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Abstract
Purpose  Differentiating renal tumours into grades and tumour subtype from medical imaging is important for patient man-
agement; however, there is an element of subjectivity when performed qualitatively. Quantitative analysis such as radiomics 
may provide a more objective approach. The purpose of this article is to systematically review the literature on computed 
tomography (CT) radiomics for grading and differentiating renal tumour subtypes. An educational perspective will also be 
provided.
Methods  The Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist was followed. PubMed, 
Scopus and Web of Science were searched for relevant articles. The quality of each study was assessed using the Radiomic 
Quality Score (RQS).
Results  13 studies were found. The main outcomes were prediction of pathological grade and differentiating between renal 
tumour types, measured as area under the curve (AUC) for either the receiver operator curve or precision recall curve. 
Features extracted to predict pathological grade or tumour subtype included shape, intensity, texture and wavelet (a type of 
higher order feature). Four studies differentiated between low-grade and high-grade clear cell renal cell cancer (RCC) with 
good performance (AUC = 0.82–0.978). One other study differentiated low- and high-grade chromophobe with AUC = 0.84. 
Finally, eight studies used radiomics to differentiate between tumour types such as clear cell RCC, fat-poor angiomyolipoma, 
papillary RCC, chromophobe RCC and renal oncocytoma with high levels of performance (AUC 0.82–0.96).
Conclusion  Renal tumours can be pathologically classified using CT-based radiomics with good performance. The main 
radiomic feature used for tumour differentiation was texture. Fuhrman was the most common pathologic grading system 
used in the reviewed studies. Renal tumour grading studies should be extended beyond clear cell RCC and chromophobe 
RCC. Further research with larger prospective studies, performed in the clinical setting, across multiple institutions would 
help with clinical translation to the radiologist’s workstation.
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Introduction

The rapid development of computational analysis for radio-
logical images represents a major change from conventional 
visual interpretation. Radiological images are a rich source 
of quantitative data [1]. Quantitative analysis of images has 
given rise to the field of radiomics which has resulted in an 

increasing interest in its potential use in a clinical setting, 
for example, radiomic application to tumour characterisa-
tion (e.g. grading and differentiation) and clinical prediction 
(e.g. survival) [1–5]. Computational analysis based on data 
extraction and modelling can detect features within radio-
logical images that are not readily apparent to the human 
eye. By identifying characteristics such as shape, intensity 
and texture in heterogeneous volumes of interest (VOI), radi-
omic-based computational analysis may be a successful tool 
for radiologists to detect, differentiate and grade tumours and 
other pathologies.

Radiomic analysis begins with the acquisition of the 
image. Patients’ images are acquired during standard-
of-care procedures such as contrast-enhanced computed 
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tomography (CT). The images are processed to transform 
them into quantitative data for data mining. This occurs in 
an ordered sequence of events. First, the image is segmented 
into a volume of interest [1]. This may be achieved manually 
whereby trained personnel draw regions of interest (ROI) 
around tumours on each CT slice. Alternatively, there are 
various automated techniques to segment tumours—convo-
lutional neural networks being the most well known [6]. This 
is a machine learning (ML) model biologically inspired by 
the human visual cortex. Second, features are extracted from 
each segmented image. Features include the shape (geo-
metric parameters) of the tumour, 1st order features (inten-
sity of voxels) and 2nd order features (texture of the voxel 
habitat—i.e. how voxels relate to each other). Higher order 
features (such as fractals and wavelet transformations) are 
also prevalent within the literature in areas such as glioma 
radiomic analysis [7].

Redundant features are removed once radiomic  data 
has been extracted. The feature selected data can be used 
to predict tumour characteristics or clinical sequelae using 
an algorithm developed through ML. In simple terms, ML 
is a form of artificial intelligence which involves training a 
model to recognise features within a dataset. This model is 
then tested and validated on ‘testing’ and validation’ data-
sets. Various ML models have been developed such as the 
convolutional neural network [8] whilst others are formed 
in a tree-like structure such as the decision tree [9]. ML 
algorithms are first applied to a training dataset. The trained 
model is applied to the testing/validation dataset for verifica-
tion. Once verified, the trained model can be applied to the 
target image for the pathology of interest to be classified. 
The model’s sensitivity and specificity may be determined 
by, producing a receiver operator or precision recall curve 
and its associated area under the curve (AUC). Clinical 

outcomes such as survival can also be predicted with an 
associated correlation coefficient [10]. The basic steps of 
a radiomic model for renal tumours are detailed in Fig. 1.

Renal tumours represent a growing interest in radiomic 
analysis. There are over 400,000 new cases of renal cancer 
diagnosed globally each year [11]. Predicting tumour grade 
and subtype prior to a histological diagnosis may guide treat-
ment decisions and aid in prognostication [12–14]. Research 
in radiomics has been done to pathologically grade renal 
tumours through imaging before formal histological analy-
sis. The radiomic literature reports a number of models able 
to successfully differentiate between renal tumours such as 
non-clear cell renal carcinoma (non-clear cell RCC), clear 
cell renal carcinoma (clear cell RCC) and angiomyolipoma 
(AML) which have different clinical sequelae [15–17].

This study will aim to systematically review the literature 
on CT radiomics to differentiate renal tumours by (1) pre-
dicting pathological grade and (2) differentiating between 
tumour subtypes. CT imaging was identified as the most 
commonly used modality for incidentally detecting renal 
tumours. If this imaging can be utilised for initial tumour 
characterisation [18] then perhaps further imaging may be 
avoided; this will benefit the patient and reduce the demand 
on busy clinical departments. Results will be presented in 
combination with the discussion to facilitate an educational 
approach.

Methods

A systematic review was performed in accordance with 
the Preferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA) checklist [19]. Search terms 
were developed from pilot searches of the literature and 

Fig. 1   CT Radiomic Analysis Pipeline for Renal Tumours: The CT 
image is manually or automatically segmented to identify volumes of 
interest (in this case normal kidney—red; and tumour—green). Data 
from the volume are extracted for shape, 1st order (intensity), 2nd 

order (texture), and higher order features (not pictured). Four exam-
ples are given in the diagram. These are feature selected. The out-
puts are then run through a ML model, and a receiver operator curve 
(ROC) is generated with an area under the curve (AUC)
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the PICO (population, intervention, comparison, outcome) 
framework. Studies of interest involved patients with renal 
tumours which were either graded or differentiated using 
CT radiomics with the prediction confirmed by histology. 
The main outcomes of interest were classification of patho-
logical grade and renal tumour types with sensitivity and 
specificity of the model measured by the area under the 
curve (AUC) from the receiver operator or precision recall 
curve. PubMed, Scopus and Web of Science databases were 
searched. The search string was: (renal OR kidney) AND (CT 
OR "computed tomography") AND radiomic*

Study selection and extraction

Studies were included if they were journal articles that 
reported: (1) grading or differentiating renal tumour subtypes 
using radiomic features with ML, (2) adequate information 
for extraction of pipeline characteristics such as imaging 
acquisition parameters, segmentation method, features used, 
ML model and classification of results against histology as 
the ‘gold standard’ (such as total/partial nephrectomy or core 
biopsy), (3) reported an AUC (area under the curve) above 
0.8 from a receiver operator or precision recall curve. The 
associated confidence interval was reported where available. 
Exclusion criteria were (1) reviews, abstracts, books, opin-
ion articles, (2) non-English articles. Data was extracted by 
the authors A.B., M.I. and C.S. In addition to AUC, infor-
mation on segmentation techniques and radiomic features 
used to grade and differentiate the renal tumours were also 
extracted. The search was last performed on 09 July,2020.

Data synthesis

The analysis of multiple radiomic pipelines is difficult given 
their heterogeneity. Features, feature selection method, and 
ML models differed between the studies; therefore, a meta-
analysis was not performed.

Quality assessment

The Radiomic Quality Score (RQS) was applied to assess 
quality. It is a radiomic-specific scoring system and is based 
on the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis OR Diagnosis (TRIPOD) 
initiative which has a set of recommendations for predictive 
models [20].

Results and discussion

The literature search found 49 articles from PubMed, 67 
from Scopus, and 72 from Web of Science and 21 from the 
hand search. This gave a total of 209 articles. However, once 

duplicates were removed 125 articles remained. Titles and 
abstracts were screened for relevance leaving 24 articles. 
Full texts were reviewed, 1 article was non-English lan-
guage, 3 articles did not fit our inclusion criteria of having 
an AUC > 0.8, and 7 articles did not report an AUC. The 
results from the thirteen remaining papers are discussed in 
order of the radiomic pipeline steps, namely image acquisi-
tion, segmentation, radiomic features, and machine learning 
used to grade and differentiate between renal tumours.

Image acquisition

The acquisition parameters of images used in radiomic 
feature extraction are detailed in Table 1. Slice thickness 
ranged from 1 to 8 mm, voltage between 120 and 140 kVp, 
phases included the unenhanced phase (UP), corticomedul-
lary phase (CMP), nephrogenic phase (NP), portal venous 
phase (PVP), and excretory phase (EP). One study used only 
unenhanced scans [21]. The amount of contrast injected was 
between 70 and 150 mL, and the rates were between 3 and 
4.5 mL/s. Iodinated contrast used in the studies were Iover-
sol, Iopamidol, and Iohexol. Three studies [22–24] did not 
report the type of contrast used.

Segmentations of renal tumours

Segmentation methods are detailed in Table 2. All thirteen 
studies utilised manual components for segmentation to 
achieve their first step in the radiomics pipeline (See Fig. 1). 
To avoid partial volume effect, segmentations were done 
1–3 mm inside the tumour margin [2, 22, 25, 27–30] in some 
studies and skipping slices in the superior and inferior poles 
[2, 25, 27]. Others tended to incorporate the whole tumour 
slice during segmentation [16, 21, 24] without segmenting 
inside the tumour margin. Two studies used a single-slice 
axial ROI and texture radiomics which classified renal sub-
type [24] and grade [26] (AUC = 0.90 and with AUC = 0.91, 
respectively).

Manual segmentation is sub-optimal due to operator 
subjectivity and its time-consuming nature. Accurate and 
reliable automated tissue segmentation software should be 
developed and clinically validated as it will provide greater 
efficiency in the radiomic pathway [31]. As a response to 
the lack of automated segmentation, the Medical Imaging 
Computing and Computer Assisted Intervention (MIC-
CAI) society developed the KiTS19 (Kidney Tumour 
Segmentation) Grand Challenge where scientists compete 
using algorithms to automate the segmentation of kidney 
tumours. The KiTS19 challenge is associated with a sin-
gle institution-derived database which is freely available on 
GitHub (https​://githu​b.com/nehel​ler/kits1​9). It contains arte-
rial phase abdominal CT scans of kidney tumour patients. 
The manual segmentations were done by medical students 

https://github.com/neheller/kits19
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Table 1   CT acquisition parameters for images used in radiomic feature extraction to differentiate renal tumours

Author and 
year

kVp, mA Slice thickness 
(mm)

Preprocessing Phase/s Time of phase 
post-IV contrast  
injection (s)

Amount of IV 
contrast

Rate of injec-
tion (mL/s)

Type of 
contrast

Grading
 Sun 2019 

[3]
120 kVp, 

tube current 
automatic 
adjustment 
technology

1.25 1 × 1 × 1 cm3 
voxel sizes

CMP 25–30 100 mL 4.5 Iohexol
NP 60–70
EP 120–180

 Shu 2019 
[2]

120 kV 5 Unavailable CMP 25 1.0 mL/kg 3.5 Iopromide
250–400 mA NP 70

 Lin 2019 
[25]

Unavailable 1 or 3 0.625 × 0.625 
mm2 pixel 
size

UP 30 70-100 mL 3 Iopamidol, 
IohexolCMP 90

NP
 Bektas 2019 

[22]
120 kVp 1–2 0.3 × 0.3 mm2 

pixel size
PVP 60 2 mL/kg, 

max = 150 mL
Unavailable Unavailable

100–500 mA ± 3 sigma 
technique 
for signal 
intensity

 Schieda 
2018 [21]

120 kVp Axial: 2.5–5 Unavailable N/A— 
unen 
hanced CT

N/A—unen-
hanced CT

N/A— 
unenhanced  
CT

N/A—unen-
hanced CT

N/A—unen-
hanced CT100–500 mA Coronal and 

sagittal:  
2.5–3

Subtype differentiation
 Yang 2020 

[24]
120–140 kVp Unavailable Unavailable UP Unavailable Unavailable Unavailable Unavailable
mA unavail 

able CMP
NP
EP

 Sun 2020 
[26]

120 kVp 1.5 Unavailable CMP 10 s after  
100HU thresh-
old in suprace-
liac abdominal 
aorta

1.5 mL/kg 3 Iopromide
180 mA (90–120 mL)

NP 40 s after CMP

 Ma 2020 
[27]

120 kVp 5 Unavailable CMP 15 90–100 mL 3 Iopromide
200 mA

NP 30
100HU  

threshold in 
coeliac artery

 Erdim 2020 
[28]

120 kVp Between 1 
and 3

1 × 1 mm2  
pixel size

UP Unavailable 1-2 mL/kg Unavailable Non-ionic 
contrast

100–500 mA  ± 3 sigma 
technique 
for signal 
intensity

CMP

grey-level dis-
cretisation  
(64 discrete 
grey levels)
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under the guidance of a urological surgeon. A total of 210 
lesions were used for the training set, and 90 of the lesions 
were used for the testing set. Clinical information associated 
with the images was also available and includes the type of 
surgery, risk factors for renal cancer, comprehensive clinical 
outcomes and histological characteristics [32]. Segmentation 

consistency between automated and manual for the chal-
lenge is described using the Dice-Sorensen coefficient 
(DSC) which lies between 0 and 1. A perfect consistency 
equalled 1, whilst 0 equalled no consistency.

The first and second place winners of the MICCAI 
KiTS19 challenge both used the U-Net segmentation method 

Table 1   (continued)

Author and 
year

kVp, mA Slice thickness 
(mm)

Preprocessing Phase/s Time of phase 
post-IV contrast  
injection (s)

Amount of IV 
contrast

Rate of injec-
tion (mL/s)

Type of 
contrast

 Cui 2019 
[29]

Unavailable 1 or 3 Resolution of 
512 × 512

CMP 30 70–100 mL 3 Iopamidol

0625 × 0.625 
mm2 pixel 
size

NP 90

 Li 2019 [23] 120 kVp 5–8 Unavailable CMP 30–200 Unavailable 3 Unavailable
mA unavail 

able NP

 Feng 2018 
[30]

120 kVp 5 Unavailable CMP 30 90 3 Iohexol
200 mA NP 90

 Yu 2017 
[16]

120 kVp 1.25 Unavailable PVP 70 100 3 Ioversol, 
Iopamidol200–650 mA

kVp kilovoltage peak, mA milliamps, UP unenhanced phase, CMP corticomedullary phase, NP nephrogenic phase, EP excretory phase, PVP 
portal venous phase

Table 2   Segmentation methods to grade and differentiate subtypes in renal tumours

IV intravenous, ROI region of interest, UP unenhanced phase, CMP corticomedullary phase, NP nephrogenic phase, EP excretory phase

Author and year Segmentation method

Grading
 Sun 2019 [3] Manually selecting the largest axial ROI
 Shu 2019 [2] Manual delineation of contiguous slices “slightly within” the borders of the tumour and excluding first and last slices
 Li 2019 [23] Manual segmentation by contiguous slices
 Bektas 2019 [22] Polygonal ROIs 1 mm inside the lesion contour line
 Schieda 2018 [21] Axial ROI in middle of lesion incorporating the outer margin

Axial ROI in between middle and superior pole incorporating the outer margin
Axial ROI in between middle and inferior pole incorporating the outer margin

Differentiation of subtype
 Yang 2020 [24] Largest single-slice axial ROI on CMP first, then UP, NP and EP
 Sun 2020 [26] Semi-automated: manual ROI with perilesional normal tissue then a dichotomous classification algorithm to sepa-

rate from perilesional normal tissue and then manually outlining the contour of the tumour to give a whole tumour 
segmentation

 Ma 2020 [30] Manual segmentation by contiguous slices 2–3 mm inside the visible tumour margin for the whole tumour excluding 
first and last slices

 Erdim 2020 [28] Manual segmentation by contiguous slices 1 mm inside the visible tumour margin
 Cui 2019 [29] Manual segmentation on contiguous slices at 3 mm inside the visible tumour margin
 Lin 2019 [25] Manual segmentation by 10 mm from superior/inferior pole and at 15 mm intervals, 3 mm inside tumour margin
 Feng 2018 [30] Manual segmentation by contiguous slices 2–3 mm from the tumour margin
 Yu 2017 [16] Manual segmentation in 1.25 mm increments on 10 contiguous axial slices in the mid-portion of the tumour
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[33]. This segmentation structure is based on a U-shaped 
computational architecture which “contracts” the image data 
as it propagates downwards and “expands” the data as it 
goes upward forming a U. The KiTS19 challenge included 
segmentations performed on the kidney, the tumour and the 
composite of both. The winning team’s U-Net segmentation 
method had DSC values for the tumour: 0.85, kidney: 0.97 
and kidney plus tumour composite: 0.90 [17]. Development 
of automated segmentation methods would help improve 
efficiency. The studies to date have incorporated manual 
steps in segmentation.

Radiomic features

Texture-type features were the most frequently used radi-
omic feature in the studies from this systematic review [3, 
16, 21–30]. Table 3 reports texture features used in differen-
tiating renal tumours from this search. Other radiomic fea-
tures utilised include shape, intensity and wavelet (higher 
order) features. We provide definitions for each texture fea-
ture for understanding. Texture features used were grey-level 
co-occurrence matrix (GLCM) and grey-level run length 
matrix (GLRLM), followed by grey-level difference matrix 
(GLDM), grey-level size zone matrix (GLSZM), autore-
gressive model, neighbouring grey-tone difference matrix 
(NGTDM) and gradient. Feature extraction should also 
occur on common image quality parameters for generalised 
use across multi-institutional contexts.

Application of machine learning

Support vector machine (SVM) models were the most com-
mon method of differentiating renal tumours using CT radi-
omics [2, 3, 16, 22–24, 29, 30]. SVM models involve sepa-
rating data values into a binary classification system (i.e. 

voxels belonging to either healthy tissue or tumour) using 
a hyperplane constructed by the ML process. The hyper-
plane is constructed with the widest margins between the 
two datasets. Figure 2 demonstrates a linear SVM model. 
It illustrates how the hyperplane is represented by a linear 
function that separates the blue values from the red values. 
The values that lie on the margins of the hyperplane are the 
support vectors—from which the name is derived. Other ML 
models used were logistic regression [21, 27], decision tree 
[25] and random forest [28].

Table 3   Radiomic texture features used in differentiating renal tumours

GLCM grey-level co-occurrence matrix, GLRLM grey-level run length matrix, GLDM grey-level difference matrix, GLSZM grey-level size zone 
matrix, NGTDM neighbouring grey-tone difference matrix

Radiomic texture features Description [19] References

Gradient Distortion of texture moving away from a particular point [16]
GLCM How two voxels in an image are dependent on each other within that image [2, 3, 16, 21–23, 25–29]
GLDM Assesses grey-level dependencies within an image. A grey-level dependency is defined as 

the number of voxels in connection within a certain distance
[24, 28]

GLRLM Assesses grey-level runs. These are the length in number of voxels, of consecutive voxels 
that have an equal grey-level value

[2, 3, 16, 21–27]

GLSZM Assesses grey-level zones within an image. A grey-level zone is defined as the number of 
connected voxels that share the same grey-level intensity

[2, 23–25, 28]

NGTM Assesses the difference between grey value of a particular voxel and average grey values of 
its neighbours

[24, 28]

Autoregressive model A random process that gives an output variable that is linearly dependent on its previous 
values

[22, 27]

Fig. 2   Support Vector Machine: Schematic representation of a lin-
ear SVM. The red dots represent voxels belonging to tumour, and 
the blue dots are voxels from healthy tissue. These are separated by 
a hyperplane. Machine learning is used to construct the hyperplane, 
with the goal being maximal separation between tumour and healthy 
tissue voxels. Data points on the margins of separation are the support 
vectors
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Grading and differentiating

Table 4 below shows articles found from the systematic 
review that graded tumours as high-grade and low-grade 
tumours using radiomic features. To be included in the table, 
the study had to directly compare two grade categories (high 
or low) and report an AUC. Three grading systems were 
used—the Fuhrman (I-IV), International Society of Urologi-
cal Pathology (ISUP) grade (I-IV) or Paner system. High-
grade tumours were defined as being Fuhrman III–IV, ISUP 
III-IV, Paner system 2 or 3 out of 3 [34]. Low-grade tumours 
were Fuhrman I–II, ISUP I–II, Paner system: 1 out of 3 [34]. 
Only studies with AUCs above 0.8 were included.

Studies that graded tumours with an AUC > 0.8 dealt 
with clear cell RCCs apart from one study on chromophobe 
RCCs [21]. The most accurate predictor was using the multi-
layer perceptron (MLP) ML model on texture features to 
discriminate between high- (III–IV) and low-grade (I–II) 
clear cell RCCs using the ISUP system (AUC = 0.978) [2]. 
The most accurate discriminator between high and low-
grade renal tumours using the Fuhrman grading system was 
achieved by decision tree ML model and texture features 
(AUC = 0.87) [25]. Other Fuhrman grading pipelines include 
SVM with texture features, wavelet features and PVP CT 
(AUC = 0.869) [22] and SVM with shape, intensity and 
texture features achieving an AUC = 0.822 [25]. Schieda 
et al. 2018 [21] proposed another type of grading system by 
Paner [34], and an AUC = 0.84 was achieved using logistic 

regression and texture features for chromophobe RCC. CT 
contrast phases may influence the radiomic analysis for dif-
ferentiating high-grade and low-grade clear cell RCC. Lin 
et al. 2019 [25] showed that ML with radiomics achieved an 
AUC = 0.87 based on three-phase CT (precontrast, nephro-
genic and corticomedullary) and was superior to solely just 
using UP, CMP, NP individually on CT.

The ISUP grading system has been used in the top radi-
omic pipeline [26]. The ISUP grading system has been pro-
posed to account for deficiencies in the Fuhrman grading 
system. The Fuhrman system is more complex and involves 
three parameters: nuclear size, shape and nucleolar promi-
nence, without clarity on how to weigh conflicting informa-
tion between them, leading to interpretation errors and poor 
to moderate inter-observer reproducibility. The ISUP grad-
ing system is based on the assumption that nucleolar grade 
alone is sufficient for grading clear cell and papillary RCC, 
which was shown to result in higher inter-observer consist-
ency [35]. Given the ease of use, potential less inter-observer 
variability and higher classification in renal radiomics it may 
be pertinent that more studies use the ISUP grading system.

The main findings of studies that address differentia-
tion of renal tumour types are summarised in Table 5. Only 
those studies that used radiomic features and reported an 
AUC > 0.8 were included in the table.

Differentiation between malignant and benign renal 
tumours is important for clinical decision-making regard-
ing invasive procedures [4]. Benign (oncocytoma and 

Table 4   Grading renal tumours using CT radiomics

ISUP International Society of Urologic Pathologists, LASSO least absolute shrinkage and selection operator, UP unenhanced phase, CMP corti-
comedullary phase, NP nephrogenic phase, AUC​ area under the curve, MLP multi-layer perceptron

Author and year Grading system Number of lesions (n) Radiomic features and 
selection method

ML model and classification results Histopathology 
specimen type

Sun 2019 [3] ISUP (I–II) versus ISUP 
(III–IV)

Clear cell RCCs = 227 Intensity SVM classified between grades with an 
AUC = 0.91 (95%CI: 0.65–0.99) from CMP 
and NP

Nephrectomy
Texture
Wavelet
LASSO

Shu 2019 [2] ISUP (I–II) versus ISUP 
(III–IV)

Clear cell RCCs = 260 Shape MLP classified between grades with an 
AUC = 0.978 (95%CI: 0.957–0.995) from  
CMP and NP

Nephrectomy
Intensity
Texture
LASSO

Lin 2019 [25] Fuhrman (I–II) versus 
Fuhrman (III–IV)

Clear cell RCCs = 232 Shape Decision tree ML model classified between  
grades with an AUC = 0.87 from UP, CMP and 
NP

Nephrectomy
Intensity
Texture
Unclear feature selection 

method
Bektas 2019 [22] Fuhrman (I–II) versus 

Fuhrman (III–IV)
Clear cell RCCs = 54 Texture SVM classified between grades with an 

AUC = 0.86 from portal venous phase
Nephrectomy

Wavelet
Wrapper-based feature 

selection algorithm
Schieda 2018 [21] High-grade (2 or 3 out  

of 3) and low-grade (1 
out of 3) on system pro-
posed by Paner [34]

Chromophobe RCCs = 37 Texture Logistic regression identified high-grade tumours 
with a maximal AUC = 0.84 from UP

Nephrectomy
Unclear feature selection 

method
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fat-poor AML) versus malignant (clear cell RCC, pap-
illary RCC, chromophobe RCC) differentiation can be 
achieved with an AUC = 0.915 [28]. Difficulty arises in 
differentiating fat-poor AML from RCCs as the RCC may 
be incorrectly suspected due to the lack of macroscopic fat. 
Four studies examined fat-poor AML differentiation [24, 
27, 29, 30] and three in lesions smaller than 4 cm [4, 29, 
30]. The highest classifying pipeline used a combination 
of radiomics and human interpretation [29]. Other stud-
ies found that papillary, chromophobe and clear cell RCC 
can be differentiated from other RCC with an AUC = 0.92, 
0.81 and 0.91, respectively [16]. In addition, chromophobe 
RCC can be differentiated from renal oncocytoma with an 
AUC = 0.964 [27].

Recent research has been performed comparing qualita-
tive interpretation with radiomic ML pipelines. Sun et al. 
[26] compared radiologists’ interpretation of the tumour 
subtype based on clinical experience with radiomic analysis 
using an SVM ML model on textural features of CT scans. 
The study aimed to differentiate among clear cell RCCs, 
primary RCCs, chromophobe RCCs, clear cell RCCs and 
fat-poor AML. The promising finding is that combining 
radiologist and radiomic classification can improve perfor-
mance. For example, for differentiation between fat-poor 
AML and clear cell RCC/renal oncocytoma, radiomics 
showed an accuracy of 61.9%, whilst radiologist accuracy 
ranged from 73.5 to 95.1% [26]. Combining both the radi-
omic model and radiologist interpretation, the study demon-
strated an accuracy of 85.8%. Cui et al. 2019 [29] found that 
fat-poor AML can be differentiated from all other RCC with 
an AUC of 0.96 (accuracy = 87%) on unenhanced phase, 
corticomedullary and nephrogenic phases in lesions < 4 cm. 
In combination with radiologist input this increased to 
an AUC = 0.96 (accuracy = 93%). This radiologist input 
involved scoring the measurement of the attenuation of the 
tumour as compared to the cortex (hypo-, iso-, hyper attenu-
ation, amount of exophytic growth (< 50% and ≥ 50%) and 
homogeneity of the tumour (marked: ≥ 50% heterogeneous 
and mild: < 50% heterogeneous) and completely homog-
enous tumour).

Quality assessment

Figure 3 demonstrates the Radiomic Quality Score [36] 
graphically. The RQS demonstrated a median score of 12/36 
(range: 5/36 -15/36). This was 33.3% (range: 13.9–41.7%) 
of the maximum score. Main deficiencies relevant for inte-
gration into clinical practice were that there were no cost-
effectiveness analyses in all studies, no application of the 
models in a clinical setting and no prospective studies, and 
validation was mainly only done in single institutions—
hence generalisability to other contexts and scanners may 
be an issue. Further large-scale studies are warranted in SV
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multi-institutional settings for further substantiation of 
applicability in clinical settings.

Future directions

Translation of research into the clinical sphere remains 
challenging. Limitations of existing research include a lack 
of prospective data, studies carried out in single centres, 
the need to adapt models to a clinical setting and a lack of 
cost analysis. There is also a need for automation of steps 
such as segmentation. As a stepping stone, it may be benefi-
cial to compare or combine computerised techniques with 
qualitative interpretation. Only two studies in this review 
compared human observers with radiomics, and found 
that together, this improved classification performance 
[26, 37]. Other gaps in the renal tumour CT radiomic lit-
erature include the fact that only one higher order feature 
was examined (wavelet), and grading studies were limited 
mainly to one tumour type (clear cell RCC). Other areas of 
interest include the use of CT radiomics to predict clinical 
outcomes in patient with renal tumours. In lung tumours, 
for example, clinical outcomes such as disease survival [38] 
and overall survival [39] have been reported indicating a 
role for prognostication using radiomics. There have also 
been studies in non-small cell lung cancer to predict the 
absence of distant metastasis [40] and response to neoad-
juvant chemotherapy [41].

Conclusion

CT radiomics shows promise in grading and differentiat-
ing renal tumours. Studies have been performed to differ-
entiate between clear cell RCC, fat-poor angiomyolipoma, 
papillary RCC, chromophobe RCC, renal oncocytoma (RO) 
with AUC ranging from 0.82 to 0.96 in eight studies. The 
renal tumour grading studies focused on clear cell RCC 

(AUC = 0.82–0.978) and chromophobe RCC (AUC = 0.84) 
with further work needing to be done with other renal 
tumour types. Challenges remain to translate radiomic pipe-
lines for use at the radiologist’s workstation.
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