
Vol:.(1234567890)

Abdominal Radiology (2021) 46:3184–3192
https://doi.org/10.1007/s00261-021-02985-1

1 3

HEPATOBILIARY

Application of a machine learning approach to characterization of liver 
function using 99mTc‑GSA SPECT/CT

Masatoyo Nakajo1 · Megumi Jinguji1 · Atsushi Tani1 · Daisuke Hirahara2 · Hiroaki Nagano1 · Koji Takumi1 · 
Takashi Yoshiura1

Received: 15 October 2020 / Revised: 21 January 2021 / Accepted: 9 February 2021 / Published online: 6 March 2021 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Purpose  To assess the utility of a machine-learning approach for predicting liver function based on technetium-99 m-galac-
tosyl serum albumin (99mTc-GSA) single photon emission computed tomography (SPECT)/CT.
Methods  One hundred twenty-eight patients underwent a 99mTc-GSA SPECT/CT-based liver function evaluation. All were 
classified into the low liver-damage or high liver-damage group. Four clinical (age, sex, background liver disease and 
histological type) and 8 quantitative 99mTc-GSA SPECT/CT features (receptor index [LHL15], clearance index [HH15], 
liver-SUVmax, liver-SUVmean, heart-SUVmax, metabolic volume of liver [MVL], total lesion GSA [TL-GSA, liver-
SUVmean × MVL] and SUVmax ratio [liver-SUVmax/heart-SUVmax]) were obtained. To predict high liver damage, a 
machine learning classification with features selection based on Gini impurity and principal component analysis (PCA) were 
performed using a support vector machine and a random forest (RF) with a five-fold cross-validation scheme. To overcome 
imbalanced data, stratified sampling was used. The ability to predict high liver damage was evaluated using a receiver oper-
ating characteristic (ROC) curve analysis.
Results  Four indices (LHL15, HH15, heart SUVmax and SUVmax ratio) yielded high areas under the ROC curves (AUCs) 
for predicting high liver damage (range: 0.89–0.93). In a machine learning classification, the RF with selected features (heart 
SUVmax, SUVmax ratio, LHL15, HH15, and background liver disease) and PCA model yielded the best performance for 
predicting high liver damage (AUC = 0.956, sensitivity = 96.3%, specificity = 90.0%, accuracy = 91.4%).
Conclusion  A machine-learning approach based on clinical and quantitative 99mTc-GSA SPECT/CT parameters might be 
useful for predicting liver function.
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Introduction

In a patient with a liver tumor, a pretreatment estimation 
of the remnant liver function is essential for reducing the 
morbidity and mortality associated with treatment [1]. The 
asialoglycoprotein receptor (ASGPR) is expressed on the 
sinusoidal surfaces of hepatocytes and contributes to the 

clearance of circulating glycoproteins containing terminal 
galactose residues [2]. Technetium-99m-galactosyl serum 
albumin (99mTc-GSA), an asialoglycoprotein analog, is taken 
up exclusively by the liver and binds specifically to ASGPR 
on hepatocytes [3, 4]. Decreased ASGPR expression has 
been reported in patients with liver damage [5]. Thus, 99mTc-
GSA scintigraphy enables the direct estimation of function-
ing hepatocytes and is very useful for evaluations of liver 
function [6].

The receptor index (LHL15) and clearance index (HH15), 
which are calculated from liver and heart time-activity data, 
are the most commonly used parameters in liver function 
assessments [7–9]. However, these parameters are obtained 
on planar images and do not provide sufficient anatomical 
information for an accurate liver function assessment because 
they lack three-dimensional (i.e., depth) information.
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Single photon emission computed tomography (SPECT)/
computed tomography (CT) is a relatively new imaging 
modality that enables the near-simultaneous co-registration 
of functional and anatomical information acquired during 
the same imaging session and while the patient remains in 
the same bed position [10]. The main benefits of SPECT/CT 
is the improved localization of radioactivity. The standard-
ized uptake value (SUV), a quantitative parameter used com-
monly during positron emission tomography, has recently 
been applied to bone SPECT/CT evaluations [11–13], and 
one report has investigated the SUV during 99mTc-GSA 
SPECT/CT evaluations of liver fibrosis [14]. Although 
reports have described various quantitative liver function 
analyses based on 99mTc-GSA scintigraphy, it remains 
unclear which methods are most useful in this context [7]. 
Therefore, some kind of new reliable method for evaluating 
or predicting of the liver function is required.

Machine learning is a field of computer science based 
on pattern recognition and computational learning that can 
identify patterns and relationships formed from complex 
multidimensional databases [15]. It relies on computer algo-
rithms to learn and identify complex interactions among all 
variables by minimizing the error between predicted and 
observed outcomes. Compared with conventional statisti-
cal methods, which rely on predetermined models, machine 
learning can deeply detect the interactions among variations 
and iteratively learn from data to update algorithms [16].

Recently, some studies have proposed classification meth-
ods based on a machine learning approach into the research 
of nuclear medicine [17–19]. However, to our knowledge, 
no study has previously investigated the efficacy of a quan-
titative 99mTc-GSA SPECT/CT analysis using a machine 
learning approach for assessing the liver function. Therefore, 
this study aimed to assess the utility of a machine learning 
approach based on 99mTc-GSA SPECT/CT for predicting 
the liver function.

Materials and methods

Patients

Our institutional review board approved this retrospective 
study and waived the requirement for written informed con-
sent. From October 2016 to December 2019, 166 consecutive 
patients with liver tumors underwent pretreatment 99mTc-GSA 
SPECT/CT to evaluate the liver function. The following inclu-
sion criteria were applied: (1) measurement of three blood 
biochemical indices (albumin, total bilirubin and prothrom-
bin time activity) within 1 week before or after 99mTc-GSA 
SPECT/CT and (2) performance of an indocyanine green 
clearance test (ICGR15: ICG retention rate at 15 minutes) 
within 1 week before or after 99mTc-GSA SPECT/CT.

Imaging protocols

Thoraco-abdominal planar and SPECT/CT images were 
acquired using a dual-head gamma camera with low-energy, 
high-resolution collimators and a multidetector (16-row) spi-
ral CT scanner (Siemens Intevo SPECT/CT system; Siemens 
Medical Solutions USA, Inc., Hoffmann Estates, IL, USA). 
Immediately after the intravenous injection of 185 MBq of 
99mTc-GSA (Nihon Medi-Physics Co., Ltd. Tokyo, Japan), an 
anterior planar image was dynamically acquired in 30-second 
frames for 30 minutes. Data were digitally collected using 
a 128 × 128 matrix on a dedicated computer system (E-soft, 
Siemens Healthcare GmbH, Erlangen, Germany). SPECT 
(45 steps at 15 s/step, 360°, 128 × 128 matrix) was initiated 
30 minutes after 99mTc-GSA injection. Subsequently, CT 
images were acquired using a tube voltage of 130 kV and 
a dose-modulation algorithm with a quality reference mAs 
setting of 15 (CAREDose 4D; Siemens Medical Solutions 
USA, Inc.). SPECT data were reconstructed using Siemens 
xSPECT Quant with an Ordered Subset Conjugate-Gradient 
Minimizer (OSCGM) algorithm and the following settings: 
one subset, 60 iterations and a 10-mm Gaussian filter.

Image analysis

The planar, SPECT and SPECT/CT images were dis-
played on a workstation (Syngo.via; Siemens Healthcare 
GmbH, Erlangen, Germany). The anterior planar images 
were analyzed quantitatively by an experienced nuclear 
medicine radiologist who was aware of the study purpose 
but was blinded to the patients’ clinical information. The 
liver and heart time activity curves were generated using 
regions of interests (ROIs) that covered the whole liver 
and heart, respectively. The LHL15 and HH15 were deter-
mined according to a previously reported method as follows: 
LHL15 = liver ROI count at 15 min/(liver ROI count + heart 
ROI count at 15 min); HH15 = heart ROI count at 15 min/
heart ROI count at 3 minutes [8, 20].

The following quantitative SPECT image analyses were 
performed by another nuclear medicine radiologist. First, a 
volume of interest (VOI) that contained the whole liver was 
placed manually and used to determine the liver SUVmax. 
Next, a threshold of 40% SUVmax was set to automatically 
delineate the VOI that met or exceeded this 40% threshold, 
and this VOI was used to calculate the liver SUVmean, meta-
bolic liver volume (MLV) and total lesion 99mTc-GSA uptake 
(TL GSA). The TL GSA was calculated as the liver SUVmean 
multiplied by the MLV. The heart SUVmax was also recorded, 
using the CT images as a reference. The software (Syngo.
via; Siemens Healthcare GmbH, Erlangen, Germany) auto-
matically calculated the liver SUVmax, liver SUVmean, heart 
SUVmax, MLV and TL GSA. The SUVmax ratio (liver SUV-
max/heart SUVmax) was calculated manually.
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Assessment of liver function

This study used the liver function criteria corresponding to 
liver damage types A, B and C, as proposed by the Liver 
Cancer Study Group of Japan (Table 1) [21]. The patients 
were subsequently classified into low liver damage (grade 
A) and high liver damage (grade B and C) groups.

Machine‑learning approach

Four clinical (age, sex, background liver disease and tumor 
histological type) and 8 quantitative 99mTc-GSA (LHL15, 
HH15, liver SUVmax, liver SUVmean, MLV, TL GSA, heart 
SUVmax and SUVmax ratio) features were used to predict 
high liver damage employing machine-leaning approaches.

The machine learning classifiers in this study included a 
support vector machine (SVM) and random forest (RF). The 
SVM used the L2 penalty, while the RF used 100 estimators 
and a select entropy criterion. The ROC analysis was per-
formed to compare the predictive performances of the models 
and the areas under the ROC curves (AUCs) were calculated.

To overcome imbalanced data, stratified sampling was 
used [22, 23]. To minimize the negative influence of overfit-
ting, 5-fold cross-validation and feature selection were per-
formed in this study [24, 25]. The 5-fold cross-validation 
randomly split the dataset into 5 subsets. For each repeated 
time, four subsets were used as the training group and the 
remaining subset was used as the testing data. This proce-
dure was repeated 5 times, and each subset should be used 
exactly once as the testing group.

Gini impurity criterion was applied to determine the rela-
tive importance of individual features. The Gini impurity is 
the probability of an unseen case being incorrectly classified 
for a given decision or rule. Features with high Gini impurity 

(or low Gini importance) split the data into impure catego-
ries, while features that decrease Gini impurity are able to 
partition the data into purer classes with larger members. 
Thus, features with large decreases in Gini rank higher in 
importance for the model. The importance of a feature is 
defined as the decrease in the Gini impurity [26–28].

Not only feature selection method but also principal com-
ponent analysis (PCA) method were conducted to compare the 
results of the classification based on the presence or absence 
of feature selection or dimensionality reduction, and the fol-
lowing 4 different models were obtained for the machine 
learning approaches; First, neither feature selection method 
nor PCA were performed, Second, feature selection was not 
performed, but PCA was conducted, Third, feature selection 
method using 5 best-ranked features was only performed, but 
PCA was not performed, Forth, both feature selection method 
using 5 best-ranked features and PCA were performed.

These machine learning approaches were performed 
using Orange version 3.24.1 (Bioinformatics Lab at Uni-
versity of Ljubljana, Slovenia), an open-source software 
package for data mining and visualization [29].

Statistical analysis

The Mann–Whitney U-test or chi-squared test was used to 
assess the difference between two quantitative variables or 
compare categorical data, as appropriate. A ROC analysis 
was performed to examine the diagnostic performance of 
each parameter for the prediction of high liver damage. The 
DeLong method was used to analyze the statistical signifi-
cance of differences between AUCs [30].

Data are presented as medians and interquartile ranges 
(IQRs). All p values are two-sided, and a p value< 0.05 is 
considered to indicate a statistically significant difference. 
The statistical analysis was performed using MedCalc Sta-
tistical Software (MedCalc Software, Mariakerke, Belgium).

Results

Patient characteristics

Of the 166 initially identified patients, 38 were excluded 
from the analysis because they had not undergone an ICG 
clearance test. Finally, 128 patients (97 males, 31 females; 
mean [± SD] age, 71 ± 8 years; range, 39–90 years) were 
eligible for the analyses.

Seventy-six patients underwent liver resection, and the 
liver tumors received the following pathological diagnoses: 
hepatocellular carcinoma (HCC), 66 patients; cholangiocel-
lular carcinoma, four patients and others, six patients. The 
remaining 52 patients underwent transcatheter arterial chem-
oembolization (TACE) for HCC.

Table 1   Liver damage criteria presented by the Liver Cancer Study 
Group of Japan

A liver damage type of A, B, or C is determined according to the ful-
fillment of more than two categories. A case that fulfills more than 
two categories corresponding to two liver damage types should be 
classified as the higher liver damage type. For example, if a case ful-
fills three categories associated with liver damage A and two catego-
ries associated with liver damage B, the case is considered the latter 
type
ICGR15 indocyanine green retention rate at 15 min

Variables Liver damage

A B C

Ascites None Controllable Uncontrollable
Total bilirubin (mg/dl) < 2.0 2.0–3.0 > 3.0
Albumin (g/l) > 3.5 3.0–3.5 < 3.0
ICGR15 (%) < 15 15–40 > 40
Prothrombin activity (%) > 80 50–80 < 50
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The extent of liver damage in each patient was determined 
during the pre-treatment period. One hundred patients pre-
sented with low liver damage, while 28 presented with high 
liver damage (grade B, n = 26 and grade C, n = 2). Patients 
with hepatitis B and hepatitis C were significantly less likely 
to be positive for high liver damage, compared to those with 
hepatitis nonB/nonC disease. No significant differences in 
age, sex and liver tumor histology were observed between 
patients with low and high liver damage. The patients’ char-
acteristics are summarized in Table 2.

Comparison of HH15, LHL15 and SUV‑related 
parameters between low and high liver damage 
(Table 3)

As shown in Table 3, the patients with high liver damage 
had a significantly lower LHL15, liver SUVmax, liver 

SUVmean, TL GSA or SUVmax ratio and had a signifi-
cantly higher HH15 or heart SUVmax, compared to those 
with low liver damage (p < 0.05 for all). No significant dif-
ference in the MLV was observed between the high and low 
liver damage groups (p = 0.31).

Diagnostic performances of each index 
for predicting high liver damage (Table 4)

As shown in Table 4, each index yielded the following AUC 
for the ability to predict high liver damage: HH15, 0.930 
(p < 0.001); LHL15, 0.909 (p < 0.001); liver SUVmax, 0.650 
(p = 0.012); liver SUVmean, 0.673 (p = 0.004); TL GSA, 
0.713 (p = 0.001); heart SUVmax, 0.894 (p < 0.001) and 
SUVmax ratio, 0.917 (p < 0.001). The parameters yielded 
sensitivity rates ranging from 50.0% (liver SUVmean) to 
100% (HH15), specificity rates ranging from 42.0% (liver 

Table 2   Clinical characteristics 
of patients in the low and high 
liver damage groups

HCC hepatocellular carcinoma

Characteristic Low liver damage High liver damage Total p value

Number 100 28 128
Age range (median) 39–90 (73) 54–82 (69) 0.054
Sex 0.62
 Male 77 20 97
 Female 23 8 31

Background liver disease 0.005
 Hepatitis B 27 0 27
 Hepatitis C 19 5 24
 Non B, Non C 54 23 77

Histology 0.88
 HCC 92 26 118
 Others 8 2 10

Table 3   Comparison of HH15, LHL15 and SUV-related parameters between patients with low and high liver damage

SUV standardized uptake value, SUVmax maximum SUV, MLV metabolic liver volume, TL GSA total lesion [99mTc]GSA uptake, IQR interquar-
tile range
a The clearance index, HH15, was calculated as the heart ROI count at 15 min/heart ROI count at 3 min
b The receptor index, LHL15, was calculated as the liver region of interest (ROI) count at 15 min/(liver ROI count + heart ROI count at 15 min)

Low liver damage (n = 100) High liver damage (n = 28) p value

Median IQR Range Median IQR Range

HH15a 0.59 0.56–0.63 0.46–0.75 0.70 0.66–0.75 0.63–0.85 < 0.001
LHL15b 0.92 0.89–0.93 0.79–0.97 0.85 0.81–0.87 0.72–0.91 < 0.001
Liver SUVmax 57.3 51.6–64.7 29.1–105.5 53.7 44.0–59.1 22.4–84.5 0.016
Liver SUVmean 37.3 33.9–42.1 19.9–57.7 33.2 28.1–38.7 15.4–44.2 0.005
MLV (cm3) 897.7 782.5–1006.3 547.9–1429.3 881.6 648.6–1008.5 524.6–1808.7 0.31
TL GSA 34176.3 28406.7–41204.3 182923.4–400096.7 27871.0 21509.8–34703.3 16035.2–46612.1 0.001
Heart SUVmax 5.4 4.3–6.7 2.5–11.0 8.1 7.4–8.7 5.8–14.7 < 0.001
SUVmax ratio 10.9 8.8–13.3 5.4–32.5 6.6 5.3–7.5 2.6–9.7 < 0.001
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SUVmax) to 89% (heart SUVmax) and accuracy rates of 
51.6% (SUVmax) to 87.5% (heart SUVmax) for predicting 
high liver damage. The representative 99mTc-GSA SPECT/
CT images of low and high liver damages were shown in 
Figs. 1 and 2, respectively.

The AUCs of the HH15, LHL15, heart SUVmax and 
SUVmax ratio were significantly higher than those of the 
liver SUVmax, liver SUVmean and TL GSA (p < 0.05 for 
all). No significant differences in the AUCs was observed 
between other pairs of 7 parameters (p ≥ 0.05 each).

Prediction of high liver damage using machine 
learning (Table 5)

On the model without feature selection, the 12 features 
including 4 clinical and 8 quantitative 99mTc-GSA features 
were used as the input data. The AUC of each classifier for 
predicting high liver damage in the absence of a PCA was 
0.904 for SVM (p < 0.001) and 0.939 for RF (p < 0.001). No 
significant differences in the AUCs were observed between 
SVM and RF (p ≥ 0.05 each). The sensitivity, specific-
ity and accuracy were 92.9%, 73.0% and 77.3% for SVM, 
and 92.9%, 85.0% and 86.7% for RF, respectively. On the 
other hand, the AUC of each classifier for predicting high 
liver damage in the presence of a PCA was 0.839 for SVM 
(p < 0.001) and 0.896 for RF (p < 0.001). No significant dif-
ferences in the AUCs were observed between SVM and RF 
(p ≥ 0.05 each). The sensitivity, specificity and accuracy 

were 78.6%, 84.0% and 82.8% for SVM, and 89.3%, 78.0% 
and 80.4% for RF, respectively.

On the model with feature selection, the following 5 best 
features which were ranked using the decrease in Gini impu-
rity (Supplemental Table 1) were used as the input data; 
Heart SUVmax, SUVmax ratio, LHL15, HH15, and back-
ground liver disease. The AUC of each classifier for predict-
ing high liver damage in the absence of a PCA was 0.942 for 
SVM (p < 0.001) and 0.933 for RF (p < 0.001). No signifi-
cant differences in the AUCs were observed between SVM 
and RF (p ≥ 0.05 each). The sensitivity, specificity and accu-
racy were 89.3%, 89.0% and 89.1% for SVM, and 92.9%, 
85.0% and 86.7% for RF, respectively. On the other hand, 
the AUC of each classifier for predicting high liver damage 
in the presence of a PCA was 0.945 for SVM (p < 0.001) 
and 0.956 for RF (p < 0.001). No significant differences in 
the AUCs were observed between SVM and RF (p ≥ 0.05 
each). The sensitivity, specificity and accuracy were 85.7%, 
91.0% and 89.8% for SVM, and 96.3%, 90.0% and 91.4% 
for RF, respectively.

On both models with or without feature selections, 
we did not observe significant differences in the AUCs 
between each classifier and four of the quantitative 99mTc-
GSA parameters (HH15, LHL15, heart SUVmax and SUV-
max ratio; p ≥ 0.05). No significant differences were also 
observed either absence or presence of the PCA. However, 
the AUC of each classifier was significantly higher than 
that of the remaining three parameters (liver SUVmax, liver 
SUVmean and TL GSA; p < 0.05) on both model with or 

Table 4   The abilities of HH15, LHL15 and SUV-related parameters to predict high liver damage

SUV standardized uptake value, SUVmax maximum SUV, MLV metabolic liver volume, TL GSA total lesion [99mTc]GSA uptake, AUC​ area 
under the ROC curve
a The clearance index, HH15, was calculated as the heart ROI count at 15 min/heart ROI count at 3 min
b The receptor index, LHL15, was calculated as the liver region of interest (ROI) count at 15 min/(liver ROI count + heart ROI count at 15 min)
c 95% confidence interval

Index Cut off value Sensitivity (%) Specificity (%) Accuracy (%) AUC​ p value

HH15a > 0.62 100 (28/28)
87.7–100c

75.0 (75/100)
65.3–83.1c

80.4 (103/128)
72.5–86.9c

0.930
0.871–0.967c

< 0.001

LHL15b < 0.88 85.7 (24/28)
67.3–96.0c

86.0 (86/100)
77.6–92.1c

85.9 (110/128)
78.7–91.4c

0.909
0.846–0.953c

< 0.001

Liver SUVmax < 60.2 85.7 (24/28)
67.3–96.0c

42.0 (42/100)
32.3–52.3c

51.6 (66/128)
42.6–60.5c

0.650
0.561–0.732c

0.012

Liver SUVmean < 32.9 50.0 (14/28)
30.6–69.4c

80.0 (80/100)
70.8–87.3c

73.4 (94/128)
64.9–80.9c

0.673
0.584–0.753c

0.004

MLV < 652.4 28.6 (8/28)
13.2–48.7c

92.0 (92/100)
84.8–96.5c

78.1 (100/128)
70.0–84.9c

0.563
0.472–0.650c

0.36

TL GSA < 29388.9 64.3 (18/28)
44.1–81.4c

72.0 (72/100)
62.1–80.5c

70.3 (90/128)
61.6–78.1c

0.713
0.627–0.790c

0.001

Heart SUVmax > 7.4 82.1 (23/28)
63.1–93.9c

89.0 (89/100)
81.2–94.4c

87.5 (112/128)
80.5–92.7c

0.894
0.828–0.942c

< 0.001

SUVmax ratio < 7.75 82.1 (23/28)
63.1–93.9c

87.0 (87/100)
78.8–92.9c

85.9 (110/128)
78.7–91.4c

0.917
0.855–0.959c

< 0.001
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without feature selections, and these significances were also 
observed either absence or presence of the PCA. The RF 
with 5 selected features and PCA model obtained the best 
performance for predicting high liver damage (AUC = 0.956, 
sensitivity = 96.3%, specificity = 90.0%, accuracy = 91.4%).

Discussion

Although the LHL15 and HH15 are the most common 
parameters used in liver function assessments, these indices 
are calculated from planar images and do not provide suf-
ficient anatomical information to enable an accurate assess-
ment [7]. SPECT/CT generates image voxels in units of 

radioactivity per volume (i.e., kBq/ml) based on the results 
of an algorithm of the CT-based attenuation correction and 
scatter correction [31]. This technique differs from previ-
ous nuclear imaging techniques such as planar scintigraphy, 
SPECT or non-quantitative SPECT/CT, which generate 
imaging units in counts per second. Quantitative SPECT/
CT allows the normalization of lesion radioactivity with 
respect to the injected radioactivity and thus yields quan-
titative parameter values such as the SUV [32, 33]. In this 
context, we evaluated the utility of an SUV-related 99mTc-
GSA SPECT/CT analysis of liver function. To our knowl-
edge, only one other report has discussed the use of the SUV 
obtained during 99mTc-GSA SPECT/CT to evaluate liver 

Fig. 1   A 74-year-old male patient with hepatocellular carcinoma 
(HCC) and low liver damage. An early-phase enhanced computed 
tomography (CT) image (a) shows enhancement of the HCC. A 
99mTc-GSA planar image (b) obtained 15 minutes after the injection 
of 99mTc-GSA shows hepatic uptake but no retention of 99mTc-GSA 
in the cardiac blood pool. A 99mTc-GSA SPECT/CT image (c) reveals 
homogeneous 99mTc-GSA uptake in the liver. The receptor index 

(LHL15), clearance index (HH15), liver maximum standardized 
uptake value (SUVmax), liver SUVmean, metabolic liver volume 
(MLV), total lesion 99mTc-GSA uptake (TL GSA), heart SUVmax and 
SUVmax ratio were 0.54, 0.95, 77.1, 46.76, 799.1 cm3, 37364.5, 4.3 
and 17.76, respectively. All parameters failed to meet the threshold 
for high liver damage, and the patient underwent liver resection to 
treat HCC

Fig. 2   A 58-year-old female patient with hepatocellular carcinoma 
(HCC) and high liver damage (Damage type C). A 99mTc-GSA pla-
nar image (a) obtained 15 minutes after the injection of 99mTc-GSA 
depicts the retention of 99mTc-GSA in the cardiac blood pool with 
hepatic and splenic uptake. The 99mTc-GSA single photon emission 
computed tomography (SPECT)/computed tomography (CT) image 
(b) shows heterogeneous 99mTc-GSA uptake in the liver. The recep-
tor index (LHL15), clearance index (HH15), liver maximum stand-

ardized uptake value (SUVmax), liver SUVmean, metabolic liver 
volume (MLV), total lesion 99mTc-GSA uptake (TL GSA), heart 
SUVmax and SUVmax ratio were 0.72, 0.85, 55.2, 35.0, 567.9 cm3, 
19888.7, 14.05 and 3.93, respectively. All these parameters except 
for liver SUVmean met the respective thresholds for high liver dam-
age. CT hepatic arteriography (c) shows the enhanced tumors, and the 
patient underwent transcatheter arterial chemoembolization (TACE) 
to treat HCC
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fibrosis [14], and the authors reported that the SUVmean 
was a highly accurate predictor of severe liver fibrosis.

In our study, patients with high liver damage had a sig-
nificantly lower LHL15, liver SUVmax, liver SUVmean, TL 
GSA and SUVmax ratio and a significantly higher HH15 and 
heart SUVmax than patients with low liver damage. Three 
indices (HH15, LHL15 and SUVmax ratio) yielded a high 
AUC (> 0.90), while the heart SUVmax most accurately dif-
ferentiated between low and high liver damage. These results 
suggest that in addition to the previously reported quantita-
tive parameters HH15 and LHL15, SUV-related parameters 
derived via 99mTc-GSA SPECT/CT can be used to evaluate 
liver function. One advantage of the SUVmax over previ-
ously reported quantitative analyses is the ease of calcula-
tion, as this value can be determined by simply placing a 
VOI within the liver or heart without introducing inter- or 
intra-observer variability.

Some recent studies have proposed classification meth-
ods based on machine learning approaches such as SVM 
and RF [17–19]. SVM is commonly considered superior 
for classification, as it provides optimal results based on 
existing information [34]. RF is a very effective model-
free approach in terms of feature screening and classifica-
tion [26]. Sakai et al. examined the usefulness of a machine 
learning approach by using the radiomics features of digi-
tal breast tomosynthesis to automatically classify benign 
and malignant breast lesions. In that study, the adoption of 
SVM as a classifier yielded the highest classification per-
formance (AUC = 0.798) [35]. Ahn et al. used a machine 
learning approach to examine the prognostic value of FDG-
PET-based radiomics in patients with non-small cell lung 
cancer; in that study, the RF model best predicted disease 
recurrence (AUC = 0.956) [18]. Rajula et al. [36] reviewed 
the difference between machine learning and conventional 
statistical method in healthcare, and reported that one main 
difference between machine learning and conventional sta-
tistical method lies in their purposes, and machine learning 
is focused on making predictions as accurate as possible, 
while conventional statistical models are aimed at inferring 
relationships between variables. They also reported that the 
benefits of machine learning comprise flexibility and scal-
ability compared with conventional statistical approaches, 
which make it deployable for several tasks, such as diagnosis 
and classification. To our knowledge, however, no study has 
previously investigated the efficacy of a quantitative analy-
sis of 99mTc-GSA SPECT/CT data via a machine learning 
approach for the assessment of liver function.

In our study, the adoption of RF with 5 selected features 
and PCA model yielded the best liver damage classifica-
tion performance, although no significant differences were 
observed between the AUCs of each classifier and four 
quantitative 99mTc-GSA parameters (HH15, LHL15, heart 

SUVmax and SUVmax ratio; p ≥ 0.05 for all). Even though 
these four quantitative 99mTc-GSA parameters showed high 
diagnostic performance for discriminating between low and 
high liver damage, it might be difficult to correctly classify 
low and high liver damage by using only one each param-
eter. Machine learning algorithms have the ability to analyze 
various data types (for instance, imaging data and laboratory 
findings) and integrate them into predictions for diagnosis 
[37], and our findings indicate that the machine learning 
approach with combining information on clinical and quan-
titative 99mTc-GSA features has the potential to correctly 
predict the liver function.

This study had some limitations that warrant discus-
sion. First, this was a retrospective study with a relatively 
small sample, and case-selection bias was unavoidable. 
Our patient population included only a few patients with 
high liver damage because those with severe dysfunction 
do not usually receive 99mTc-GSA SPECT/CT evaluations, 
when therapeutic surgeries or liver tumor interventions are 
considered. Stratified sampling was used to overcome these 
imbalanced data, and cross-validation, feature selection and 
PCA were performed to minimize the negative influence of 
overfitting in this study. Although internal validation showed 
high diagnostic performance in RF with selected features 
and PCA model, the lack of external validation limits the 
generalizability of our result. Thus, a training/test scheme, 
which would require a large number of samples, would be 
preferable for the validation of classifiers, and a prospective 
study of a much larger population with external validation 
test is needed to validate and confirm our findings. Second, 
we did not examine the relationship between the post-thera-
peutic liver function and pretreatment 99mTc-GSA SPECT/
CT parameters due to differences in the treatment proce-
dures. A follow-up study is needed to assess the predictive 
value of the machine learning approach based on 99mTc-GSA 
SPECT/CT with respect to clinical outcomes.

In conclusion, a machine learning approach based on 
clinical and quantitative 99mTc-GSA SPECT/CT parameters 
might be useful for predicting liver function.
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