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Abstract
Positron emission tomography (PET) using fluorodeoxyglucose (18F-FDG) combined with magnetic resonance imaging 
(MR) is an emerging hybrid modality that has shown utility in evaluating abdominal and pelvic disease entities. Together, 
the high soft tissue contrast and metabolic/functional imaging capabilities make this modality ideal for oncologic imaging 
in many organ systems. Its clinical utility continues to evolve and future research will help solidify its role in oncologic 
imaging. In this manuscript, we aim to (1) provide an overview of the various PET/MR systems, describing the strengths 
and weaknesses of each system, and (2) review the oncologic applications for 18F-FDG PET/MR in the abdomen and pelvis.
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Introduction and technical aspects of PET/
MR

Introduction

Positron emission tomography (PET) using fluorodeoxyglu-
cose (18F-FDG) combined with magnetic resonance imag-
ing (MR) is an emerging hybrid modality largely built on 
the success of conventional PET/CT which achieved rapid 
clinical adoption in the early 2000s [1, 2]. Though only 

recently available in clinical practice, PET/MR harnesses the 
molecular imaging capabilities of PET and is combined with 
the high soft tissue and contrast resolution of conventional 
MR. In addition, multiparametric MR including diffusion, 
spectroscopy, and perfusion imaging add functional imag-
ing capabilities which can be used to assess tissue cellular-
ity, metabolite concentrations, and vascular permeability. A 
growing body of research suggests that this combination of 
anatomic and functional imaging is at least equivalent to and 
likely superior to CT, PET/CT, and conventional MR for 
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many anatomic regions including the liver, bones, breasts, 
musculoskeletal system, head and neck, and the pelvis [3]. 
In this manuscript, we describe the current and emerging 
clinical body imaging applications of 18F-FDG PET/MR 
in oncologic imaging including cancer detection, staging, 
restaging, and monitoring tumor response [4].

PET/MR systems

There were many engineering challenges to be overcome 
in designing integrated PET/MR systems, including mag-
netic field inhomogeneity caused by ferromagnetic materi-
als in the PET systems and radiofrequency signals created 
by PET detector electronics which compromised the MR 
acquisitions [5]. Similarly, the high magnetic field caused a 
curved trajectory of the photons within the photomultiplier 
tubes which caused temporal and spatial distortion [5, 6] 
and the gradients and RF pulses interfered with PET signal 
analysis, which compromised the PET acquisition. Complex 
engineering innovations have made possible the construction 
of integrated PET/MR systems available today.

There are different PET/MR system configurations avail-
able; the most simple and first put into clinical use in 2010 
was a sequential system in which the PET and MR compo-
nents are acquired individually in a series [5, 7, 8]. While 
often in the same room in a linear setup (Philips Ingenuity 
TF PET/MR, Philips, Best, The Netherlands), such systems 
can also utilize nearby but separate PET and MR scanners, 
with the patient shuttled from one room to another (GE PET/
CT+MR, GE, Milwaukee, USA). The advantage of these 
systems is that less extensive modifications are needed 
to the underlying equipment to overcome the deleterious 
effects of the magnetic field. On the other hand, the major 
disadvantage of these systems is that the data are acquired 
sequentially as opposed to in parallel, which can potentially 

cause misregistration artifacts. Additionally, these systems 
also have a larger footprint and longer acquisition times, as 
both the PET and MR components must be independently 
acquired.

Simultaneous or integrated [9, 10] systems (GE Signa 
TOF PET/MR, GE, Milwaukee, USA, and Siemens Bio-
graph mMR, Siemens Healthineers, Erlangen, Germany, and 
uPMR 790 HD TOF, Shanghai United Imaging Healthcare, 
Shanghai, People’s Republic of China) have many advan-
tages over sequential systems and were later to enter the 
market as they required more technological hurdles to be 
overcome during development. Combined systems allow 
for improved spatial coregistration due to the simultane-
ous acquisition. These systems also permit shorter exam 
times, often in the range of 30–70 min versus 40–90 min for 
sequential systems [3] depending on the imaging protocol 
performed.

PET/MR protocols

Similar to PET/CT, patient instructions are provided prior 
to the exam for reduced background soft tissue uptake and 
increased target anatomical uptake, with the patient in fast-
ing status and minimizing muscle activity prior to imaging. 
The specific set of sequences utilized depends on the under-
lying disease process being evaluated and the radiotracer 
being utilized and its half-life. An example imaging protocol 
for colon cancer staging is included in Table 1, with total 
imaging time of approximately an hour.

Essentially all the same radiotracers available for use for 
PET/CT are also available for PET/MR, with 18F-FDG being 
the most commonly utilized for general oncologic imaging. 
While there are exceptions such as mucinous tumors, clear 
cell renal cancers, and well-differentiated hepatocellular car-
cinomas, which show decreased uptake compared with other 

Table 1  Example PET/MR 
protocol for colon cancer 
staging

VIBE volume interpolated breath-hold examination, HASTE half-fourier acquisition single-shot turbo spin 
echo, GRE gradient recall echo, FSE fast spin echo, PET positron emission tomography

Sequence Body area Anatomic plane

T1-weighted Dixon VIBE WB Coronal
T2-weighted HASTE WB Axial
Diffusion-weighted images (50–400–800 b-values) WB Axial
T1-weighted dual GRE Abdomen Axial
T2-weighted FSE Abdomen Axial
T2-weighted HASTE Abdomen Coronal
T1-weighted VIBE (pre- and post-contrast) Abdomen Axial
T2-weighted FSE Pelvis Sagittal
T2-weighted FSE Pelvis Axial
T2-weighted FSE Pelvis Coronal
T1-weighted VIBE (post-contrast) WB Axial
PET WB, 5–6 bed positions
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histologic types [11], the majority of tumors demonstrate 
increased uptake of the 18F-FDG glucose analog compared 
to normal tissues. For other neoplasms such as neuroendo-
crine tumors and prostate cancer, there is increasing use of 
novel radiotracers such as 68Ga-DOTATATE and 18F-Flu-
ciclovine/Prostate Specific Membrane Antigen (PSMA), 
respectively.

Advantages of PET/MR

Compared with PET/CT, MR offers better signal-to-noise 
and contrast-to-noise ratios than CT, which improves 
soft tissue resolution and can facilitate disease detection. 
Additionally, multiparametric imaging including anatomic 
T2-weighted imaging and dynamic T1-weighted fat sup-
pressed contrast-enhanced images paired with functional 
imaging techniques such as diffusion-weighted images, spec-
troscopy, and perfusion can help identify and characterize 
lesions which would not otherwise be seen on conventional 
imaging.

One of the major limitations of PET/CT is that the images 
are sequentially acquired, i.e., initially a low-dose attenua-
tion correction CT is performed which is followed with the 
PET portion and the two data sets are fused. Integrated PET/
MR, on the other hand, can acquire the PET and MR images 
concurrently which allows for precise correlation of PET 
avid lesions with anatomy. Additionally, since integrated 
PET/MR is acquired for a longer period of time than PET/
CT, more PET data can be collected which reduces noise 
and increases sensitivity for subtle lesions compared with 
PET/CT [12].

PET/MR also has a significantly reduced radiation 
dose with the exclusion of the CT component of the exam. 
Assuming an average dose of 14 mSv for a combined 18F-
FDG PET/CT, average radiation dose could drop to 7–10 
mSv [3]. Since patients who are candidates for PET/CT 
often receive numerous scans over their lifetime, the aggre-
gate dose reduction may be substantial.

Limitations of PET/MR

Since the diagnostic accuracy of PET/CT for many types of 
cancer is already high, it is difficult to show a clear advan-
tage in individual cancers. Initial data suggest an advantage 
of PET/MR for certain types of malignancies while in oth-
ers, it confers no advantage [13, 14]. In general, for disease 
processes where conventional MR is superior to CT, it may 
be advantageous to use PET/MR. Also, depending on the 
disease process, PET/MR may offer increased sensitivity 
for when the tumor burden is low, and the lesions are small 
and multifocal.

The use of MR requires longer examination times which 
decreases patient comfort and allows for more accumulation 

of radiotracer in the bladder, so care must be taken to select 
an abbreviated protocol that is sufficient to accurately diag-
nose and stage the disease process, ideally in the 20–30 min 
range [15]. Unlike with CT whereby multiplanar reformats 
can be obtained, since the resolution of MR is maximized in-
plane, if additional imaging planes are needed, they should 
be acquired independently which increases total exam time 
[16]. Recently described so-called “ultra-fast” PET/MR 
protocols have been developed and have shown reduced 
acquisition times, comparable to those of PET/CT, without 
sacrificing diagnostic accuracy [17, 18].

Every imaging modality, including both PET and MR, 
is susceptible to patient motion such as through respiration. 
This limitation can be especially problematic in the detec-
tion of lung lesions. However, the synchronous acquisition 
of MR and PET data allows for motion correction of both 
PET and MR data using different approaches, including self-
navigated methodologies that do not necessitate any exter-
nal monitoring devices and are not available for PET/CT 
[19–21]. Additional novel techniques such as zero-TE lung 
imaging have shown great promise in improving diagnostic 
performance for small lung lesions [22].

Finally, although PET/MR is FDA approved, insurers 
may offer no or selective reimbursement for certain indica-
tions, which may place undue financial burden on patients. 
The aggregate cost to the patient and healthcare system is 
typically greater than the cost of MRI or PET/CT alone.

Oncologic 18F‑FDG PET/MR applications 
in the abdomen and pelvis

Pancreatic adenocarcinoma

Despite advancements in diagnosis and treatment, pancreatic 
ductal adenocarcinoma (PDAC) remains a major cause of 
morbidity and mortality in the US, owing in part to the lack 
of specific biomarkers, symptoms, and the heterogeneity of 
appearances on imaging. Once detected, fewer than 20% of 
patients have resectable disease at diagnosis. As such, imag-
ing plays a key role not only in initial diagnosis but also in 
monitoring treatment response. Contrast-enhanced CT has 
historically been the preferred modality for initial diagnosis 
and staging of PDAC at many institutions, largely due to 
the high spatial resolution of CT to identify anatomic land-
marks and vascular involvement critical to the staging [23]. 
While current guidelines do not recommend the use of PET 
imaging in pancreatic cancer except in high risk patients in 
the evaluation of metastases, when used, PET/CT and PET/
MR are similar in terms of assessing tumor resectability and 
staging [24–27].

Nevertheless, there may be an evolving role for PET/
MR in diagnosis and staging, as the combined functional 
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and anatomic imaging has shown promise. For example, 
one meta-analysis reported a higher sensitivity of PET in 
the diagnosis of PDAC (92%), compared with CT (87%) or 
MR (69%) alone [28], though it had lower specificity than 
either. The low specificity is due to pancreatitis and other 
inflammatory non-neoplastic processes that also demon-
strate increased 18F-FDG uptake, though malignant pancre-
atic lesions generally have higher SUV than inflammation 
[29]. Another study showed that combined PET/MR has 
increased accuracy in pancreatic cancer detection compared 
with PET/CT (96.6% vs 86.6%)[30]. In this study, the addi-
tion of T2-weighted imaging also permitted identification 
of pancreatic cystic lesions that were not identified on CT. 
Other authors have also shown improved confidence scores 
with PET/MR for characterizing pancreatic tumors com-
pared with PET/CT [31].

Pancreatic cancer often metastasizes to the liver, lungs, 
and peritoneum [23] and many individuals with PDAC and 
indeterminate liver lesions end up needing liver MR, PET/
CT, and/or biopsy in addition to the initial staging CT. Addi-
tionally, physiologic uptake of 18F-FDG within the liver may 
obscure some lesions on PET/CT which may lead to addi-
tional diagnostic imaging or biopsy. In light of these limita-
tions, PET/MR may be useful in some cases to detect and 
characterize indeterminate lesions (especially lesions < 1 
cm) in a single session which reduces overall cost and time 
to diagnosis (Fig. 1).

An additional emerging area for clinical use of PET/
MR is in the context of monitoring treatment response, as 
RECIST measurements are not a good predictor of resect-
ability in the context of neoadjuvant chemotherapy [32]. It 
has been shown that DWI and SUV values provide useful 
insight regarding treatment response [33, 34]. Other research 
has demonstrated that DWI and ADC obtained from MRI 
and metabolic tumor volume and total lesion glycolysis 
measurements obtained from PET may reveal early response 

to therapy [35]. Similarly, the functional abilities of PET 
may help delineate post-treatment changes from residual or 
recurrent malignancy.

Gastrointestinal tract malignancies

Colorectal cancer (CRC) is the third most common cancer 
in the USA [36, 37]. Although the incidence and mortal-
ity rates are decreasing among adults greater than 50 years 
old, they have been increasing among adults younger than 
50 years old [38]. Recurrence rates for locally advanced 
rectal tumors have also declined, largely attributed to new 
surgical techniques and chemotherapy regimens. However, 
despite advances in treatment, recurrence rates are as high 
as 30–45% for more advanced stages and up to one-third of 
patients with locally advanced rectal cancer will die within 5 
years of completion of treatment [39–41]. Diagnostic imag-
ing plays a pivotal role in initial staging of untreated CRC 
and in the surveillance of treated CRC [42, 43].

The National Comprehensive Cancer Network (NCCN) 
guidelines recommend chest, abdominal and pelvic CT for 
initial colon cancer staging with 18F-FDG PET/CT indicated 
in the staging of patients with presumably resectable oligo-
metastatic disease to rule out other occult metastases. Simi-
larly, the role of 18F-FDG PET/MRI in colon cancer staging 
is limited to evaluation of metastatic disease. In surveillance, 
PET/CT is recommended in the same situation or with serial 
CEA elevation despite negative physical examination, colo-
noscopy, and chest and abdominopelvic contrast-enhanced 
CTs.

In rectal cancer, on the other hand, MR is the modality 
of choice for initial evaluation, owing to its ability to pro-
vide detailed anatomic information as well as information 
about the extent of involvement of key structures such as the 
peritoneal reflection, mesorectal fascia, and lymph nodes 
[44] (Fig. 2). Initial experiences have shown high diagnostic 

Fig. 1  63-year-old man with pancreatic adenocarcinoma. Axial (a) 
and coronal (b) contrast-enhanced MR demonstrates a peripherally 
enhancing, centrally necrotic mass (white arrow) within the pancre-
atic uncinate process that extends posteriorly in the retroperitoneum. 
There is corresponding 18F-FDG uptake on the unfused (c) and fused 

(d) axial images. The addition of PET in this case shows clear deline-
ation of tumor margins and facilitates accurate staging. An additional 
benefit of PET/MR is evaluation for local and distant spread in a sin-
gle study
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accuracy of PET/MR in rectal cancer T staging and compa-
rable N and M staging and restaging when compared with 
PET/CT [45]. Anatomic localization of areas of 18F-FDG 
uptake can be challenging with PET/CT scans, due to the 
low soft tissue signal-to-noise and contrast-to-noise ratios of 
CT scans, as well as the asynchronous acquisition of the PET 
data and CT images. These factors decrease the performance 
of PET/CT scans, particularly in the assessment of T and N 
factors in rectal cancer, in liver lesions measuring less than 
1 cm, subcapsular liver lesions, peritoneal metastases, and 
in the case of nonspecific intestinal 18F-FDG uptake [46]. 
Moreover, PET/MR allows for whole body staging with 
very low radiation exposure in the same study to assess both 
locoregional and distant disease extension in a single study.

Most published studies include small mixed populations 
of initial staging and recurrence. However, available studies 
show that 18F-FDG PET/MR outperforms contrast-enhanced 
CT and PET/CT in clinical practice by detecting occult 
metastases and by recharacterizing lesions falsely described 
as metastases by other imaging modalities [47, 48]. In the 
context of treated colorectal metastases, PET/MR has been 
shown to change oncologic management in up to 36% of 
patients [49]. There are large clinical implications of miss-
ing a metastasis or erroneously characterizing a lesion. In 
healthy non-steatotic/cirrhotic patients a substantial amount 
of liver parenchyma can be resected as long as two adjacent 
liver segments or at least 20% of total estimated liver volume 
remain [50]. Moreover, extrahepatic metastases, including 
those to the peritoneum, are no longer an absolute contrain-
dication for liver metastases resection which increases the 
need for an accurate pre-operative assessment of the extent 
of disease [51]. Overall, PET/MR has been shown to have an 
accuracy of 94% in detection of pelvic recurrence in rectal 

cancer patients [52] and 74% accuracy in detection of liver 
lesions in colorectal cancer patients [53].

Primary hepatic masses

Imaging of primary liver malignancies such as hepatocel-
lular carcinoma (HCC) and intrahepatic cholangiocarci-
noma (ICC) plays a critical role in the management of these 
tumors. HCC is the most common primary malignancy of 
the liver and a common cancer in the USA overall [54]. 
Prompt and accurate diagnosis of HCC is critical as surgi-
cal resection or liver transplantation can provide a cure for 
certain patients. For HCC, imaging alone through Organ 
Procurement and Transplantation Network (OPTN) or 
Liver Reporting and Data System (LIRADS) criteria with 
contrast-enhanced CT or MR is sufficient to diagnose these 
tumors in certain patient cohorts without the need for biopsy. 
18F-FDG uptake has been shown to correlate with the degree 
of HCC differentiation, with higher grade HCC demonstrat-
ing increased uptake and SUV compared with lower grade 
HCC [55]. As a result, the increased variability of 18F-FDG 
uptake with HCC decreases overall sensitivity, with over-
all ranges quoted in the literature of approximately 50–60% 
[56]. Therefore, PET alone is insufficient for the manage-
ment of HCC. PET/CT has been studied for its utility with 
extrahepatic metastases, which typically occur with higher 
grade tumors [57]. Currently, very little has been established 
on the use of PET/MR in HCC. Preliminary studies have 
investigated the correlation with 18F-FDG uptake and mul-
tiparametric MR on HCC characterization [58].

The workup for ICC often includes imaging such as CT 
or MR based on NCCN guidelines. Both imaging modalities 
have demonstrated suboptimal sensitivity in the detection of 
intrahepatic metastases, lymphadenopathy, and peritoneal 
disease [59, 60]. Metabolic imaging with PET and PET/CT 
can help improve sensitivity of detection of lesions, although 
literature regarding its utility is scarce and heterogeneous. 
PET/CT appears to suffer from inherent limitations of fine 
anatomic detail essential in the imaging of these tumors, 
especially for small lesions (< 10 mm), bile ductal involve-
ment, and vascular involvement. PET/MR has theoreti-
cal benefits by maximizing the combined benefits of both 
modalities, in utilizing the high sensitivity of PET and the 
anatomic precision of MR (Fig. 3). Recently, PET/MR has 
been suggested to improve pre-surgical guidance, changing 
the clinical management in up to 30% of patients with intra-
hepatic cholangiocarcinoma [61].

Hepatic metastases

Appropriate liver imaging is crucial in the staging and man-
agement of many types of malignancies. For example, the 
liver is the most common site of distant metastases from 

Fig. 2  PET/MR in a 60 year old patient demonstrates a mid rectal 
polypoid mass confined to the muscularis. Axial high resolution T2w 
image (a) and fused PET/MR image (b). There is a subcentimeter 
ovoid T2 hypointense lymph node in the right lateral mesorectal fat 
(a, black arrow) which is equivocal for nodal involvement. However, 
the presence of 18F-FDG uptake on fused image (b) confirms the 
mesorectal nodal involvement with malignancy



1241Abdominal Radiology (2021) 46:1236–1248 

1 3

colorectal cancer, with over 50% of patients having hepatic 
metastases [62]. Unlike many other malignancies, colorectal 
metastases to the liver are potentially curable with surgical 
resection in approximately one-third of patients. An addi-
tional subset of patients with previously unresectable lesions 
can be treated with curative intent following neoadjuvant 
chemotherapy [63, 64]. Many other primary malignancies 
commonly metastasize to the liver and, as such, imaging 
plays a key role in detection and characterization and in 
monitoring response to therapy.

Traditionally, contrast-enhanced CT has been the pri-
mary imaging modality for the detection and localization of 
liver lesions with either PET or MR used to further evaluate 
indeterminate liver lesions. In staging, 18F-FDG PET has 
been shown to have improved sensitivity for the detection of 
liver metastases and has high predictive value in monitoring 
therapy response [65, 66]. In the neoadjuvant setting, liver 
MR is superior to other modalities with a pooled sensitivity 
of 86% in the detection of colorectal liver metastasis [67] 

(Fig. 4). As such, combined PET/MR allows for improved 
liver lesion detection as well as assessment of treatment 
response [68–71]. Initial studies investigating the value of 
whole body PET/MR in the management of hepatic metas-
tases have shown improved diagnostic performance, par-
ticularly with small metastases [48, 71]. Others have shown 
that PET/MR has a higher sensitivity than PET/CT (98.3% 
versus 84.2%, respectively) and is particularly suitable for 
detecting lesions less than one centimeter [72]. The use of 
hepatobiliary specific contrast agents such as gadobenate 
dimeglumine (Gd-BOPTA, Multihance) has been shown 
to further increase diagnostic confidence and accuracy for 
correct assessment of benign and malignant liver lesions in 
PET/MRI [73].

Lymphoma

Lymphomas are collectively a heterogeneous group of neo-
plasms arising from lymphocytes, with dozens of recognized 

Fig. 3  57-year-old man with intrahepatic cholangiocarcinoma. Coro-
nal contrast-enhanced T1-weighted image (a) demonstrates a subcap-
sular heterogeneously enhancing mass in segments 2/3 (white arrow) 
with associated areas of segmental intrahepatic biliary ductal dilation 
(black arrow, b) and capsular retraction (arrow head, c). Simultane-

ously acquired PET/MR (d, fused image) shows marked 18F-FDG 
uptake within the mass. While the findings are nonspecific, they sug-
gest an aggressive pattern of disease including hepatocellular carci-
noma, cholangiocarcinoma, or metastasis. The diagnosis of cholan-
giocarcinoma was subsequently confirmed on biopsy

Fig. 4  66-year-old woman with pancreatic adenocarcinoma metas-
tases. Initially performed contrast-enhanced CT (a) for surveillance 
of pancreatic adenocarcinoma demonstrates no focal liver lesions. 
Subsequently performed PET/MR demonstrates a segment 6 hepatic 

lesion (white arrow) that is mildly T2 hyperintense (b) and hyper-
metabolic (c, fused image) consistent with metastasis. PET/MR can 
facilitate detection of small metastases that are occult on CT
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subtypes differentiated by histology, immunophenotype, and 
cytogenetics. The most common subtypes include diffuse 
large B-cell lymphoma, follicular lymphoma, Hodgkin’s 
lymphoma, marginal zone lymphoma, chronic lymphocytic 
leukemia, and mantle cell lymphoma. These can be further 
differentiated at the cellular level by their 18F-FDG avidity, 
which has become an important measure of tumor metabolic 
activity for staging, monitoring treatment response, and sur-
veillance [74].

The role of 18F-FDG PET for staging and monitoring 
treatment response has been well established in both Hodg-
kin’s and non-Hodgkin’s lymphoma (NHL) [75–77]. 18F-
FDG PET/CT is the current modality of choice for initial 
staging of FDG-avid lymphomas, although 18F-FDG PET/
MR is a promising alternative which has been shown to have 
comparable diagnostic accuracy [78–80] (Fig. 5). Since in 
most cases, 50–80% of the ionizing radiation dose from 
PET/CT is attributable to the whole body CT examination, 
a clear advantage of 18F-FDG PET/MR compared to PET/
CT is substantially lower radiation doses [81]. Lower radia-
tion doses are particularly attractive in this context, where 
a significant portion of the expected patient population falls 
in the pediatric age range and serial follow-up examinations 
may be indicated. Additionally, PET/MR has superior soft 
tissue resolution compared to PET/CT, as well as the abil-
ity to acquire simultaneous multiparametric MR data, both 
of which may improve diagnostic accuracy, particularly in 
the case of initial staging or assessing treatment response 
in poorly FDG-avid disease. Differentiating viable lympho-
matous masses from post-treatment changes can be difficult 
in this context, and multiparametric MR may offer valuable 
functional information about tumor activity at restaging. 
Although whole body diffusion-weighted imaging (DWI) 
alone is inferior to PET/CT, Kirchner et al. demonstrated 

that multiparametric PET/MR with additional simultane-
ously acquired contrast-enhanced and DWI can achieve 
improved diagnostic accuracy on a per lesion basis com-
pared to PET/CT [17, 80]. In the current guidelines, PET/
CT remains the standard of care for initial staging, restag-
ing, and surveillance, although there is a growing role for 
multiparametric PET/MR for which further investigation is 
needed [82].

Urinary tract malignancies

18F-FDG PET imaging alone has limited utility in evaluat-
ing for urinary tract malignancies, as there is physiologic 
uptake of 18F-FDG within the kidneys and excretion into 
the bladder, resulting in intense uptake in these anatomic 
regions. As such, its utility is primarily in the detection of 
extra-renal lesions. For example, 18F-FDG PET/CT has been 
shown to have a sensitivity of 84% and specificity of 91% in 
the detection of extra-renal cell carcinoma [83]. Additional 
studies and clinical trials are currently under way to evalu-
ate the utility of PET with respect to tumor grade. Similarly, 
18F-FDG PET has limited utility in prostate cancer imaging, 
as these tumors are slow growing and usually demonstrate 
non-glucose metabolic pathways, which limits the uptake 
of the radiotracer [84, 85]. Consequently, the addition of 
18F-FDG PET imaging has not been consistently shown to 
improve diagnostic performance when compared with the 
use of MRI alone.

Gynecologic malignancies

PET/MR is an ideal modality to evaluate gynecologic malig-
nancies, which include endometrial, cervical, and ovarian 
cancers. MR provides superior soft tissue resolution which 

Fig. 5  58-year-old man undergoing treatment for Hodgkin’s lym-
phoma. Axial T2-weighted image (a) demonstrates an enlarged left 
distal para-aortic/common iliac lymph node (black arrow). Simul-

taneously acquired PET image (b) and fused image (c) demonstrate 
corresponding increased 18F-FDG uptake indicating metabolic activ-
ity and incomplete treatment response
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can help delineate the fine details of local extent of disease, 
identify the ovaries and adjacent lymph nodes, and differ-
entiate physiologic uptake (for example, in a corpus luteum 
cyst) from abnormal ovarian uptake compared with PET/CT.

Much of the extant literature evaluating PET/MR in the 
context of gynecologic malignancies reports studies with 
small sample sizes and with combined analysis of uterine, 
endometrial, and cervical malignancies. Pooled sensitiv-
ity and specificity of PET/MR for diagnosing gynecologic 
malignancies is 89–95% and 87–89%, respectively, depend-
ing on whether the analysis was performed on a per-patient 
or per lesion basis [86].

For endometrial cancer, PET/MR outperforms PET/CT 
in terms of tumor delineation and assessment of local infil-
tration [87] (Fig. 6). PET/MR is also sensitive and specific 
in detecting vaginal, parametrial, or myometrial invasion, 
with sensitivities of 86–92% and specificities of 78–98%, 
and also demonstrates 100% sensitivity and specificity in 
detecting pelvic sidewall invasion [86]. In one study, PET/
MR was able to detect soft tissue invasion in 7 cases of cer-
vical or endometrial cancer whereas PET/CT detected no 
cases [88]. In this same study, PET/MR correctly upstaged 
5 patients and changed management in 2 patients. PET/MR 
including T2-weighted imaging has also been shown to have 
improved detection of uterine and ovarian lesions compared 
with PET/CT [89].

As with endometrial cancer, PET/MR in cervical cancer 
has been shown to be superior to PET/CT in terms of tumor 
delineation and assessment of local infiltration [87] (Fig 7). 
Quantitative analyses of SUV and ADC in patients with cer-
vical cancer have shown correlation with tumor grade and 
size [90–92].

PET/MR also outperforms PET/CT in assessing lymphad-
enopathy, with varying results depending on station and the 
type of primary malignancy [93–96]. Using the larger field 
of view images, PET/MR can also detect peritoneal carci-
nomatosis (Fig. 8).

Conclusion

While still in its infancy, a growing body of 18F-FDG PET/
MR research has demonstrated its utility in oncologic 
applications within the abdomen and pelvis. The major 
advantages of PET/MR over conventional PET/CT include 
simultaneous acquisition of PET and MR for more accu-
rate spatial coregistration, high soft tissue resolution for 
improved delineation of soft tissue, lower radiation dose, 
and additional information provided by diffusion in inter-
rogating tissue cellularity.

Fig. 6  48-year-old woman 
with endometrial cancer. Axial 
T2-weighted image (a) demon-
strates a hypointense mass along 
the left fundal endometrium 
(white arrow) which appears to 
be confined to the endometrium. 
Simultaneously acquired PET 
image demonstrates increased 
18F-FDG uptake within the uter-
ine fundus, which, when fused 
and coregistered with T2WI 
(b) shows myometrial invasion 
> 50% (black arrow) which 
upstaged the patient’s endome-
trial cancer to IB from IA
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Fig. 7  45-year-old woman 
with cervical cancer. Contrast-
enhanced CT (a) demonstrates 
fullness in the lower uterine 
segment with equivocal enhanc-
ing soft tissue (white arrow). 
PET/CT with fused images 
(b) confirms a corresponding 
hypermetabolic mass in the 
lower uterine segment/cervical 
region. Subsequently performed 
PET/MR shows a T2 hyper-
intense (c), 18F-FDG avid (d) 
bilobed mass with restricted 
diffusion (e, DWI; f, ADC) 
in the cervix (black arrow) 
extending into the parametrial 
soft tissues. The high soft tissue 
contrast of MR combined with 
PET permits accurate staging 
as IIB, not readily apparent on 
conventional PET/CT
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