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Abstract
Ovarian cancer remains one of the most lethal gynecological cancers in the world despite extensive progress in the areas of 
chemotherapy and surgery. Many studies have postulated that this is because of the profound heterogeneity that underpins 
response to therapy and prognosis. Standard imaging evaluation using CT or MRI does not take into account this tumoral 
heterogeneity especially in advanced stages with peritoneal carcinomatosis. As such, newly emergent fields in the assessment 
of tumor heterogeneity have been proposed using radiomics to evaluate the whole tumor burden heterogeneity as opposed to 
single biopsy sampling. This review provides an overview of radiomics, radiogenomics, and proteomics and examines the 
use of these newly emergent fields in assessing tumor heterogeneity and its implications in ovarian cancer.
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Introduction

Ovarian cancer remains one of the most lethal gynecological 
cancers in the world with the epithelial subtype accounting 
for more than 90% of all cases and being responsible for the 
vast majority of ovarian cancer-related deaths [1]. Although 
progress has been made through refinements in chemothera-
peutic and surgical approaches, patient survival and prog-
nosis have only improved slightly in the recent years [2–7]. 
Many studies have postulated that this is because the disease 
cannot be defined as a single entity, but rather consists of a 

vast degree of cellular and genomic heterogeneity that dic-
tate response to therapy and prognosis [8–15]. This hetero-
geneity can be divided into inter- and intra-tumoral heteroge-
neity [15, 16]. Inter-tumoral heterogeneity is defined as the 
genotypic and phenotypic variations found between multiple 
tumor implants in the peritoneal cavity while intra-tumoral 
heterogeneity is recognized as the coexistence of different 
cell populations within one single lesion [16]. Two models 
used to explain this inter- and intra-tumoral heterogeneity 
have been proposed based on deep spatial and longitudinal 
DNA sequencing studies of ovarian tumors and matched 
peritoneal implants [17–19]. In linear evolution, distinct 
populations of cells arise in the primary ovarian tumor, from 
which cells then break off to form secondary sites. In parallel 
evolution, both primary ovarian tumors and metastases con-
tinue to evolve, with new populations of metastases arising 
and even reseeding the primary site of metastases (Fig. 1) 
[18].

Next-generation sequencing has documented the genome 
of primary ovarian cancer, identifying potential therapeutic 
targets [20–23]. Far less analysis has been performed on 
peritoneal implants due to the difficulty in accessing meta-
static tissues, therefore a number of important clinical and 
biological queries remain unanswered. The large number of 
peritoneal implants, their accessibility, and their imaging 
presentation mean that analyzing high-grade serous ovarian 
carcinoma (HGSOC) by single biopsy sampling and tradi-
tional imaging tools is extremely challenging. Computed 
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tomography (CT) and, in selected cases magnetic resonance 
imaging (MRI), have been used to evaluate the extent of 
disease and monitor treatment response in patients with 
HGSOC providing mainly an understaging of the disease 
burden [24–31]. Tools to capture the heterogeneity of the 
disease at an imaging level are emerging [32–34]. Imag-
ing research is particularly focused on the field of radiom-
ics [33, 35–39]. Radiomics is defined as the extraction of a 
large level of quantitative data from images which cannot be 
assessed visually [32, 34]. The quantification of heterogene-
ity on imaging in ovarian cancer may offer an opportunity to 
noninvasively evaluate the whole tumor volume, i.e., ovar-
ian tumor and peritoneal implants rather than single biopsy 
evaluation. This would allow better prediction of outcome, 
optimal triage, and the ability to offer the best treatment 
option for every patient [36].

This review provides an overview of radiomics, radiog-
enomics, and proteomics, and examines the use of these 
newly emergent fields in assessing tumor heterogeneity and 
its implications in ovarian cancer.

Ovarian cancer: where are we now in terms 
of imaging?

Tremendous advances in risk stratification have been made 
by establishing standardized and evidence-based risk assess-
ment algorithms using both ultrasound and MRI, allowing 
accurate characterization of the adnexal lesions [40, 41].

For ultrasound, the International Ovarian Tumor Analysis 
(IOTA) group has developed the simple rules classification 
system and Assessment of Different Neoplasia in the Adnexa 
(ADNEX) model to differentiate benign from malignant 
adnexal masses [42–47]. Other ovarian mass characteriza-
tion and management systems have been proposed, including 
the Society of Radiologists in Ultrasound consensus state-
ment [48, 49] and the Gynecologic Imaging Reporting and 
Data System, or GI-RADS [40, 50].

Most recently, the Ovarian-Adnexal Reporting and 
Data System (O-RADS) published in 2018 has provided a 
standardized lexicon that includes all pertinent descriptors 
and definitions of the characteristic ultrasound appearance 
of normal ovaries and ovarian lesions [40]. Based on this 
validated reporting system, ultrasound guidelines for lesion 
management have been proposed in 2020 [51]. These guide-
lines now include all risk categories with their correspond-
ing management strategies, which had not been presented in 
any of the previous versions [51].

However, approximately 18% to 31% of adnexal lesions 
detected on ultrasound remain indeterminate, with MRI 
recognized as the complementary tool to assess indeter-
minate ovarian lesion on ultrasound [52]. The European 
Society of Urogenital Radiology (ESUR) recommendation 
has proposed an algorithmic approach to help differenti-
ate benign from malignant lesions [53]. More recently an 
O-RADS MRI, similar to O-RADS ultrasound, has been 
proposed. This 5-category MRI scoring system was initially 
developed in a retrospective single-center study [41] using 

Fig. 1  Drawing demonstrating 
the linear and parallel model 
explaining tumor heterogene-
ity: In the linear progression 
model, metastasis is seeded at a 
late stage of tumor progression, 
resulting in minimal genetic 
divergence between the primary 
tumor and its metastases. In 
the parallel progression model, 
metastases are seeded early 
in tumor progression, so high 
levels of genetic divergence are 
expected between the primary 
tumor and its metastases, even 
reseeding the primary tumor
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indeterminate adnexal masses on ultrasonography and was 
subsequently validated prospectively on 1340 women. Area 
under the receiver operating characteristic curve for differ-
entiating benign from malignant lesions was 0.961 (95% CI 
0.948–0.971) among experienced readers, with a sensitivity 
of 0.93 (95% CI 0.89–0.96; 189 of 203 patients) and a speci-
ficity of 0.91 (95% CI 0.89–0.93; 848 of 927 patients) [54].

For peritoneal implants, less advances have been made. 
CT remains the imaging gold standard for preoperative eval-
uation, with an accuracy ranging between 70 and 90% for 
implant detection [29, 55–58]. CT, however, has a limited 
sensitivity (25% to 50%) for implants less than 1 cm, par-
ticularly in locations such as the bowel surface or mesentery 
[55]. Implant detection is improved by the opacification of 
the gastrointestinal tract which helps to differentiate bowel 
from serosal and mesenteric implants. Reformatted images 
in coronal and sagittal planes are particularly useful for 
evaluating the subphrenic space [57].

The role of MRI in peritoneal disease staging has recently 
been evaluated. Promising results and guidelines have been 
proposed at the 10th Peritoneal Surface Oncology Group 
International (PSOGI) congress 2016. For now, MRI serves 
mainly as an adjunct to CT for implant detection. Standard 
MRI has the same sensitivity as CT in the detection of peri-
toneal deposits [29, 59]. However, the use of fat suppres-
sion, delayed post-contrast imaging, oral contrast agents, 
and functional imaging such as DWI [60] have allowed the 
detection sensitivities of MRI to surpass CT [61, 62] with 
sensitivity and specificity of DWI being 90% and 95.5%, 
respectively, for implant detection [60].

Response evaluation to chemotherapy by imaging also 
remains challenging. CT does not provide a quantitative 
assessment of disease response to cytotoxic therapy and does 
not reflect molecular events in the tumor (apoptosis, necrosis 
etc.) as it relies solely on macroscopic changes in tumor 
size as per Response evaluation criteria  in solid tumors 
(RECIST) criteria [63]. The use of RECIST is often not pos-
sible as the carcinomatosis frequently consists of multiple 
subcentimeter nodules, ill-defined soft tissue masses, con-
fluent disease or disease of a diffuse infiltrative pattern not 
eligible for RECIST evaluation. Functional imaging using 
diffusion-weighted imaging (DWI) has been evaluated in 
the research setting. Using ADC histograms, authors have 
shown efficacy in treatment monitoring of peritoneal carci-
nomatosis [64].

However, all evaluation of peritoneal disease by either CT 
or multiparametric MRI requires the subjective interpreta-
tion of a radiologist to inform the clinician on the volume 
and location of the many implants. This approach inevitably 
introduces a high degree of variability. Tools for more auto-
mated imaging analyses have been tested, not only to reduce 
this variability, but to provide more objective, clinically rel-
evant information [65]. Following the steps of genomics, 

in the era of big data, a new field in medical imaging has 
emerged under the label of ‘’radiomics.’’ Radiomics has 
been introduced as an emergent tool for postprocessing CT 
or MR images and developing new quantification metrics 
[66–72] linking qualitative and/or qualitative imaging data 
to clinical endpoints. Compared to Computer Aided Detec-
tion (CAD) in which the number of image features involved 
is usually less than 20, radiomics deals with hundreds to 
thousands of imaging features extracted from large-scale 
radiological images. These quantitative metrics have been 
shown to provide important insights into tumor biology, 
linking quantitative imaging data to meaningful clinical 
endpoints. Of particular interest is the potential ability of 
image-derived metrics to reliably identify important tumor 
subregions noninvasively and derive predictive imaging 
biomarkers.

Radiomics: how does it work? (Fig. 2)

The process of radiomics analysis encompasses the follow-
ing steps:1/image acquisition and segmentation, 2/feature 
extraction, 3/feature selection, and 4/ model construction 
[73, 74].

(1) Image acquisition represents the first step. Radiomics 
analysis can be applied to any type of medical images, 
including X-ray, US, CT, MRI, and PET-CT. Before 
radiomic features are calculated, a region of interest 
or volume of interest encompassing the dedicated area 
has to be defined. Currently, there are a number of reli-
able algorithms capable of automatic or semi-automatic 
lesion segmentation, limiting the need for human input, 
helping overcome subjectivity and time cost associ-
ated with manual segmentation [75, 76]. However, in 
some instances, performance of these algorithms is 
jeopardized by the complexity of the task mainly due 
to the complex appearance of the lesion (ill-defined 
borders, locations adjacent and not being easily distin-
guishable from adjacent anatomical structures). Under 
these circumstances, expert manual segmentation and 
delineation of the ROI on one chosen slice (2D) or on 
the entire volume (3D) remain the only valid option 
[77–80].

(2) Feature extraction, requiring the use of dedicated soft-
ware or open-source programming packages, offers 
many options, from pre-processing tools including 
normalization, resampling, and discretization, to cus-
tomizing the extraction and enabling the application of 
additional filters on the original images [81–83].

  The process of extraction returns a large amount of 
quantitative imaging metrics, which can be catego-
rized in 6 different groups: a/First-Order Statistics are 
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features related to the histogram, including energy, 
entropy, kurtosis, skewness … b/Shape-based features, 
such as volume, surface area, sphericity… The follow-
ing groups include textural features, and assess the spa-
tial distribution of pixel intensities: c/Gray-Level Co-
occurence Matrix, d/Gray-Level Run Length Matrix, 
e/Gray-Level Size Zone Matrix, and f/Gray-Level 
Dependence Matrix.

  A large number of features (between 50 and 5000) 
are usually extracted. These are then decreased through 
feature qualification in order to select only the features 
that are informative and reproducible and to prevent 
the risk of overfitting [84]. Overfitting is defined as the 
construction of an analytical process that corresponds 
too closely to a specific dataset, with the model per-
forming poorly in the validation phase in contrast to its 
learning phase, and consequently failing to generalize.

(3) Feature selection The process of feature selection usu-
ally starts with removing redundant features [85]. Sec-
ondly, inter-observer and intra-observer feature vari-
ability are assessed. Highly variable features are not 
considered in model construction as they may yield 
too hazardous results [86]. Thirdly, only important 
features with high correlation to the studied endpoint 
are selected. The number of optimal selected features 
might vary depending on the dataset, but no consensus 

on the exact number has been achieved. Yet, Parmar 
et al. suggest that number should be equal to the square 
root of the number of observations in a correlated set of 
features. Selected features constitute what we—in the 
literature—refer to as the ‘’Radiomics signature’ [87]’.

(4) Model construction and performance assessment The 
goal is to develop a mathematical or a statistical model 
to be associated with a diagnosis, tumor response, or 
patient outcome. In other words, the model is equiva-
lent to an algorithm that analyzes training data and 
infers a hypothesis to predict a variable when given 
quantitative imaging features. Different algorithms 
have been proposed. The most popular include the fol-
lowing: random forest (RF) [88], least absolute shrink-
age and selection operator (LASSO) [89], artificial 
neural networks (ANN) [90], support vector machine 
(SVM) [91], and minimum redundancy maximum rel-
evance (mRMR) [92]. No consensus on the pre-eminent 
algorithm has been achieved, as one algorithm might 
outperform another depending on the dataset type and 
variables [93]. To quantify the discrimination perfor-
mance, the AUC or the Harrell concordance index is 
used. Validation of the model could be assessed either 
internally or externally. In internal validation, the most 
common procedure is the ‘’leave-one out’’ cross-
validation (LOOCV) where all the data are used for 
training except for one data point, which is left out for 
testing and validation [94]. Another common method 

Fig. 2  Schematic summarizing the process of radiomics
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is the bootstrap, which consists of generating a large 
series of data (bootstrap sample) [95]. Each bootstrap 
sample represents a patient chosen randomly, combined 
with its corresponding features and outcome, and this 
process is reiterated over the entire cohort of patients.

Radiomics and radiogenomics in ovarian 
cancer (Fig. 3) (Table 1)

Work on radiomics and radiogenomics has been mainly 
linked with genomic advances thanks to The Cancer 
Genome Atlas (TCGA) research network [96, 97]. Based on 
the TCGA data, a prognostic algorithm for HGSOC known 
as Classification of Ovarian Cancer (CLOVAR) has been 
defined with four subtypes: differentiated, immunoreactive, 
mesenchymal, and proliferative [98, 99]. Patients with mes-
enchymal subtype have been shown to have a higher rate of 
platinum resistance (63%) compared with patients with other 
subtypes (23%), as well as shorter median survival (23 vs 
46 months for patients). Initially, Vargas et al. explored the 
relationships between subjective qualitative CT features and 
CLOVAR subtypes of HGSOC [100]. The authors found 
that CLOVAR mesenchymal subtype was significantly asso-
ciated with higher risk of peritoneal involvement and the 
presence of mesenteric infiltration on CT. These results may 
explain the reported poorer prognosis of patients with the 
CLOVAR mesenchymal subtype of HGSOC [99]. However, 
in a subsequent study, the same research team showed the 

limit of subjective qualitative assessment of CT with poor 
inter-observer agreement in the assessment of this feature 
(mesenteric infiltration) (α = 0.23) when reviewed by eight 
readers. As such, the limitations of subjective evaluation 
support the use of for more automated or semiautomated 
analysis [101].

In another study including 38 patients, Vargas et al. devel-
oped 12 quantitative metrics to capture spatial inter-site 
imaging heterogeneity in high-grade serous ovarian cancer 
[102]. The authors demonstrated that metrics capturing the 
differences in texture similarities across sites were associated 
with shorter overall survival (inter-site similarity entropy, 
similarity-level cluster shade, and inter-site similarity-level 
cluster prominence; p ≤ 0.05) and incomplete surgical resec-
tion (similarity -level cluster shade, inter-site similarity-level 
cluster prominence, and inter-site cluster variance) [102].

Rizzo et al. evaluated whether CT radiomics features 
extracted from the primary tumor alone or combined with 
clinical data were associated with residual tumor at surgery 
in 101 patients with ovarian cancer and were able to predict 
the risk of disease progression within 12 months [33]. The 
authors found that features related to mass size, random-
ness and homogeneity were associated with residual tumor 
at surgery. At multivariate analysis, the risk of progression 
at 12 months was associated with one feature, F2 shape/
Max3DDiameter, related to tumor size [33]. Adding this 
radiomic feature to a clinically based model significantly 
increased prediction of progression at 12 months by 14% 

Fig. 3  Schematic summarizing the integration of radiomics to clinical data, genomics, and proteomics to build highly powerful predictive mod-
els
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(AUC = 0.73 for clinical model vs 0.87 for clinical radiomic 
model) [33].

More recently, Meier et al. assessed the associations 
between inter-site texture heterogeneity parameters derived 
from CT, survival, and BRCA mutation status in women 
with high-grade serous ovarian cancer [103]. The authors 
demonstrated that high inter-site cluster variance was associ-
ated with lower progression-free survival (PFS) (p = 0.006) 
and overall survival (OS) (p = 0.003). Higher inter-site clus-
ter prominence was associated with lower PFS (p = 0.02) and 
higher inter-site cluster entropy correlated with lower OS 
(p = 0.01). High values of all three metrics were significantly 
associated with lower complete surgical resection status in 
BRCA-negative patients (SE p = 0.039, SCV p = 0.006, SCP 
p = 0.02), but not in BRCA-positive patients (SE p = 0.7, 
SCV p = 0.91, SCP p = 0.67). However, none of the metrics 
were able to distinguish between BRCA mutation carrier and 
nonmutation carrier [103].

With the aim of developing a novel radiomics-determined 
mathematical descriptor of epithelial ovarian cancer tumor 
risk phenotype with a predictive value, Lu et al. extracted 
657 quantitative mathematical descriptors from the preoper-
ative CT scans of 364 ovarian cancer patients at their initial 
presentation [104]. The cohorts were divided into discovery 
dataset (n = 136), validation dataset (n = 77), and external 
dataset evaluated with the TCGA (n = 70). Forty-two radi-
omic features were significantly associated with OS; these 
42 radiomic features were further reduced to 4 weighted fea-
tures using least absolute shrinkage and selection operator 
method. The weighted sum of these four radiomic features 
gave a “radiomic prognostic vector” score for each tumor 
that reliably identified the 5% of patients with median overall 
survival of less than 2 years [104].

Textural features are gaining interest not only from CT 
studies, but also from MR studies and ex vivo studies. For 
example, Song et al. evaluated the efficiency of 2- and 
3-class classification predictive tasks constructed from radi-
omics features extracted from Dynamic contrast enhance-
ment (DCE)-MRI in discriminating among benign, border-
line, and malignant ovarian tumors in 104 ovarian lesions 
[105]. The 2-class classification task was divided into three 
subtasks: benign vs. borderline (task A), benign vs. malig-
nant (task B), and borderline vs. malignant (task C). For 
the 3-class classification task, 104 lesions were randomly 
divided into training (72 lesions) and validation (32 lesions) 
cohorts. For the 2-class classification task, the radiomics 
model showed a good diagnostic ability with the highest 
AUCs of 0.899, 0.865, and 0.893 for tasks A, B, and C, 
respectively. The 3-class classification task demonstrated 
a good discrimination performance with AUCs of 0.893, 
0.944, and 0.891 for the benign, borderline, and malignant 
groups, respectively [105]. More recently, Zhang et  al. 
evaluated again the diagnostic performance of a radiomics 

model based on MR images to discriminate benign ovar-
ian tumors from malignancies using features from multiple 
sequences (T1, T2WI, T2WI-FS, DWI, and multiple phase 
T1 contrast). MR radiomics including features from all the 
sequences acquired showed higher accuracy than that of the 
radiologists (90.6% and 83.5%, respectively) [106]. Inter-
estingly, in this study, the most common diagnostic error 
among the radiologists was the classification of borderline 
ovarian tumors into the benign group. Therefore, when 
borderline ovarian tumors were excluded, the radiologist’s 
diagnostic performance in differentiating benign from malig-
nant tumors was comparable to the computer’s performance 
[106]. In the same paper, the authors aimed to assess whether 
MR radiomics could differentiate between type I and type 
II epithelial ovarian cancer, showing a model accuracy for 
this endpoint of 83% and an AUC of 85%. In this analysis, 
the authors also showed that the diagnostic performance 
was higher when features extracted from all the sequences 
were included [106]. Finally, the authors demonstrate that 
after scoring the features by the least absolute shrinkage 
and selection operator method (LASSO), the model divided 
patients into good and poor prognosis groups with an AUC 
of 0.899 and that T1-weighted imaging (WI) radiomics fea-
tures were more likely associated with the clinical outcome 
than the other sequences [106]. Similarly, Jian et al. devel-
oped an MR combined radiomic model extracted from the 
combination of the four following sequences (T2WI-FS, 
DWI, ADC, and CE-T1WI) which were able to differenti-
ate type I and type II epithelial ovarian cancer. This model 
achieved an AUC of 0.834 and 0.847 in internal and external 
validation cohorts, respectively [107].

With the aim of comparing the ability of clinical fea-
tures, conventional MR image features, ADC value, T2WI, 
DWI, DCE- MR radiomics, and a combined multiple fea-
tures model to predict the type of epithelial ovarian can-
cer, Qian et al. retrospectively evaluated 61 patients with 
epithelial ovarian cancer. In this study, the model included 
T2WI, DWI, and DCE-MRI, and a multisequence model. 
1070 radiomics features of each sequence were extracted. 
Then, univariate analysis and LASSO were used to select 
important features. The authors demonstrated that the tra-
ditional model achieved the best diagnostic performance, 
while the diagnostic efficacy of the mixed model was slightly 
increased, thus concluding that the traditional model repre-
sents a noninvasive and reliable tool that can better distin-
guish EOC type I from EOC type II preoperatively [108].

Wang et al. proposed a classification model to identify 
ex vivo benign, malignant, and normal ovarian tissue [109]. 
The authors extracted 75 three-dimensional texture fea-
tures from second harmonic generation images of human 
ovarian tissue from 31 patients, using radiomics-based fea-
ture extraction methods. Combining the minimum redun-
dancy maximum relevancy feature selection method and a 
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tree-based pipeline optimization tool, they classified benign, 
malignant, and normal fresh ex vivo ovarian tissue, with 
performance values at AUC-ROC of 0.98, 0.96, and 0.94, 
respectively [109].

Proteomics

Proteomics is the analysis of the entire protein complement 
of a cell, tissue, or organism under a specific, defined set 
of conditions [110]. Proteomics can complement genomic 
analysis by uncovering pathways and processes of cancer 
biology to match with particular clinical phenotypes [111]. 
Pairwise analysis of proteomic and genomic data from the 
same tumor has shown that proteomics give added infor-
mation beyond that elicited only through genomic analysis 
[112].

In ovarian cancer, an analysis of proteomics utility in 
predicting recurrence and survival time was performed by 
the PRotein-driven index of OVARian cancer (PROVAR) 
study team in 2013 [113]. PROVAR analyzed 412 ovarian 
cancer cases from TCGA [113]. They found that 5 proteins 
were associated with longer progression-free survival (PFS) 
and greater overall survival (OS), namely: androgen recep-
tor (AR); phosphorylated tafazzin (pTAZ); BH3-interacting 
domain death agonist (BID); phosphorylated epidermal 
growth factor receptor (pEGFR); and 70 kilodalton heat 
shock protein (HSP70) [113]. Conversely, 4 proteins were 
highly expressed in patients with shorter PFS and shorter 
OS: signal transducer and activator of transcription 5 α 
(STAT5 α); phosphorylated protein kinase C-α (pPKCα); 
phosphorylated dual-specificity mitogen-activated protein 
kinase 1 (pMEK1); and eukaryotic translation elongation 
factor 2 (EEF2) [113].

Of the markers discovered in the PROVAR study, AR 
proved the most robust [113]. No change in its abundance 
was noted between the primary and metastatic tumors, which 
suggested that the downregulation of AR happens early in 
carcinogenesis [113].

The clinical proteomic tumor analysis consortium 
(CPTAC), in their 2016 study, used mass spectroscopy to 
categorize 174 ovarian tumors from TCGA [111]. They inte-
grated previously sequenced genomic data from the TCGA 
study [114] with proteomic measurements to gain insight 
into the effect genomic copy number alterations (CNAs) had 
on the proteome. They found there was a convergence of 
CNA targets on a set of biological functions associated with 
motility/invasion and immune regulation, both classical of 
cancer cells [111]. They compared the presence of phospho-
rylated peptides in tumors of patients who survived < 3 years 
and those who survived > 5 years and found that PDGFR-
beta (associated with angiogenesis), rhoA-regulatory, and 
integrin-like kinase pathways (both associated with cell 

mobility and invasion) were most abundant in short survi-
vors [111]. The proliferation-associated transcription factor 
serum response factor (SRF) and the target proteins it regu-
lates were also found to be more abundant in these short-
surviving patients [111]. Their study found that combining 
analysis of protein quantity and phosphorylation status gave 
greater statistical significance when correlated with overall 
survival, emphasizing the utility of assessing protein phos-
phorylation in understanding pathway activity thus linking 
proteotype with phenotype [111].

Recent work has integrated proteomic analysis with CT-
based qualitative and radiomic features [115]. In a retrospec-
tive hypothesis-generating study of 20 patients with HGSOC 
awaiting primary cytoreductive surgery, the abundance of 
certain proteins was found to be associated with CT-based 
qualitative traits, namely cysteine-rich protein 2 (CRIP2 – a 
tumor suppressor which regulates cell proliferation) was 
negatively correlated with mesenteric disease; and Mela-
noma Antigen Gene A4 (MAGEA4a—of the MAGE family, 
which are broadly expressed in many tumor types [116]) 
was positively correlated with supradiaphragmatic lymphad-
enopathy [115] (overexpression of MAGE is a predictor of 
poor PFS and OS in ovarian cancer [116–118]).

Texture feature extraction of intra-and inter-site hetero-
geneity (cluster-site entropy, cluster standard deviation, and 
cluster dissimilarity) was calculated and integrated with 
the proteomic data for those tumors. It showed an associa-
tion between low levels of argininosuccinate synthase 1 
(ASS1) and more heterogenous tumors [115]. This finding 
is in agreement with our knowledge of ASS1, low levels of 
which correlate with platinum therapy resistance and poor 
prognosis [119], and more heterogenous tumors, which are 
also predictive of worse survival [120].

Proteomics has the potential to facilitate the paradigm 
shift from treatment based on trial and error guided by anat-
omy and genetic profiling of tumors, to tailored, individu-
alized treatment-based specifically on a tumors molecular 
profile [121]. To this end, large-scale prospective trials such 
as those planned by the APOLLO group (Applied Proteog-
enomics OrganizationaL Learning and Outcomes) will give 
greater insight into pathways of ovarian cancer and potential 
therapeutic liabilities and allow discovery and full validation 
of markers of disease heterogeneity, treatment resistance, 
and predictors of outcome [121]. Further large prospective 
studies integrating proteomic, genomic, and imaging tools 
are also necessary to potentiate the development of radi-
omic and radiogenomic tools towards true precision medi-
cine [122].
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Critics and challenges

Radiomics is in the early stages of development, with 
improvements to each step of the entire analytical process 
still required [123].

Firstly, one of its main limitations is the lack of standard 
protocol in terms of feature selection or model construction. 
A large number of feature selection algorithms and classi-
fiers are available for use. An algorithm appropriate for a 
particular dataset might be inappropriate for another [124]. 
There is also great variety in the methods employed in most 
radiomic studies in ovarian cancer, with the frequent use 
of in house software raising issues for generalizability and 
reproducibility.

Secondly, feature reproducibility might be compromised 
when images are obtained from different vendors. CT fea-
tures vary from one scanner to another depending on the 
parameters being used and from one reconstruction algo-
rithm to another. In PET imaging, textural features are most 
sensitive to reconstruction algorithms and post-filtering 
level. In MRI, textural features depend on the field of view, 
magnetic field strength, slice thickness, and the contrast 
agent. Although image pre-processing is critical to achiev-
ing a level of homogeneity within data, thus overcoming the 
heterogeneity that can taint the quality of the samples being 
studied, there is no consensus regarding the protocol to be 
followed for image pre-processing [125–127].

Thirdly, most radiomics studies involve small cohorts, 
in disproportion to the dimensionality of the features, thus 
greatly increasing the risk of overfitting. Moreover, most 
studies do not test their models on an independent validation 
dataset, which has been reported to inflate the risk alpha. 
This is the case in the studies published on ovarian cancer, 
with the number of patients included ranging from 20 to 364. 
Most of these studies did not have a validation cohort [33, 
102, 103, 105, 107, 109]. Institutions should work together 
in order to improve data sharing as this might be a useful 
way to conduct robust studies and increased the speed of 
radiomics adoption into routine clinical practice [84].

The emergence of artificial intelligence (AI) and its 
progressively wider impact on radiology may overcome 
some limitations of radiomics such as the need for manual 
“human” segmentation. AI algorithms are not only able to 
analyze the predefined segmentation but also directly ana-
lyze the images in order to automatically design its own 
radiomic features without underlying human evaluation. 
Moreover, AI offers a better capability of handling a mas-
sive amount of data compared with the traditional statistical 
methods.

Conclusion

Although many issues need to be addressed, radiomics is 
a potential game changer shifting radiology from the tra-
ditional visual analysis to a more objective and automated 
analysis. By integrating imaging biomarkers automatically 
derived from imaging data to clinical, genomics, and/or pro-
teomics data, radiomics offers huge opportunities to better 
capture tumor behavior. Radiomics raises particular hope in 
ovarian cancer to better capture the whole disease heteroge-
neity and offer a new tool to predict tumor aggressiveness 
and response to therapy.
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