B.4 Wavelet HHH Long run emphasis 28 B.2 Surface-to-volume ratio
14 B.1 Maximum intensity 29 A Gender
15 B.3 Fractal dimension 30 B.4 Wavelet LLL Entropy

Fig. 4   The box plots of feature distributions highly correlated to differentiate cystic types, including age (a), median intensity (HU) (b), Lapla-
cian of Gaussian fractal dimension (c), and cyst to pancreas volume portion (d)
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Discussion

Improvement in radiological techniques and increased uti-
lization of cross-sectional imaging have led to an increase 
in the diagnosis of pancreatic cystic neoplasms. These 

neoplasms include a diverse cohort, with some lesions 
being benign and others having malignant potential. Given 
the considerable morbidity associated with pancreatic 
resections, accurate preoperative assessment of the lesion 
is vital in determining surgical candidacy. These cystic 
lesions present a diagnostic challenge with prior work 

Fig. 5   The receiving operating characteristics curves between radi-
ologist and radiomics classifications of pancreatic cysts for (a) intra-
ductal papillary mucinous neoplasm, (b) mucinous cystic neoplasm, 

(c) serous cystadenoma, (d) solid pseudopapillary neoplasm, and (e) 
cystic pancreatic neuroendocrine neoplasm

Fig. 6   Examples that radiologist’s prediction was incorrect but the 
radiomics classification was correct. (a) Axial IV contrast-enhanced 
CT image showed a well-circumscribed lobulated cystic lesion in the 
pancreatic head (arrow). The radiologist’s prediction of an intraductal 
papillary mucinous neoplasm was incorrect. Radiomics classification 
of serous cystadenoma was correct. (b) Axial IV contrast-enhanced 

CT image showed a well-circumscribed thick-walled exophytic cystic 
lesion arising from the body of pancreas (arrow). The radiologist’s 
prediction of a cystic pancreatic neuroendocrine tumor was incorrect. 
Radiomics classification of a solid pseudopapillary neoplasm was 
correct
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demonstrating that a considerable proportion of patients 
undergoing resection are found on final histopathological 
analysis to have a benign lesion that, in retrospect, did not 
warrant surgical resection. While radiological assessment 
remains the gold standard for evaluation of these cysts, 
there is a need for a more powerful tool to accurately clas-
sify cyst types. In the current study we developed a radi-
omics feature-based classification system that was able to 
accurately classify cystic lesions and outperformed clinical 
judgment.

In this study, the performance of the radiomics feature-
based classification achieved AUC of 0.940 in distinguish-
ing among five types of pancreatic cystic neoplasms. The 
performance was similar to previous studies with multi-class 
pancreatic cyst classifications that included three or four cyst 
types, with accuracy of 79.6–83.6% [25, 26]. Previous stud-
ies on radiomics-based pancreatic cyst classification [19–26] 
did not include a direct comparison with a radiologist, there-
fore, it was difficult to assess if the radiomics-based clas-
sification reported provided any added value relative to the 
standard of care. The current study showed that the radiom-
ics-based pancreatic cyst classification achieved equivalent 
performance as an academic radiologist with more than 
25 years of experience. These results indicate that radiom-
ics-based classification could be valuable in improving the 
current standard of care. Given that this model incorporates 
both clinical data and radiomic features, we believe that it is 
more widely applicable and comprehensive in assessment of 
pancreatic cysts. The radiomics-based classification showed 
AUC of 0.851 in the diagnosis of SCAs, which corrobo-
rated previous studies that showed AUC of 0.75–0.989 in 
differentiating SCAs from mucin-producing cysts [19–23]. 

The ability to confidently and accurately diagnosis SCAs, a 
“leave-alone” benign lesion, has the potential to eliminate 
unnecessary imaging surveillance and unnecessary surgery, 
which can reduce patient morbidity and healthcare costs. 
These radiomics-based classification systems may achieve 
superior performance to clinical and/or guideline-based fea-
tures [14, 15]. This refined risk assessment can help with ini-
tial triage and tailor the surveillance duration and intensity to 
maximize the chance of cancer detection while minimizing 
costs. These cost savings can potentially offset costs associ-
ated with algorithm development and implementation.

This study has a few limitations. First, it was a single-
center retrospective study. Fourfold cross-validation was 
used to assess radiomics-based model performance due 
to the small sample size relative to the number of cyst 
types. All these cases underwent surgical resection, which 
may bias the dataset toward atypical appearance of benign 
lesions (i.e., SCAs). The dataset was enriched with rarer 
pancreatic cyst types relative to IPMNs to evaluate the 
ability of the radiologist and radiomics model to discrimi-
nate among these rarer cyst types, which may limit the 
generalizability to the general population, in whom IPMNs 
are significantly more common. This study was performed 
on CT scanners from a single vendor. It is unclear whether 
variations related to scan acquisition (e.g., protocols, ven-
dors) may affect the performance of the radiomics clas-
sification model. We only analyzed portal venous phase 
images in the current study, and the addition of arterial 
phase images may improve the accuracy of pancreatic cyst 
classification. MRI is frequently used in the evaluation of 
pancreatic cysts and can improve diagnostic confidence 
in the assessment of pancreatic cysts. We chose to apply 

Fig. 7   Examples that the radiomics classification was incorrect 
and the radiologist’s prediction was correct. (a) Axial IV contrast-
enhanced CT image showed a well-circumscribed solid and cystic 
lesion in the pancreatic head (arrow). The radiomics classification 
of a serous cystadenoma was incorrect. Radiologist’s prediction of a 
solid pseudopapillary neoplasm was correct. (b) Axial IV contrast-

enhanced CT image showed a well-circumscribed cystic lesion with 
internal septations in the head of pancreas (arrow). The radiomics 
classification of an intraductal papillary mucinous neoplasm was 
incorrect. The radiologist’s prediction of a serous cystadenoma was 
correct



4149Abdominal Radiology (2022) 47:4139–4150	

1 3

the radiomics model to CT due to greater heterogeneity 
with MRI (e.g., vendor, imaging sequences) compared to 
CT and additional normalization is needed to transform 
arbitrary gray intensity values from MRI. Therefore, most 
of the existing publication on pancreas AI have focused on 
CT rather than MRI. Future research is needed to validate 
these results with larger external datasets from different 
institutions and to translate results across imaging modali-
ties. Secondly, the performance of the radiomics-based 
model was compared to the performance of a single-aca-
demic radiologist. The experienced academic radiologist 
in this study may be more accurate at pancreatic cyst clas-
sification than an average radiologist in the community, 
which may underestimate the incremental value of the 
radiomics-based model. Future reader studies should also 
recruit multiple readers with a wide range of experience 
to measure the real-world impact of these radiomics tools. 
Thirdly, the current radiomics model only used CT-based 
features plus patient age and demographics. Other impor-
tant clinical features such as symptoms, family history, 
laboratory values, and cyst fluid molecular markers [7] 
were not included in the current model, which should be 
incorporated into future models. Our prior experience has 
demonstrated that the predictive power offered by multi-
ple features is often additive and can result in a stronger 
model [7].

Conclusion

This study showed that a radiomics-based model can achieve 
equivalent performance as an experienced academic radi-
ologist in the classification of a wide array of pancreatic 
cysts with variable malignant potential. This model has the 
potential to refine pancreatic cyst management by improving 
diagnostic accuracy of cystic lesions, which can minimize 
healthcare utilization while maximizing detection of malig-
nant lesions. This study confirms the ability of a radiomic-
based model to accurately classify pancreatic cystic neo-
plasms. Further validation and clinical integration of this 
model could help optimize management of pancreatic cysts 
by maximizing the rate of detection of malignant lesions 
while reducing healthcare utilization.
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