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Abstract
Radiomics refers to the process of conversion of conventional medical images into quantifiable data (“features”) which 
can be further mined to reveal complex patterns and relationships between the voxels in the image. These high throughput 
features can potentially reflect the histology of biologic tissues at macroscopic and microscopic levels. Several studies have 
investigated radiomics of hepatocellular carcinoma (HCC) before and after treatment. HCC is a heterogeneous disease 
with diverse phenotypical and genotypical landscape. Due to this inherent heterogeneity, HCC lesions can manifest vari-
able aggressiveness with different response to treatment options, including the newer targeted therapies. Hence, radiomics 
can be used as a potential tool to enable patient selection for therapies and to predict response to treatments and outcome. 
Additionally, radiomics may serve as a tool for earlier and more efficient assessment of response to treatment. Radiomics, 
radiogenomics, and radio-immunoprofiling and their potential roles in management of patients with HCC will be discussed 
and critically reviewed in this article.
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Introduction

The recent decade has witnessed an exponential growth in 
field of radiomics with numerous published studies explor-
ing the potential applications of radiomics in patient-level 
tumor characterization and prognostication. Radiomics 
refers to the process of converting medical images into 
quantitative imaging data (“features”) that can be mined in 
order to reveal complex patterns reflective of biology at the 
macro- and microscopic levels [1]. This task can be achieved 
by semantic analysis or by more complex voxel-level com-
putational analysis. Semantic analysis is performed using a 
qualitative or semi-quantitative analysis of imaging studies 

using lesion descriptors and/or standardized reading scores 
by a radiologist. Examples of semantic analysis include 
description of the tumor enhancement pattern, appearance 
of the border, presence of intra-lesional arteries, presence 
of vascular invasion as well as the Liver Imaging Report-
ing and Data System v2018 (LI-RADS®) lexicon and scor-
ing scheme. Quantitative image descriptors that are defined 
mathematically to describe imaging phenotypes are known 
as agnostic features, which can potentially remedy many of 
the limitations of semantic analysis such as subjectivity and 
inter- and intraobserver variabilities. Examples include tex-
ture features, histogram-derived parameters, and quantitative 
indices of tumor heterogeneity.

Given the inherent intra- and inter-tumoral heterogeneity 
of hepatocellular carcinoma (HCC) and selective success of 
newer targeted systemic agents, there has been a significant 
shift in the research priorities with an urgent need to per-
form patient-level HCC characterization to enable proper 
patient selection for available therapies. Advanced molecu-
lar and immunoprofiling of HCC have potential to achieve 
these objectives as certain gene signatures and immune phe-
notypes obtained from these analyses are associated with 
aggressive tumor behavior and poor patient outcomes [2–5]. 
However, these techniques require invasive tissue sampling 
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(which is infrequently performed in daily practice) and spe-
cialized equipment and are costly. Radiogenomics and radio-
immunoprofiling are emerging areas of study that focus on 
identifying relationships between imaging traits, genomic 
markers, and immune profiles of tumors and assess tumor 
heterogeneity to inform on patient specific tumor biology. 
The role of radiomics for predicting the pathology of HCC 
including tumor grade, presence of microvascular inva-
sion, and certain immunohistochemical markers has been 
described in recently published reviews [6, 7]. Potential and 
promising applications of radiomics in non-invasive charac-
terization of HCC genetic and immune profile and in predic-
tion as well as assessment of treatment response will be the 
focus of review in this article.

Techniques and workflow

Image analysis, radiomics data curation, and data interpreta-
tion should ideally follow a meticulous and systematic work-
flow in order to ensure accuracy and reproducibility of the 
results (Fig. 1). Different methods and different software, 
including the proprietary software, have been used for each 
of these steps, which are discussed here. Some of the com-
monly used software include pyRadiomics [8], IBEX [9], 
TexRad, CERR [10], LifeX [11], and RaCaT [12].

Segmentation and image pre‑processing

Segmentation is the process of delineating a region of 
interest (ROI) or a volume of interest (VOI), which may 
include part of, or the entire, tumor. Manual segmentation 
performed by an experienced radiologist, using computer 

Fig. 1  Flowchart of the radiom-
ics workflow demonstrating 
each step of the pipeline: 
imaging acquisition and post-
processing, tumor segmenta-
tion, image pre-processing, 
feature extraction, selection, 
and modeling steps. ROI: 
region of interest; VOI: volume 
of interest; GLCM: gray level 
co-occurrence matrix; GLRM: 
gray level run length matrix; 
GLSZM: gray level size zone 
matrix; NGTDM: neighborhood 
gray tone difference matrix
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software to outline the boundaries and to add the ROIs or 
VOIs in a slice-by-slice manner, is considered the gold 
standard. Several semi-automated and automated segmen-
tation tools have been designed in past decade, which still 
have limited application in the clinical settings. State-of-
the-art deep learning algorithms are promising and have 
demonstrated high capability in fast and accurate seg-
mentation of medical images [13]. Despite their accuracy 
and reproducibility in segmentation of measurable tumors 
comparable to a gold standard, these algorithms can occa-
sionally fail and require manual corrections.

Image pre-processing aims at facilitating a reproduc-
ible and reliable radiomic analysis. Inherent differences 
between the scanners and variations in acquisition param-
eters and scanning protocols unavoidably add systematic 
variation into the images. Removing or minimizing the 
effect of such variability is an essential part of the image 
pre-processing. Voxel size is one of the most important 
imaging parameters that varies significantly depending 
on the modality, vendor, and imaging protocols. Various 
radiomic features demonstrate dependence on the voxel 
size and the number of voxels within the ROI [14–16]. 
Voxel size resampling is required as a pre-processing 
step for datasets acquired with variable voxel sizes. Most 
common interpolation algorithms for voxel resampling 
utilize linear, polynomial, or spline interpolation tech-
niques [17]. A number of other techniques have also been 
proposed to reduce the dependence on number of voxels 
within the ROI such as normalizing size-dependent fea-
tures by number of voxels [14, 15].

Radiomics features are calculated from matrices that 
describe various spatial relationship between signal inten-
sities of the voxels. In many cases, intensity values vary 
in a very wide range. The intensity discretization is a 
process of reducing the number of intensity values by 
stratifying them and using intensity levels instead. Each 
intensity level represents a range of the signal intensi-
ties that fall into the “bin”. Signal intensity discretization 
helps to reduce the number of intensity values as well as 
to minimize and suppress the voxel-level noise. The com-
monly used approaches are fixed bin size and fixed bin 
number [18]. In the fixed bin size method, the bin has a 
constant width and the number of bins varies depending 
on the dynamic range of signal intensities. This approach 
keeps the direct relationship with the original intensity 
scale and preserves the contrast differences. The second 
method is based on sorting of voxels between a fixed 
number of bins with the bin width decided based on the 
range of signal intensities. This approach adjusts the con-
trast between the two images and is more applicable when 
the imaging modality is not well calibrated.

Feature extraction

Different radiomic features are introduced to capture unique 
characteristics of the tissue through the quantification of 
various image-texture properties. Feature extraction is per-
formed on imaging datasets using data processing software 
that often provides hundreds of radiomic features per seg-
mentation. The radiomic features can be categorized into 
several groups including: 1) morphological features; 2) 
intensity-based statistical features; 3) intensity histogram 
features; 4) second-order statistical features; and 5) higher-
order features [19]. Morphological features quantify the size 
and shape of the target object, based on two or three-dimen-
sional segmentation. These features are independent from 
the signal intensity distribution within the ROI. They include 
diameter, cross-section area, volume, surface area, and many 
measures of shape asymmetry such as compactness, flatness, 
sphericity as well as minor and major axis length. Intensity-
based features are computed using statistical moments of 
the signal intensity histogram. They include minimum and 
maximum intensity, range, mean, median, standard devia-
tion, interquartile range, skewness and kurtosis to name a 
few. The intensity histogram is generated by discretizing the 
original intensity distribution into intensity bins and then 
computing statistical moments of the histogram. Many of 
these quantities are commonly used in everyday radiology 
practice and are familiar to all radiologists. Second-order 
statistical features quantify the spatial arrangement of the 
voxel-intensity levels within the ROI and include gray-level 
co-occurrence matrix (GLCM), gray level run length matrix 
(GLRLM), gray level size zone matrix (GLSZM), neighbor-
ing gray tone difference matrix (NGTDM), and gray level 
dependence matrix (GLDM) features [20, 21] (Fig. 2). The 
second-order texture features can also be extracted from 
transformed images by applying Laplacian of Gaussian 
(LoG) wavelet and other filters [19, 22]. Higher-order fea-
tures include Fourier spectral analysis, wavelet transform-
based multiscale features, and fractal analysis [23, 24]. The 
wavelet features quantify the local structure of the tumor 
corresponding to spatial scales, localization, and orientation. 
The power spectrum of the Fourier transform defines the 
relationships between the domain intensity and the domain 
size, whereas the fractal analysis (fractal dimensionality) 
quantifies the special distribution of different domains 
within the tumor [22, 25].

“Delta-radiomics” is defined as interval changes in 
radiomic features between baseline and follow-up study 
and is often used in longitudinal studies to assess indi-
vidual response to treatment (Fig. 3). Two most common 
approaches for calculation of “delta-radiomic features” 
include: (1) assessing the ratio of changes relative to the 
baseline (delta-radiomics = [follow-up radiomics − baseline 
radiomics]/baseline radiomics); and (2) assessing velocity 
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of changes over time (delta-radiomics = [follow-up radiom-
ics − baseline radiomics]/time interval). Several studies have 
utilized delta-radiomics to assess response to treatment or to 
predict clinical outcome [26].

Reproducibility and feature selection

Higher-level radiomic feature values are affected by the 
feature extraction algorithms and software. Validation and 
reproduction of the prior results is challenging given the 

inconsistencies in the definition and computation of radi-
omic features by different software. Recently, the Image 
Biomarker Standardization Initiative consisting of 25 
global research teams provided a consensus-based stand-
ardization for the definition of radiomic features and for 
the workflow of radiomic image processing [27]. Their 
study showed good to excellent reproducibility of the 
majority of radiomic features (169 features) across dif-
ferent modalities after standardization of definitions and 
techniques [27].

Fig. 2  a Contrast-enhanced CT of 50-year-old male with hepatocel-
lular carcinoma (HCC). The yellow line defines tumor boundary. b 
The CT texture heterogeneity map demonstrating the presence of two 
main domains; the first one (red–orange colors) with high average 
attenuation and the second one (blue-gray colors) with low average 
attenuation. c The intensity histogram computed from the region of 
interest above. The histogram can be fitted to a sum of two Gauss-

ian curves with corresponding mean 44.3 HU and 79.9 HU and the 
standard deviation 16.9 HU and 14.9 HU, correlating with texture 
heterogeneity map. d The GLCM, GLRLM and GLZLM matrices 
computed from ROI after the intensity discretization to 32  Gy lev-
els. GLCM: gray level co-occurrence matrix; GLRLM: gray level run 
length matrix; GLZLM: gray level zone length matrix
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Features computed from the same matrix (e.g., GLCM) 
are highly correlated and dependent to each other. Inclusion 
of redundant and clustered data into a radiomic model can 
lead to an increased risk of overfitting and causing false-pos-
itive associations. An over-fitted model is not generalizable 
and leads to poor performance on other datasets. To avoid 
the risk of overfitting and to increase efficiency of radiomic 
data, only robust features with high reproducibility should 

be selected for model development. Feature selection aims to 
reduce redundancy, eliminate irrelevant features, and iden-
tify most significant features with highest prognostic value. 
It also helps to simplify the models without compromis-
ing their accuracy. Feature selection can be accomplished 
through a variety of statistical methods [28]. For instance, 
the Pearson correlation coefficient and the Lin’s concordance 
correlation coefficient (CCC) are methods used to evaluate 

Fig. 3  Baseline (a and b) and 
1-month follow-up (c and d) 
CT scan of 64-year-old male 
with HCC obtained during the 
late arterial phase. A 2D low-
pass (LL) wavelet transform 
of the scans highlights the 
region of response to sorafenib 
chemotherapy. Tumor bounda-
ries (ROI) are marked with 
a black contour line. Mean 
wavelet intensity (± standard 
deviation) within the ROI are 
133.3 ± 35.8 at the baseline scan 
and 91.1 ± 34.5 at the follow-up 
scan, respectively. In addition, 
a number of radiomics features 
(such as GLCM Energy and 
GLRLM LGRE) demonstrate 
a significant interval change 
between the baseline and the 
follow-up studies. GLCM: gray 
level co-occurrence matrix; 
GLRLM: gray level run length 
matrix; LGRE: low gray-level 
run emphasis
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association between different radiomic features and to per-
form test–retest robustness analysis. The feature selection 
could be performed using one of several regression methods, 
such as the least absolute shrinkage and selection operator 
(LASSO) [29]. There are also several metrics for evaluation 
of image segmentation performance and reproducibility, 
such as the Dice similarity coefficient (DSC).

Model building and performance evaluation

The goal of radiomic analysis is to construct a statistical 
model for prediction of a clinical occurrence such as diag-
nosis, prognosis, or response assessment. A radiomic model 
can be constructed using one of many multivariable models. 
Random Forest (a decision tree classifier) methodology is 
one of the most powerful statistical techniques for building 
classification models. Regularized regression techniques 
(e.g., using LASSO or Elastic Nets) are other popular meth-
ods for the development of machine learning classifiers from 
radiomics features.

The radiomic data used to build a model is ideally parti-
tioned between three datasets. The training dataset is used 
during the learning process to fit the data and to assess model 
parameters and weights. Validation dataset provides an unbi-
ased evaluation of the model parameters and accuracy and 
allows for adjustment of the model hyperparameters and 
classifiers. The model hyperparameters are variables that 
define the model configuration and cannot be estimated from 
the data, for example the “learning rate” for training a neural 
network or the k in k-fold cross-validation. In contrary, the 
model classifiers are variables that are estimated from the 
data, e.g., linear regression coefficients or weights associated 
with each neural network connection. Lastly, a test data-
set is used to assess the final model fit. Model performance 
evaluation aims to assess its generalizability and accuracy 
in data that were not present in the original dataset. Prefer-
ably, generalizability of the models should be assessed using 
an external validation cohort. Open-access public domains 
such as Cancer Imaging Archive (NCI TCIA; funded by the 
Cancer Imaging Program of the National Cancer Institute) 
have been made available for this purpose [30]. Preliminary 
studies may not have sufficient data for external validation 
and may instead use internal validation techniques (such as 
random sampling, k-fold, and bootstrap cross-validation) 
using the original dataset [27]. Frequently, model perfor-
mance is evaluated by comparing validation and test data-
set outcomes. Classifier performance is usually assessed by 
the area under the receiver operating characteristics curve 
(AUC-ROC) including metrics such as sensitivity, specific-
ity and accuracy. Metrics such as mean absolute error, mean 
squared errors or  R2 are utilized to assess performance of 
regression problems. AUC-ROC metrics depend on the bal-
ance between the outcome classes in the data and should be 

used and interpreted with caution. Balanced accuracy and 
Matthews’s correlation coefficient should be considered as 
alternatives [18].

The reproducibility of radiomics models depends on 
reproducibility of radiomic features and accuracy of the sta-
tistical model. Harmonization of imaging data are essential 
to overcome experimental variation across multiple scanners 
and protocols. This is of more importance in case of multi-
center and retrospective studies [27].

Radiogenomics of HCC

A considerable amount of work has been conducted over 
the past two decades to characterize the molecular classifi-
cations of HCC [31]. Genome-wide molecular profiling of 
HCC tumors has identified heterogeneous molecular aber-
rations across lesions, indicating significant inter-tumoral 
heterogeneity [32]. A variety of classification schemes have 
been used for genomic landscapes in HCC. Two main molec-
ular classes of HCC are described: (1) proliferation class, 
typically associated with hepatitis B virus infection, has poor 
tumor differentiation and elevated serum alpha fetoprotein 
(AFP) level, and is associated with worsened outcomes; and 
(2) non-proliferation class, more commonly seen with hepa-
titis C virus infection or alcohol-related HCC, has moderate/
well tumor differentiation, lower AFP values, and better out-
comes [31]. In addition to the biological variability across 
HCC tumors, significant intratumoral heterogeneity has also 
been observed at histopathological and molecular genomic 
levels [33, 34]. Biopsies generally sample only a small por-
tion of the tumor, precluding analysis of intra-tumoral het-
erogeneity within the entire lesion.

Semantic imaging traits and genomics

The majority of the radiogenomic studies to date have been 
based on semantic features obtained from CT or MRI. The 
commonly used semantic features include description of 
the tumor enhancement pattern, appearance of the border, 
presence of intra-tumoral arteries, peritumoral halo, vascu-
lar invasion or necrosis as well as the American College of 
Radiology Liver Reporting and Data System (ACR LIRADS 
®) scoring. A greater number of radiogenomics studies have 
used CT compared to MRI, which may be due to the greater 
challenges in standardizing MR data compared with CT data. 
Approximately 78% of HCC global gene expression profiles 
could be reconstructed using combinations of 28 qualita-
tive traits at contrast-enhanced CT [35]. In a retrospective 
study of 39 patients, qualitative imaging traits on CT and 
MRI (including infiltrative pattern, mosaic appearance, 
presence of macrovascular invasion, and large size) were 
shown to have significant associations with gene signatures 
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of aggressive HCC phenotype (G3-Boyault, Proliferation-
Chiang profiles, CK19-Villanueva, S1/S2-Hoshida) with 
odds ratios ranging from 4.44–12.73 (p < 0.045) [36]. These 
particular genes were associated with increased cellular pro-
liferation, vascular invasion, distant metastases, and poor 
prognosis. In a separate study, mosaic appearance of tumor 
was shown to correlate with expression level of POSTN gene 
(r =  − 0.47, p = 0.036), which is marker of tumor aggressive-
ness [37]. In another study, tumor size showed significant 
association (p = 0.005) with fractional allelic imbalance 
(FAI) rate index, which is a molecular marker associated 
with early tumor recurrence in liver transplant patients, 
while LI-RADS classification showed non-significant weak 
positive correlation (r = 0.264) [38]. The tumor margins on 
arterial phase were qualitatively assessed in a separate study 
which showed correlation with a doxorubicin response gene 
expression profile (p < 0.05), which may aid treatment plan-
ning for patients receiving trans-arterial chemoembolization 
(TACE) [39]. While semantic analysis is commonly per-
formed in routine clinical practice, these assessments are 
prone to limited inter-/intra-observer reproducibility, which 
makes data analysis more challenging to standardize and to 
evaluate on a large scale [40].

Agnostic imaging traits and genomics

Agnostic features have recently shown value for prediction 
of gene signatures or potentially actionable targets with 
prognostic and therapeutic implications. In a retrospective 

study of 38 patients with contrast-enhanced CT, texture 
features correlated with prognostic gene modules that were 
associated with overall survival [41]. In a separate retrospec-
tive study of 48 patients, minimum ADC values obtained 
from histogram analysis enabled distinction between aggres-
sive molecular subtypes (S1/S2) versus less aggressive sub-
type (S3) using the transcriptomic classification described 
by Hoshida et al. (odds ratio = 2.00, p = 0.036, AUC = 0.68) 
[37]. In the same study, radiomics features (10 Haralick tex-
ture features, 1 other quantitative feature) showed correlation 
with 14 gene expression levels (r =  − 0.61–0.56, p < 0.043) 
(Fig. 4) [37]. The majority of correlations were found with 
molecular subclass signature genes, the strongest of which 
was between early arterial phase texture and expression of 
binding protein TARBP1 (r =  − 0.61, p = 0.013). Regard-
ing the therapeutic targets, correlations were demonstrated 
between late arterial phase texture features and immuno-
therapy targets PD-1 and CTLA4 mRNA expression level 
(r =  − 0.48–0.47, p < 0.037) (Fig.  5) [37]. Associations 
between histogram parameters obtained from functional 
multiparametric MRI (DWI, blood-oxygenation level-
dependent (BOLD), tissue-oxygenation level-dependent 
(TOLD), and dynamic contrast-enhanced MRI) and both 
molecular and immune characteristics of HCC were evalu-
ated in a prospective study [42]. Central tendency param-
eters (mean and median) significantly correlated with gene 
expression of Wnt target GLUL, pharmacological target 
FGFR4, stemness markers EPCAM and KRT19, and immune 
checkpoint PDCD1 [42].

Fig. 4  Clustergram of significant correlations, expressed as the 
Spearman correlation coefficient r, between radiomics features and 
gene expression levels. Only radiomics features and genes for which 
a significant association (FDR-adjusted p < 0.05) was observed are 
shown. Correlations are colored according to the color bar shown on 
the left. Nonsignificant correlations are displayed with a checkerboard 

pattern. Radiomics features, in particular texture features, showed 
significant association with gene expression levels of HCC markers 
and therapeutic targets. ADC apparent diffusion coefficient, EAP early 
arterial phase, ER enhancement ratio, HBP hepatobiliary phase, LAP 
late arterial phase, PVP portal venous phase. Adapted with permis-
sion from Hectors et al. [37]



3681Abdominal Radiology (2021) 46:3674–3685 

1 3

Radio‑immunoprofiling

The success of targeted immunotherapeutic agents is deter-
mined by the immune status of the HCC tumors [43]. Gene 
expression analysis in 956 patients with HCC has identi-
fied a distinct immune class, characterized by expression 
of inflammatory response markers, in 25% of patients [44]. 
This “Immune activated” phenotype is characterized by 
dense functional CD8 cell infiltration, increased interferon-γ 
signaling, expression of cell checkpoint markers (such as 
PD-L1), and a high mutational burden [45]. HCCs with this 
immune profile may best respond to targeted immunothera-
peutic agents [44, 46]. Furthermore, the “immunoscore”, 
calculated based on analysis of the type, functional orienta-
tion, density, and spatial location of tumor-infiltrating lym-
phocytes, was significantly associated with tumor recurrence 
rate and recurrence-free survival [47–50]. Therefore, immu-
noprofiling of HCCs is highly relevant for predicting the 
response to immunotherapy [2]. Multiplexed immunohisto-
chemistry is a promising advanced technique for evaluation 
of immune cell distribution and localization in tumors [3]. 
This technique however requires invasive tissue sampling, 
equipment, and expertise.

Preliminary works have shown value in radiomics quan-
tification (using both semantic and agnostic features) for 
HCC immune profiling. In a large-scale study of 207 HCC 
patients, radiomics data obtained from HCC tumors and 
the peritumoral regions extracted from gadoxetic-acid-
enhanced MRI accurately predicted HCC immunoscore, 
specifically evaluating CD3 and CD8 T-cells, with AUC of 

0.904 [51]. In the study by Hectors et al., central tendency 
parameters from functional mpMRI significantly corre-
lated with the count of endothelial cells (CD31 monoclo-
nal antibody), macrophages (CD68), and T-cells (CD3) 
(p < 0.05) [42]. In a separate study, despite showing no 
associations with histopathologic grade or microvascular 
invasion, radiomics measurements (texture features and 
quantitative enhancement ratios) were associated with 
expression of immune markers CD3, CD31, CD68, and 
PD-L1. The greatest number of correlations was found 
with CD68 (macrophage) expression, including several 
texture features (r = 0.33–0.45, p < 0.049), mosaic appear-
ance (r = 0.40, p = 0.023), and wash-in/wash-out enhance-
ment pattern (r = 0.37, p = 0.042) [37]. Another study 
showed that radiomics (Rad) score of features extracted 
from contrast-enhanced CT positively correlated with the 
percentage of infiltrating CD8 + lymphocytes (r = 0.51, 
p < 0.0001) and could discriminate immune activated from 
immune-desert and immune-excluded tumors (p < 0.0001) 
[52]. Higher Rad scores were identified in patients with 
positive PD1 expression (p < 0.0001), PD-L1 immune cell 
expression (p < 0.0001), and PD-L1 tumor cell expression 
(p = 0.01498).

In a recent CT-based multi-cohort study of patients 
with solid organ malignancy (including HCC), a radiom-
ics-based model based on eight variables (including one 
first-order and four second-order GLRLM features) suc-
cessfully discriminated immune activated tumors from 
immune-desert tumors with an AUC of 0.76 (95%CI 
0.66–0.86; p < 0.0001) [45].

Fig. 5  Energy texture maps overlaid on T1-weighted post-contrast 
image obtained during the late arterial phase image. Left: 59-year-old 
male HBV patient with a 3.7-cm HCC lesion in right hepatic lobe. 
Energy texture map overlaid on T1-weighted post-contrast image 
obtained during the late arterial phase image. Texture feature Energy 
with 16 bins was 0.025 in the lesion, with corresponding molecular 
expression of immunotherapy target CTLA4 of 0.44. Right: 51-year-

old male HBV patient with a 3.3-cm HCC lesion in right hepatic 
lobe. Texture feature energy with 16 bins was 0.061 in the lesion, 
with corresponding molecular expression of immunotherapy target 
CTLA4 of 0.68. The texture feature maps are colored according to 
the scale bar on the right with a range of [0–0.1]. Adapted with per-
mission from Hectors et al. [37]



3682 Abdominal Radiology (2021) 46:3674–3685

1 3

Radiomics for assessment of treatment 
response

Assessment of treatment response to locoregional 
treatment

Numerous locoregional therapeutic approaches have been 
developed and introduced in past decades with many of 
them now considered standard of care [53]. They encom-
pass various percutaneous and trans-arterial techniques 
aiming at tumoral cell death by direct tissue destruction 
(such as in case of radiofrequency and microwave ablation) 
or by selective trans-catheter trans-arterial delivery of 
embolic (trans-arterial bland embolization, TAE), chemo-
therapeutic (trans-arterial chemoembolization, TACE) or 
radioembolizing agents (trans-arterial Yttrium-90 radio-
embolization, TARE). Locoregional treatments are pre-
scribed for a wide range of indications and are used for 
both curative and palliative purposes [54]. Although gen-
erally less invasive than surgical resection and transplanta-
tion, these treatments can result in morbidities therefore 
appropriate patient selection and effective assessment of 
treatment response are of major clinical interest.

Current criteria for assessment of HCC treatment 
response such as ACR LIRADS v2018® and modified 
Response Evaluation Criteria in Solid Tumors (mRECIST) 
criteria are better suited for locoablative and TACE meth-
ods [55]. Assessment of treatment response after TARE 
and external beam radiation, especially in the first few 
months after treatment, remains challenging due to the 
inherent nature and time course of radiation-induced 
cytotoxic effects [56]. Persistent arterial enhancement 
and washout may be seen in the treated lesions for several 
months after the treatment, despite the eventual complete 
response [56]. Given these limitations, there is a need for 
having alternative methods to assess response to treatment.

Several studies have investigated role of radiomic 
features extracted from post-treatment CT and MRI for 
assessment of HCC treatment response. A prospective 
study of 27 patients with 56 HCCs showed high correla-
tion (r = -0.815; p < 0.005) between the changes in CT-
based textural features (heterogeneity and skewness) 
and perfusion indices of tumor (based on CT perfusion 
study) after TACE [57]. A subsequent retrospective study 
of 89 patients who underwent combined TACE and high 
intensity focused ultrasound (HIFU) showed that radiom-
ics (uniformity, energy, entropy, and skewness) based on 
1-week post-treatment MRI correlated with radiologic 
response on 3-month follow-up MRI [58]. A newly pub-
lished retrospective study of 22 patients who underwent 
lobar TARE showed volumetric histogram analysis of 
apparent diffusion coefficient (ADC) map as a potential 

tool for early assessment of tumor response to TARE [59]. 
While the histogram-based radiomics of ADC on baseline 
study were not different, the ADC median/mode at 6-week 
post-treatment study and changes in ADC median/maxi-
mum from the baseline study were significantly higher in 
patients with complete or partial response (assessed based 
on 6-month post-treatment MRI).

While early and precise assessment of treatment response 
is essential in patient management, the identification of 
patients who may be responders to therapy before the initia-
tion of treatment, can help with patient selection and further 
enhance the precision patient care. Multiple studies investi-
gated the role of radiomics at baseline imaging as predictor 
of response to locoregional treatment, mainly before TACE, 
and showed that several radiomics features (extracted from 
pre-treatment CT/MRI) correlated with the future response 
to locoregional treatment. In the recent study by Sun et al. 
a model based on radiomics features extracted from pre-
treatment DWI, ADC, and T2-weighted MRI had AUC of 
0.8 (p < 0.001) for prediction of progressive disease after 
TACE [60]. Two other studies showed correlation between 
pre-treatment contrast-enhanced-CT-derived texture features 
and mid-term (at 6 month) response to drug-eluting bead 
TACE [57, 61]. Texture parameters (uniformity, energy, and 
entropy) assessed on 1-week pre-treatment MRI were also 
shown to correlate with response to combined treatment 
with TACE and HIFU [58]. In a series of 132 HCCs under-
going traditional TACE, indices of higher intra-tumoral het-
erogeneity (high GLCM moments and low homogeneity) 
correlated with complete response to treatment (odds ratios 
up to 6.57, p < 0.001) [62].

Assessment of treatment response to systemic 
therapy

Systemic therapy is increasingly used to treat patients with 
advanced stage HCC and the patients who are not candidates 
for surgical or loco-regional therapies [63]. Antiangiogenetic 
therapy with Sorafenib, a protein kinase inhibitor, proved to 
be effective in increasing overall survival in patients with 
advanced disease [64, 65] and is now considered as the treat-
ment of choice in Stage C HCC [66]. New tyrosine kinase 
inhibitors and immune checkpoint inhibitors are shown 
to have superior outcomes compared to sorafenib and in 
patients who previously failed sorafenib therapy. Recently, 
a combination of atezolizumab (an anti-programmed cell 
death ligand 1; anti-PDL1) and bevacizumab as first-line 
therapy in advanced HCC patients provided objective 
response rate (ORR) of up to 36% and better overall and 
progression-free survival outcomes compared to sorafenib 
[67–69]. Currently, there are no clinical or molecular bio-
markers to predict response to systemic treatment. Only 
few studies have been published yet to prove the ability of 
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radiomics in assessing treatment response in patients eligible 
for systemic therapy. A retrospective study of 92 patients 
with HCC treated with sorafenib showed that entropy 
derived from pre-treatment portal venous phase CT was an 
independent predictor of survival (p < 0.05) [70]. This result 
could be explained by higher efficacy of anti-angiogenetic 
therapy in heterogeneous lesions presumably due to their 
higher number of unpaired arteries. Promising preliminary 
results have also shown that texture analysis may help in 
patient selection for combined treatment with TACE and 
Sorafenib [71].

Radiomics may also be employed for prediction of 
response to immune-oncologic therapy and assessment of 
patient outcome. For example, a recent study in solid organ 
malignancy including HCC found that patients treated 
with anti-PD-1 and PD-L1 who had a high baseline radi-
omic score, largely derived from GLRLM features, had a 
higher chance of objective response at 3 months (p = 0.049) 
and 6 months (p = 0.025). These patients also had superior 
median overall survival based on both univariate analy-
sis (median OS 24.3 months in the high radiomic score 
group versus 11.5 months in the low radiomic score group) 
and multivariate analysis (HR 0.52, 95%CI 0.35–0.79, 
p = 0.0022)[45]. In a separate study, a radiomics-based bio-
marker using machine learning statistics was able to predict 
the infiltration of HCC by tumor-infiltrating CD8 + T cells. 
A higher score correlated with superior overall survival and 
disease-free survival (p = 0.012 and p = 0.0088, respectively)
[52]. The radiomics scores in these studies were largely 
comprised of GLRLM features, which are thought to reflect 
the heterogeneity of an image, and GLCM features, which 
are thought to reflect the structural properties of images.

Radiomics for prediction of survival

Radiomics is an emerging field in clinical setting and 
larger and longer interval studies are needed to validate 
its promising results in directing patient management. A 
recent retrospective study analyzed the ability of radiom-
ics analysis in predicting long-term survival by combining 
several clinical, radiological, and radiogenomic factors. 
The proposed Cox proportional hazard model predicted 
3-year, 5-year, and 10-year survival in patients undergoing 
TACE with an AUC of 0.85, 0.90, and 0.89, respectively 
[72]. Another recent retrospective study of 162 patients 
with HCC proposed a combined model based on clinical 
parameters and 6 radiomics features (extracted from pre-
treatment CT) to predict overall survival after TACE. The 
model outperformed the other clinical models (C-index of 
0.73, 95%CI 0.68–0.79) [73]. Other studies also showed 
that combined models based on radiomics and clinical fea-
tures outperformed the individual models in prediction of 

overall survival in patients with HCC [74–76]. Peritumoral 
radiomics features may also play a role for risk assessment 
and prediction of tumor recurrence after treatment [73]. 
A radiomics signature derived from pre-treatment FDG-
PET and including both tumor and background liver was 
shown to be an independent predictor of overall survival 
and progression-free survival in patients undergoing Y90-
TARE for unresectable HCC, with the strength and vari-
ance being the most predictive texture features [77].

Future directions

The majority of published literature on radiomics is based 
on small cohorts, and hence their proposed models could 
not be fully corroborated. The initial results reported 
herein will ultimately require independent validation in 
larger datasets and populations before incorporating them 
into decision-making algorithms and in clinical practice. 
Recent efforts by Image Biomarker Standardization Ini-
tiative is a promising step for standardization of radiom-
ics workflow and for rigorous data quality control which 
is essential for generalization of radiomics results [27]. 
Application of deep learning in large-scale HCC radiom-
ics (termed “deep radiomics”) is another exciting future 
direction for extracting tumor features, characterizing 
tumor aggressiveness, and predicting immune response 
and patient outcome.

Conclusion

Radiomics quantification is a powerful, noninvasive tool to 
extract numerous features on the whole lesion level which 
may be reflective of HCC heterogeneity and aggressive-
ness based on gene expression profiling and immunophe-
notyping, and could potentially inform on an optimal 
therapeutic approach and response to therapy. Improved 
identification of potential responders to novel immuno-
therapeutic agents could enable a personalized and cost 
effective patient specific treatment strategy. Radiomics has 
not yet reached widespread application in the clinical set-
ting, with many existing barriers to translation, and further 
prospective and multi-institutional work is thus warranted 
to validate the results of these initial studies.
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