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Abstract
Purpose Current diagnostic and treatment modalities for pancreatic cysts (PCs) are invasive and are associated with patient 
morbidity. The purpose of this study is to develop and evaluate machine learning algorithms to delineate mucinous from 
non-mucinous PCs using non-invasive CT-based radiomics.
Methods A retrospective, single-institution analysis of patients with non-pseudocystic PCs, contrast-enhanced computed 
tomography scans within 1 year of resection, and available surgical pathology were included. A quantitative imaging software 
platform was used to extract radiomics. An extreme gradient boosting (XGBoost) machine learning algorithm was used to 
create mucinous classifiers using texture features only, or radiomic/radiologic and clinical combined models. Classifiers were 
compared using performance scoring metrics. Shapely additive explanation (SHAP) analyses were conducted to identify 
variables most important in model construction.
Results Overall, 99 patients and 103 PCs were included in the analyses. Eighty (78%) patients had mucinous PCs on surgical 
pathology. Using multiple fivefold cross validations, the texture features only and combined XGBoost mucinous classifiers 
demonstrated an area under the curve of 0.72 ± 0.14 and 0.73 ± 0.14, respectively. By SHAP analysis, root mean square, 
mean attenuation, and kurtosis were the most predictive features in the texture features only model. Root mean square, cyst 
location, and mean attenuation were the most predictive features in the combined model.
Conclusion Machine learning principles can be applied to PC texture features to create a mucinous phenotype classifier. 
Model performance did not improve with the combined model. However, specific radiomic, radiologic, and clinical features 
most predictive in our models can be identified using SHAP analysis.

Keywords Pancreatic cyst · Mucinous phenotype · Texture features · Radiomics · Machine learning

Introduction

Pancreatic cysts (PCs) can be described as mucinous (i.e., 
mucinous cystic neoplasms, intraductal papillary mucinous 
neoplasm) or non-mucinous (i.e., serous cystic tumors). 
Mucinous cysts are more likely to develop and harbor high-
grade dysplasia (HGD) with an increased risk of malignant 
transformation [1]. Most guidelines recommend early resec-
tion in patients with mucinous PCs although poor diagnostic 
accuracy on cross-sectional imaging persists [2–6]. Endo-
scopic ultrasound/fine-needle aspiration (EUS/FNA) and 
surgical resection can improve diagnostic accuracy at the 
expense of invasiveness and patient morbidity. A meta-anal-
ysis of the diagnostic potential of EUS/FNA in PCs found a 
pooled sensitivity of 86% and specificity of 95% when deter-
mining mucinous character of cyst fluid [7]. Additionally, 
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EUS/FNA can involve morbidity of post-procedural pan-
creatitis, hemorrhage, infection, and oxygen desaturation 
[8]. It is crucial to develop tools that enhance detection of 
mucinous phenotypes and reduces morbidity to appropri-
ately recommend treatment or surveillance strategies.

Radiomics is the high throughput extraction of large sets 
of quantitative data from imaging studies that can be used 
to characterize healthy and pathological tissues to inform 
diagnosis and prognosis [9]. Texture analysis, a subtype of 
radiomics, quantifies gray-level pixels and voxels in a fre-
quency histogram and their spatial relationships to describe 
lesion heterogeneity within a 2-dimensional region of inter-
est (ROI) or 3-dimensional volume of interest (VOI) [10, 
11]. Computed tomography (CT) texture analysis has dem-
onstrated promise in diagnosing and risk-stratifying patients 
with PCs [12–15]. Predictive ability of radiomics models 
can be enhanced by integrating clinical features in pancreas 
and non-pancreas tissues [16].

Statistical analysis of radiomics can be further improved 
with machine learning principles that implement dynamic 
computer algorithms that automatically improve its perfor-
mance through experience. Specifically, machine learning 
builds predictive models around an outcome of interest using 
provided radiomics training data [17, 18]. Machine learning 
principles applied to texture features have demonstrated clin-
ical superiority over more traditional statistical methods in 
bladder and prostate cancer, clear cell renal cell carcinoma, 
and pancreatic ductal adenocarcinoma [18–20].

However, to our knowledge, few studies have investigated 
the potential of applying machine learning principles to radi-
omics data to detect mucinous pancreatic cysts from non-
mucinous. This study aims to develop and assess a machine 
learning algorithm that differentiates mucinous cysts using 
texture features, and texture features combined with other 
radiomic, radiologic, clinical parameters.

Methods

This retrospective study was HIPAA compliant and was 
approved by our Institutional Review Board. The require-
ment for signed informed consent was waived.

Study design and patient selection

A retrospective analysis of patients who underwent resec-
tion for a PC at a single institution was conducted. Surgical 
pathology records were searched for resected PCs between 
1995 and 2017. Patients with preoperative contrast-enhanced 
computed tomography (CECT) scans within one year of 
resection, and complete surgical pathology commenting on 
mucinous character and dysplasia were included in this anal-
ysis. Pancreatic cysts were defined as mucinous: mucinous 
cystic neoplasms, intraductal papillary mucinous neoplasms, 
or indeterminate where mucinous pathology could not be 
definitively ruled out on histopathological analysis; or non-
mucinous: serous cystic tumor, lymphoepithelial cysts, or 
other (Table 2). Patients with evidence of pancreatic pseudo-
cyst or primarily solid pancreas lesions (e.g., cystic lesions 
with obvious invasive components, colloid carcinoma, etc.) 
were excluded. A methodological overview for this study 
including PC segmentation, data collection, and model 
building is described in Fig. 1.

Image acquisition

All CT scans were acquired with multi-detector CT scanners 
using multiphasic, intravenous contrast-enhanced protocols. 
Segmentation of the VOI was conducted using the contrast-
enhanced portal venous phase on CT. Imaging param-
eters consisted of a CECT matrix of 512 × 512 × 16 and 
most scans using automated or variable tube current. Tube 
potential ranged 100–140 kV with 85.8% (85/99) of patients 

Fig. 1  Methodological overview 
of applying machine learn-
ing algorithms to radiomics. 
Pancreatic cysts were seg-
mented 3-dimensionally on 
portal venous contrast-enhanced 
CT scans. Radiomics data 
including texture features, and 
radiologic and clinical features 
were collected concurrently. 
Baseline and machine learning 
algorithms were then applied 
to our datasets. VOI: volume 
of interest, XGBoost: extreme 
gradient boosting, SMOTE: 
synthetic minority oversampling 
technique
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receiving scans with 120 kV. Most patients had CECT scans 
with slice thickness ranging 2.0–5.0 mm (94/99; 94.9% of 
patients). Four patients (4.0%) had CECT scans with a slice 
thickness of 1.25 mm and one patient (1.0%) had a CECT 
slice thickness of 7 mm.

Radiologic data collection and electronic health 
record review

Radiologic features including but not limited to septations, 
ductal dilation, and lymphadenopathy from cross-sectional 
abdominal CECT images were manually collected by a med-
ical student after having received training from a fellowship 
trained abdominal diagnostic radiologist with 11 years of 
experience. Additional clinical information was obtained 
from electronic health records including surgical pathol-
ogy report details on mucinous phenotype and presence 
and grade of dysplasia. Categorical radiologic and clinical 
variables were numerically coded to be incorporated into 
model building. Databases were created and maintained 
using REDCap (v10.9.2, Vanderbilt University, TN) and 
Microsoft Excel (2016, v16.0).

Segmentation and feature extraction

Patients who met the inclusion criteria had their preoperative 
scans uploaded from the Picture Archiving and Communi-
cation Systems program (McKesson, San Francisco, CA) 
to a commercially available, quantitative imaging software 
platform, HealthMyne (v5.0, Madison, WI). Pancreatic cyst 
ROIs were manually segmented by a medical student after 
having received training from and under the supervision of 
a fellowship trained abdominal diagnostic radiologist with 
11 years of experience. Particularly challenging PC lesions 
were segmented by both the medical student and radiolo-
gist. The medical student and radiologist were blinded to 
pathologic diagnosis at time of segmentation.

Two-dimensional ROIs were segmented in the axial 
dimension of the imaging slice with the largest unidimen-
sional diameter. HealthMyne propagated the manually 
drawn ROI above and below the initial segmentation using 
validated segmentation algorithms [21]. Specifically, edge 
boundaries were set using gray-scale pixel intensities of the 
two-dimensional ROI, and a best-fit and super-sampling 
algorithm was used to minimize variations imparted by vari-
ation in scan slice thickness to generate a three-dimensional 
VOI encompassing the lesion. Radiomics features were 
extracted in accordance with the Image Biomarker Stand-
ardization Initiative. Radiomic hyperparameters included 
gray-leveling using a bin width of 20 HU with a bin edge at 
0 HU, a Chebychev distance of 1, and considered neighbors 
in 8 and 26 directions for 2-D and 3-D metrics, respectively. 
In addition, mesh-based metrics used triangular meshes that 

align with the user’s manual segmentation. This allows for 
greater detail to be captured from manually segmenting the 
PC and aligns with the Image Biomarker Standardization 
Initiative methodology. HealthMyne requires manual revi-
sion and verification prior to extraction of unfiltered radiom-
ics. Segmentation excluded vasculature, free fluid, bowel 
gas, and intra-abdominal hardware from prior surgeries.

HealthMyne extracted texture feature radiomics data, 
including first-order (i.e., mean attenuation, kurtosis, 
entropy, etc.) and gray-level co-occurrence matrix (GLCM) 
second-order texture features from the three-dimensional 
VOI. Other non-texture feature radiomics were collected 
that describe the morphology of the lesion and includes but 
is not limited to volume, surface area, multi-planar diameters 
of PCs.

Model building and statistical analyses

Patient demographics and cyst characteristics were tabulated 
and reported as means and standard deviations, or frequen-
cies and percentages using Microsoft Excel (2016, v16.0). 
Machine learning models were created using the extreme 
gradient boosting (XGBoost) library (2020, 1.3.1) for 
Python (2019, v3.6.9). Scoring metrics were imported from 
the Scikit-learn (2020, 0.22.1) and Imblearn (2018, 0.4.3) 
libraries. Receiver operating characteristic (ROC) curves 
were created using the Matplotlib (2020, 3.2.2) Python 
library. The code used was entered into a public repository 
on GitHub, https:// github. com/ uw- cmg/ Megha nPanc cystm 
achine.

The overall goal of our models was to develop and 
assess machine learning classifiers in delineating PCs with 
a mucinous from non-mucinous phenotype. Baseline clas-
sifiers were built and included minority, majority, random 
guesser, and stratified guesser models. The minority and 
majority classifiers always predict the least and most fre-
quent predetermined outcome in the training set, which are 
non-mucinous and mucinous PCs, respectively, in our data-
set (Table 2). The random guesser model makes predictions 
uniformly at random. The stratified guesser model gener-
ates predictions randomly based on the training set’s class 
distribution. The random and stratified guesser models cal-
culated scoring metrics that were obtained from averaging 
results over 10,000 runs. XGBoost is an open-source soft-
ware package that implements a gradient boosted machine 
learning algorithm of decision trees to arrive at a specified 
outcome, mucinous from non-mucinous PCs in our study 
[22]. XGBoost uses gradient boosting, a machine learn-
ing method that combines an ensemble of weak "learners" 
into a single strong learner in a highly efficient and flex-
ible manner and is generally considered to yield accurate 
and well-performing models with characteristics that help 
avoid overfitting and allow for low-bias predictions [22]. The 

https://github.com/uw-cmg/MeghanPanccystmachine
https://github.com/uw-cmg/MeghanPanccystmachine
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XGBoost machine learning algorithm was applied to data 
as received, and to training data augmented with synthetic 
minority oversampling technique (SMOTE). The synthetic 
minority oversampling technique was applied to our train-
ing data set to oversample the minority class to generate 
artificial data points and account for imbalance between the 
majority and minority classes. Additional machine learning 
models (e.g., linear, support-vector machine, random for-
est, multi-lay perception, and k-means clustering, etc.) were 
explored, and their performances compared to XGBoost 
(Supplemental Table 1).

One model consisted of 35 first- and second-order tex-
ture feature radiomics: texture features only model. A sec-
ond combined model consisting of 95 total features included 
texture feature radiomics, non-texture feature radiomic (i.e., 
volume, surface area, etc.), radiologic (i.e., septations, lym-
phadenopathy, etc.), and clinical variables (i.e., age, history 
of pancreatitis, etc.) (Online Appendix A). Pre-processing 
of our data sets included normalizing variables using a mini-
mum–maximum scaler to represent data on a scale from 0 
to 1 using the Scikit-learn package (2020, 0.22.1). Weak 
learners were present in the texture features only and com-
bined models. In developing the mucinous classifier mod-
els, 8 and 11 weak learners were used in the decision trees 
for the texture features only and combined models, respec-
tively. Machine learning models calculated scoring metrics 
that were obtained from averaging results over 500 runs. 
Each run provided the results of the left-out validation data 
from fivefold cross validation applied to training and test 
set splits. Thus, assessment is based on every data point 
being predicted exactly 500 times while being excluded from 
the training set. Metrics are determined for each fivefold 
cross validation and then statistics (e.g., mean and standard 
deviations) are calculated for the distributions from the 500 
distinct fivefold cross validations. All metric values given 
are means and all errors are standard deviations over the 
500 distinct fivefold cross validations. This cross validation 
scheme was used for the XGBoost and all baseline classi-
fiers when assessing metrics. When SMOTE is used it is 
applied only to included training data during cross validation 
and not the excluded validation data. The XGBoost algo-
rithms developed for the mucinous classifier used a posi-
tive class weight scaling of 0.25, maximum depth of 3, and 
did not include oversampling parameters. The remainder of 
the decision tree parameters were left at their defaults and 
included booster set to Gbtree; verbosity set to 1; validate 
parameters set to “true”; n-thread set to maximum number 
of thread available; disable default evaluation metrics set to 
“false”; number pbuffer set to number of training instances; 
and number feature set to maximum dimension of the fea-
ture. All features were evaluated without prior assessment 
of their individual performances with predictive modeling 
to prevent data leakage.

Scoring metrics included sensitivity, specificity, preci-
sion, accuracy, and area under the curve (AUC) and have 
been previously described in Gurbani, et al. 2021 [23]. Addi-
tional composite metrics that combine precision and recall 
(F1-score), and sensitivity and specificity (Geometric mean; 
G-mean) were determined by these models.

G-mean: A metric that measures the classification accu-
racy in an imbalanced dataset

F1-score: A metric that measures a test’s accuracy by 
determining the harmonic mean of precision and recall.

Statistical significance of a model was assessed using 
a permutation test. In a permutation test, a statistic (e.g., 
G-mean from fivefold cross validation) is determined for a 
model fit to the original unpermuted data and 1000 random 
permutations of the target data (1001 values), where the per-
mutation assures that any natural correlation between the 
target values and their features are removed. The p-value is 
the fraction of cases in the distribution of the statistic over 
all 1001 cases where the statistic value from the model fit to 
the permuted data is greater than or equal to that obtained 
from the model fit to the unpermuted data. P < 0.05 was 
considered to be statistically significant. We assessed two 
statistics, specifically, G-mean and AUC from fivefold cross 
validation. Overall model performance of the mucinous clas-
sifiers was described and compared using scoring metrics 
and AUC of ROC curves. Again, all metrics were calculated 
on predictions for validation data excluded from the training 
data using the approach described above.

Shapely additive explanation (SHAP) analysis was con-
ducted to demonstrate how features within the XGBoost 
mucinous classifier impact the model output. SHAP analy-
sis has the capacity to quantify continuous and categorical 
variables present in the texture features only and combined 
models. The SHAP values were calculated for a full fit of all 
features to complete data sets without any cross validation. 
SHAP analysis was not pursued in the training cohorts for 
each cross validation as SHAP analysis targets obtaining 
the best understanding of the feature impacts for the whole 
data set [24]. Features listed higher on the left vertical axis 
indicated stronger importance on the overall model outcome. 
Feature values are color-coded with red data points indi-
cating higher values and blue data points indicating lower 
values. The SHAP values on the horizontal axis represent 
relation to mucinous prediction of each PC. More positive 
SHAP values indicate directionality toward mucinous and 
negative SHAP values suggest directionality toward non-
mucinous prediction of PCs. Given the limited data and 

(1)G-Mean =
√

(sensitivity) × (specificity).

(2)F1-score = 2
(precision) × (recall)

(precision) + (recall)
.
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the fact that XGBoost provides a robust feature-selection 
process that well-informs SHAP analysis, additional feature 
selection approaches (e.g., filter-based, wrapping-based, 
embedding-based, etc.) were not pursued.

Additional machine learning algorithms were applied 
to mucinous PCs to create a classifier that distinguishes 
cysts with HGD from cysts without HGD. Baseline models 
used for comparisons included minority, majority, random 
guesser, and stratified guesser models. XGBoost was also 
explored to evaluate their performance compared to base-
line models. In developing the HGD classifier models, 5 
and 9 weak learners were used in the decision trees for the 
texture features only and combined models, respectively. 
The XGBoost algorithms developed for the HGD classifier 
used a positive class weight scaling of 1.45 and 2.47, and 
maximum depth of 4 and 5 for the texture features only and 
combined models, respectively. The remainder of the deci-
sion tree parameters were left at their defaults. Accuracy, 
F1-score, and G-mean values were determined to compare 
performance of models.

Results

Patient cohorts

Overall, 99 patients and 103 cysts were included for analysis 
(Fig. 2). The majority of patients were female (70.7%) and 
white (96.0%). The mean age of patients was 62 ± 14 years 
(Table 1). More patients had mucinous PCs (78%) compared 
to non-mucinous PCs (22%). The most common mucinous 
lesions were intraductal papillary mucinous neoplasms 
(IPMNs) (69%) and the most common non-mucinous lesions 
were serous cystic tumors (74%) (Table 2). Representative 
CECT cross-sectional imaging of a patient with mucinous 
and non-mucinous lesions are reported in Fig. 3. Twenty-six 

Fig. 2  Patient selection diagram 
CECT: contrast-enhanced 
computed tomography. MR: 
magnetic resonance

Table 1  Patient cohort 
demographics

SD standard deviation

Average (± SD)

Age (years) 62 (14)
Height (m) 1.7 (0.1)
Weight (kg) 77.4 (19.2)
Sex [n (%)]
 Female 70 (68)
 Male 33 (32)

Race [n (%)]
 White 99 (96.2)
 Black 2 (1.9)
 Asian or 

Pacific 
Islander

2 (1.9)

Table 2  Pathologic characteristics of resected PCs included in CT 
volumetric radiomics analysis

PC pancreatic cyst, CT computed tomography

n (%)

All cysts 103
Mucinous cysts 80 (78)
 Mucinous cystic neoplasm 25 (31)
 Intraductal papillary mucinous neoplasm 41 (69)
  Main-duct 16 (30)
  Branch-duct 11 (21)
  Mixed-type 8 (15)

 Indeterminate 18 (34)
 Other 2 (3)

Non-mucinous cysts 23 (22)
 Serous cystic tumor 17 (74)
 Lymphoepithelial cyst 2 (9)
 Other 4 (17)
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(32%) of the 80 mucinous cysts had HGD reported on surgi-
cal pathology.

In the overall patient cohort, the average maximum axial 
diameter of PCs was 4.2 ± 3.1 cm, the average surface area 
of PCs was 71.3 ± 157.5  cm2, and the average volume of 
PCs was 88.1 ± 386.8  cm3. Mucinous PCs with HGD had an 
average maximum axial diameter of 5.6 ± 4.7 cm, average 
surface area of 140.8 ± 285.7  cm2, and average volume of 
246.0 ± 735.6  cm3.

Performance of mucinous classifiers

The performances of the baseline and machine learning 
mucinous classifier models were evaluated using independ-
ent and composite scoring metrics. The minority baseline 
classifier produced a sensitivity and specificity of 0.0 and 
1.0, respectively, and the majority baseline classifier pro-
duced a sensitivity and specificity of 1.0 and 0.0, respec-
tively. Furthermore, both baseline classifiers generated an 
AUC of 0.50. The random and stratified mucinous classifiers 
yielded sensitivities of 0.50 ± 0.06 and 0.78 ± 0.05, speci-
fities of 0.50 ± 0.10 and 0.22 ± 0.09, and AUCs of 0.50 ± 0.06 
and 0.50 ± 0.05, respectively. Applying XGBoost to the tex-
ture features only data produced a sensitivity of 0.75 ± 0.12, 
specificity of 0.63 ± 0.22, F1-score of 0.80 ± 0.08, G-mean 
of 0.66 ± 0.15, and AUC of 0.72 ± 0.14. The XGBoost 
combined model produced a sensitivity of 0.77 ± 0.11, 

specificity of 0.61 ± 0.22, F1-score of 0.82 ± 0.07, G-mean 
of 0.67 ± 0.15, and AUC of 0.73 ± 0.14. We observed that 
XGBoost alone outperformed XGBoost with SMOTE 
applied to the training data. When SMOTE was applied 
to our training data, the XGBoost texture features only 
model generated a sensitivity of 0.55 ± 0.15, specificity of 
0.67 ± 0.21, F1-score of 0.66 ± 0.12, G-mean of 0.59 ± 0.12, 
and AUC of 0.61 ± 0.11. When SMOTE was applied to our 
training data, the XGBoost combined model generated a sen-
sitivity of 0.63 ± 0.14, specificity of 0.70 ± 0.23, F1-score of 
0.72 ± 0.11, G-mean of 0.64 ± 0.14, and AUC of 0.66 ± 0.12. 
Furthermore, the XGBoost performances of the texture fea-
tures only and combined mucinous classifier models were 
compared using ROC curve analysis (Fig. 4). A complete 
report of scoring metrics for each mucinous classifier model 
is given in Table 3. 

Performance of high‑grade dysplasia classifiers

The performances of baseline and machine learning muci-
nous classifier models for the detection of HGD in mucinous 
PCs were assessed using independent and composite scor-
ing metrics. The G-mean is of particular importance given 
the imbalance of a small patient sample. The G-mean of 
the minority, majority, random, and stratified HGD classi-
fiers yielded values of 0.0, 0.0, 0.50 ± 0.06, and 0.46 ± 0.07, 
respectively. The accuracy of the minority, majority, random, 

Fig. 3  Representative images of pancreatic cysts on the portal venous 
phase used for segmentation and radiomics extraction in two differ-
ent patients. A branch-duct intraductal papillary mucinous neoplasm 

of the pancreatic head denoted in axial and coronal sections by white 
arrows (a, b), and a serous cystadenoma in the pancreatic head exhib-
ited in axial and coronal sections by white arrow heads (c, d)
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and stratified HGD classifiers yielded values of 0.33, 0.67, 
0.50 ± 0.06, and 0.56 ± 0.05, respectively. The sensitivity of 
the minority, majority, random, and stratified HGD classi-
fiers yielded values of 1.0, 0.0, 0.50 ± 0.10, and 0.32 ± 0.09, 
respectively. The specificity of the minority, majority, ran-
dom, and stratified HGD classifiers yielded values of 0.0, 
1.0, 0.50 ± 0.07, and 0.67 ± 0.06, respectively. An XGBoost 
of the texture features only model produced a G-mean, accu-
racy, sensitivity, and specificity of 0.50 ± 0.18, 0.62 ± 0.10, 
0.41 ± 0.21, and 0.72 ± 0.14, respectively. An XGBoost 
of the combined model produced a G-mean, accuracy, 
sensitivity, and specificity of 0.56 ± 0.16 and 0.62 ± 0.12, 
0.51 ± 0.22, 0.68 ± 0.15, respectively. A complete report 
of scoring metrics for each model is described in Table 4. 
Performance of the XGBoost combined model was evalu-
ated using ROC curve analysis demonstrating an AUC of 
0.59 ± 0.13 (Fig. 5).

Fig. 4  Receiver operating characteristic (ROC) curves of XGBoost 
models of mucinous classifiers Areas under the curve (AUC) are 0.72 
(± 0.14) for the texture features only model (green) and 0.73 (± 0.14) 
for the combined model (blue). Dotted red line indicates chance. SD: 
standard deviation

Table 3  Scoring metrics of baseline and machine learning mucinous prediction classifiers

AUC  area under the curve, G-mean geometric mean, XGBoost extreme gradient boosting, SMOTE synthetic minority oversampling technique

Model Sensitivity Specificity Precision F1-score G-mean Accuracy AUC P value

Baseline classifiers/models
Minority 0 1.0 0 0 0 0.22 0.50 1.0
Majority 1.0 0 0.78 0.87 0 0.78 0.50 1.0
Random 0.50 ± 0.06 0.50 ± 0.10 0.78 ± 0.04 0.61 ± 0.05 0.50 ± 0.06 0.50 ± 0.05 0.50 ± 0.06 0.91
Stratified 0.78 ± 0.05 0.22 ± 0.09 0.78 ± 0.02 0.78 ± 0.03 0.41 ± 0.09 0.65 ± 0.04 0.50 ± 0.05 0.99
Machine learning classifiers/models
XGBoost + SMOTE: Texture Features Only 0.55 ± 0.15 0.67 ± 0.21 0.86 ± 0.08 0.66 ± 0.12 0.59 ± 0.12 0.58 ± 0.11 0.61 ± 0.11 0.05
XGBoost + SMOTE: Combined model 0.63 ± 0.14 0.70 ± 0.23 0.88 ± 0.09 0.72 ± 0.11 0.64 ± 0.14 0.64 ± 0.11 0.66 ± 0.12 0.01
XGBoost: Texture Features Only 0.75 ± 0.12 0.63 ± 0.22 0.88 ± 0.07 0.80 ± 0.08 0.66 ± 0.15 0.72 ± 0.10 0.72 ± 0.14 0.002
XGBoost: Combined model 0.77 ± 0.11 0.61 ± 0.22 0.88 ± 0.06 0.82 ± 0.07 0.67 ± 0.15 0.74 ± 0.09 0.73 ± 0.14  < 0.001

Table 4  Scoring metrics of baseline and machine learning HGD classifiers

G-mean geometric mean, HGD high-grade dysplasia, XGBoost extreme gradient boosting

Model Sensitivity Specificity Precision F1-score G-mean G-mean p-value Accuracy AUC AUC p-value

Baseline classifiers/models
Minority 1.0 0.0 0.32 0.49 0.0 1.0 0.33 0.5 1.0
Majority 0.0 1.0 0.0 0.0 0.0 1.0 0.67 0.5 1.0
Random 0.50 ± 0.10 0.50 ± 0.07 0.32 ± 0.05 0.39 ± 0.07 0.50 ± 0.06 0.82 0.50 ± 0.06 0.50 ± 0.06 0.52
Stratified 0.32 ± 0.09 0.67 ± 0.06 0.32 ± 0.08 0.32 ± 0.08 0.46 ± 0.07 0.84 0.56 ± 0.05 0.50 ± 0.05 0.26
Machine learning classifiers/models
XGBoost: Texture 

Features Only
0.41 ± 0.21 0.72 ± 0.14 0.42 ± 0.20 0.39 ± 0.18 0.50 ± 0.18 0.41 0.62 ± 0.10 0.57 ± 0.11 0.26

XGBoost: Com-
bined model

0.51 ± 0.22 0.68 ± 0.15 0.44 ± 0.18 0.46 ± 0.17 0.56 ± 0.16 0.35 0.62 ± 0.12 0.59 ± 0.13 0.22
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Performance comparison of machine learning 
models

Additional machine learning models were constructed for 
mucinous and HGD classifiers and included linear, support-
vector machine, random forest, multi-layer perceptrons, and 
k-nearest neighbor (Supplemental Table 1). None of these 
models outperformed the XGBoost models for the mucinous 
and HGD classifiers. A complete report of scoring metrics for 
machine learning models is reported in Supplemental Table 1.

Variable identification

Shapely additive explanation analyses were conducted to 
delineate which features were the most important in con-
structing the XGBoost mucinous classifiers. Root mean 
square was the most important feature followed by mean 
attenuation and kurtosis that were identified by SHAP 
analysis in constructing the texture features only XGBoost 
mucinous classifier. Again, root mean square was the most 
important feature followed by cyst location and mean attenu-
ation that were identified by SHAP analysis in construct-
ing the combined XGBoost mucinous classifier. Using PC 
mean attenuation as an example, SHAP analysis identified 
mean attenuation as an important feature in each XGBoost 
model. Pancreatic cysts in our data set had mean attenua-
tions ranging from 14.6 to 171.4 HU (median 41.4 HU). 
Cysts with lower mean attenuation values correlated or anti-
correlated to SHAP values (Fig. 6a). The top 10 features for 
both the texture features and combined models are outlined 
in descending order in Fig. 6a, b.

Discussion

This retrospective analysis demonstrated that machine learn-
ing principles applied to radiomics, clinical parameters, and 
surgical pathology can be used to create a mucinous classi-
fier of PCs. The machine learning mucinous classifiers out-
performed the baseline mucinous classifiers on G-mean and 
AUC scoring metrics, which we believe are the metrics best 
suited to assess the model quality and potential for useful 
predictions. Performance was comparable between XGBoost 
texture feature only and combined models. Shapely additive 
explanation analysis demonstrated that trends in important 
model-building variables can be identified. However, overall 
this remains a challenging task with only moderate perfor-
mance of the best model.

Our patient cohort reflected that of the general population 
of patients who undergo surgical resection for PCs and the 
analyses conducted used a robust approach. The composi-
tion of cyst subtypes in our study reflects that of expected 
composition and does not bias toward lesion type [25]. All 
the cysts in our cohort underwent surgical resection with 
corresponding pathologic analysis. Another benefit of our 
approach is that we applied state of the art machine learn-
ing approaches with careful cross validation to minimize 
data leakage. Specifically, XGBoost was used as it allows 
non-linear fitting and avoids both over-fitting and bias. The 
accuracy of these models was further supported by averag-
ing model output over 500 runs with fivefold cross valida-
tion. Our approach provided robust data and applied careful 
machine learning to build a classifier that can help identify 
PCs with a mucinous phenotype.

Similar studies have also successfully used machine 
learning principles applied to radiomics to help predict PC 
subtypes. A recent study investigated the utility of multi-
variate analysis to differentiate between mucinous cystic 
neoplasms from macrocystic serous cystadenomas [26]. An 
imbalance-adjusted logistic regression was used to build 
radiologic, radiomics, and combined models using data 
obtained from 3-D image analysis. The radiologic model 
consisted of cyst features easily identified by the manual 
interpretation of the CECT scan like location, shape, and 
wall enhancement, and generated an AUC of 0.775. The 
radiomics model, that includes mathematical descriptors of 
lesion heterogeneity and pixel/voxel organization, included 
an 18-feature full fit optimization that consisted of the high-
est AUC values and generated an AUC of 0.989. A com-
bined model further improved performance with an AUC 
of 0.994. Model performance in the Xie et al. 2020 study 
is likely higher compared to our results because an optimal 
feature set was used without test/validation data. Our meth-
odological approach evaluated features without prior assess-
ment of performance and may contribute to differences in 

Fig. 5  Receiver operating characteristic (ROC) curves of the 
XGBoost model for a HGD classifier of mucinous PCs. The mean 
area under the curve is 0.59 ± 0.13 for a combined XGBoost model 
for detecting HGD in mucinous PCs (blue)
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machine learning model performance. Additionally, there is 
value in creating models that delineate mucinous cystic neo-
plasms from macrocystic serous adenomas. However, in our 
approach, machine learning models were built to specifically 
predict mucinous phenotype regardless of PC subtype mak-
ing our results more generalizable to what is encountered in 
every day clinical practice.

Models that independently use radiomics, radiologic, or 
clinical data may not acknowledge important cyst and patient 
features that predispose patients to mucinous or malignant 
lesions. Using combined models that are multimodal may 
improve model performance in predicting mucinous PCs. 
In Xie 2020, the model that combined radiologic (AUC 
of 0.775) and radiomics features (AUC of 0.989) had the 
strongest performance with an AUC of 0.994. Related stud-
ies have demonstrated that the addition of molecular and/
or genetic markers may enhance performance of predictive 
models [13, 27]. Another study used texture analysis and 
miRNA genomic classifier data to delineate between low- 
and high-grade dysplasia of IPMNs [13]. The performance 
of a radiomics model (AUC of 0.77) improved with the 
addition of miRNA genomic data to yield an AUC of 0.92. 
In our study, our combined model that included radiomic, 
radiologic, and clinical variables did not significantly out-
perform our texture features only model (Fig. 4). Our models 
included data that could easily be obtained for retrospective 

analysis. More advanced data from cyst fluid analysis like 
mRNA and other cyst biomarkers could not be obtained for 
study inclusion, retrospectively. Cyst location, the measured 
cyst short axis in the coronal plane, and patient age were the 
most important radiologic and clinical features used to build 
the combined mucinous classifier model. These features are 
not referenced in guidelines for the management of patients 
with PCs to aid in surgical decision-making [2, 3, 28, 29]. 
While radiologic and clinical worrisome features and high-
risk stigmata of PCs can help identify patients with muci-
nous PCs, the addition of these features to our radiomics 
data likely did not improve performance given low incidence 
in our patient cohort, and their effect was likely diluted by an 
abundance of features with unknown clinical significance.

The utility of a machine learning algorithm to help detect 
presence of HGD in the subset of patients with mucinous 
cysts was conducted. Based on the AUC p-values, the 
XGBoost model performed similarly to chance (p-val-
ues > 0.2), suggesting poor clinical utility of this model 
(Fig. 5). This poor result is not necessarily an indication 
that the present modeling approach is inadequate and may 
simply be due to small sample size. Further evaluation in a 
larger cohort is warranted.

Non-XGBoost machine learning models were investi-
gated to compare performance. When identifying strong-
performing models two standards are considered: (1) the 

Fig. 6  Shapely additive expla-
nations (SHAP) analyses of 
XGBoost mucinous classifier 
texture features only model 
(a) and combined model (b). 
Features most important in 
building XGBoost models on 
the y-axis in descending order 
of importance. SHAP values on 
the x-axis describes direction-
ality of each feature toward 
mucinous (+ SHAP value) or 
non-mucinous lesions (− SHAP 
value). High feature values are 
indicated in red and low feature 
values are indicated in blue 
and are unique to the range of 
values for each feature noted on 
the y-axis. GLCM: gray-level 
co-occurrence matrix; HU: 
Hounsfield units
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model needs to perform better than baseline models (e.g., 
random guesser) and (2) the model needs to show good 
performance across scoring metrics and their statistical 
significance. For instance, the mucinous classifier for the 
XGBoost combined model yields a G-mean of 0.67 ± 0.15 
and p-value of < 0.001, which demonstrates its strong per-
formance. For the HGD classifier, we did not identify any 
models that perform better than XGBoost. The best perfor-
mance was the 3-Nearest Neighbor model with a G-mean 
of 0.57 ± 0.20 and a p-value of 0.001, which is signifi-
cantly better than the baseline models but worse than 
XGBoost on both metrics. Overall, we find that XGBoost 
outperforms other machine learning models in creating a 
classifier that helps predict mucinous PCs.

This study has several limitations to address. First, our 
retrospective study was conducted at a single institution 
with a small patient sample limiting the generalizability 
of our XGBoost models. A selection bias was introduced 
with the inclusion criteria selecting for resected cysts, 
which implies they are more likely than a sample of all 
PCs to have suspicious features warranting resection. This 
was done so that we would have a confirmed pathologic 
diagnosis, which is only available in surgically resected 
cysts. While commonplace, the heterogeneity in CT image 
acquisition in our patient cohort has the potential to impact 
texture measures. Lastly, our XGBoost models were built 
to classify PCs with or without a mucinous phenotype 
and did not factor in further delineating PC subtypes from 
one another (i.e., MCN from IPMN). Further prospec-
tive, multi-institutional studies to assess external validity 
of these results are warranted. Additional investigations 
comparing machine learning models across different image 
analysis/radiomics platforms are required to standardize 
the clinical application of machine learning models.

In conclusion, our study demonstrates that machine 
learning principles can be applied to radiomics data of 
PCs to help detect mucinous phenotypes. While this infor-
mation does not obviate the need for other diagnostic test-
ing, it may help risk stratify patients with PCs. We also 
demonstrate that integration of radiologic and clinical fea-
tures with texture feature radiomics data does not improve 
performance of our mucinous classifier. However, unique 
radiomic, radiologic, and clinical features were important 
in building our machine learning mucinous classifiers. 
These results highlight the potential of machine learn-
ing algorithms applied to high-throughput PC radiomics 
features in helping to detect mucinous cyst phenotype in 
patients and deserves further study to improve and validate 
such models.
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