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Abstract
Accurate diagnosis, monitoring and treatment decisions in patients with chronic liver disease currently rely on biopsy as the 
diagnostic gold standard, and this has constrained early detection and management of diseases that are both varied and can be 
concurrent. Recent developments in multiparametric magnetic resonance imaging (mpMRI) suggest real potential to bridge 
the diagnostic gap between non-specific blood-based biomarkers and invasive and variable histological diagnosis. This has 
implications for the clinical care and treatment pathway in a number of chronic liver diseases, such as haemochromatosis, 
steatohepatitis and autoimmune or viral hepatitis. Here we review the relevant MRI techniques in clinical use and their 
limitations and describe recent potential applications in various liver diseases. We exemplify case studies that highlight how 
these techniques can improve clinical practice. These techniques could allow clinicians to increase their arsenals available 
to utilise on patients and direct appropriate treatments.
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Introduction

Chronic liver disease leads to progressive injury from vari-
ous aetiologies such as: iron overload, steatosis, steatohep-
atitis, viral hepatitis, autoimmune, metabolic disease and 
some drug toxicities. These represent the majority of aetiolo-
gies of liver diseases and vary in estimated worldwide preva-
lence so that of 112 million prevalent cases of compensated 
cirrhosis reported in 2017, 36 million were due to hepatitis 
B, 23 million from alcoholic liver disease and 4 million from 
non-alcoholic steatohepatitis [1].

In recent clinical practice, the number of referrals for 
abdominal and liver magnetic resonance (MR), including 
focussed liver MRI for diffuse disease, has increased. In 
part this is because tools used in current clinical practice 
for the diagnosis of liver disease have intrinsic limitations. 

Screening, monitoring and therapy decision-making abili-
ties of multi-parametric MRI (mpMRI) are being increas-
ingly recognised by hepatologists and gastroenterologists. 
Liver biopsy on the other hand is invasive, associated with 
potential complications [2–4] and subject to variability in 
sampling and interpretation [5–7]. Serum biomarkers are 
widely available but are non-specific [8–11]. Transient elas-
tography (TE) and controlled attenuation parameter (CAP) 
are available in many practices as point of care to assess 
elasticity of the liver and steatosis, respectively, but are lim-
ited by high measurement failure rates especially in obese 
patients [12–16]. New methods and standardisation of imag-
ing protocols have allowed radiologists to quantify features 
of liver parenchyma and alter practice and decision-making, 
although this is not yet fully reflected in clinical guidelines.

Current clinical guidelines for the management of non-
alcoholic fatty liver disease (NAFLD) do not recommend 
routine screening for steatosis, even in high-risk groups 
in primary care, diabetes, or obesity clinics [17]. Instead 
NAFLD guidelines emphasise stratification of patients into 
those at low and high risk of fibrosis, with diagnosis based 
on the use of specific serum biomarkers and elastography-
based techniques [17,18]. Liver biopsy is recommended in 
patients at higher risk of steatohepatitis or advanced fibro-
sis, or cirrhosis, to confirm diagnosis or to clarify disease 
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aetiology [17]. Nevertheless, guidelines for diabetes man-
agement recommend diagnostic procedures to assess the 
degree of NAFLD or non-alcoholic steatohepatitis (NASH) 
irrespective of liver enzyme levels, due to the high risk of 
liver disease progression in this patient population [19,20]. 
In autoimmune hepatitis (AIH), clinical guidelines recom-
mend a combination of blood tests and biopsy to assess 
response to pharmacotherapy and monitor resolution of 
histological inflammation [21]. This can lead to disease mis-
management or complications for the patient that an imaging 
test has the potential to avoid. In genetic haemochromatosis, 
the guidelines centre around early detection and monitoring 
via blood tests and confirmation, if necessary, with biopsy 
[22].

The needs of payers, clinicians and healthcare systems 
that support patients through disease progression and pre-
vention, however, go beyond the existing guidelines and 
highlight diagnostic gaps. The needs in the management 
of chronic liver disease are largely dictated by costs and 
availability of treatment options. Academic and real-world 
community clinical management varies due to availability 
of resources, with community clinicians less likely to follow 
guidelines or monitor patients frequently [23,24]. In outpa-
tient clinics, differentiation of steatosis from steatohepatitis 
to identify severe disease in alcoholic liver disease, NAFLD 
or both (BAFLD) is extremely vital in the management of 
these patients [25]. In AIH and haemochromatosis early 
diagnosis and monitoring response to disease treatment is 
important. In addition, recent developments in our under-
standing of liver disease, in light of increased epidemics 
of obesity and autoimmunity, have increased the impact 
of chronic liver disease in related clinical care pathways, 
for metabolic (dysfunction) associated fatty liver disease 
(MAFLD) [26], for example. This places additional pres-
sure on an already overloaded healthcare system but may 
be transformed by additional diagnostic tools, especially as 
the maturation of new pharmacotherapies in steatohepatitis 
and diabetes could introduce new treatment and diagnostic 
opportunities.

Recent developments suggest that mpMRI could bridge 
some of these diagnostic gaps, the biggest impact being 
to obviate the need for histological assessment of disease 
activity and staging via liver biopsy in many clinical disease 
states [22,27–36]. It is only a matter of time before liver 
mpMRI enables clinical practice transformation, following 
in the footsteps of success stories already seen in breast can-
cer, prostate cancer and cardiology [37–39]. Here we review 
some of the parametric MRI techniques in clinical use that 
underpin mpMRI, as well as some of their potential clini-
cal limitations and describe recent potential applications in 
patients with chronic liver disease.

mpMRI methods in clinical practice

Multiparametric MRI refers to use of multiple quantita-
tive (parametric) MRI features or measures with several 
possibilities for combinations [34–36,40–45]. Therefore, 
these combinations could be used to evaluate two or more 
specific characteristics of chronic liver disease and dif-
fuse liver processes, to include derivation of composite 
metrics [44,46]. We will limit this review to parametric 
MRI techniques in clinical decision-making for chronic 
liver disease that are available to the practicing radiologist. 
For example, T1rho is an exciting approach that explores 
a relaxation due to low frequency (kHz) exchange interac-
tions and may find utility once it has been validated and 
deployed at scale [47], SWI (susceptibility weighted imag-
ing) provides an approach for measuring local magnetic 
susceptibility that can assess fibrosis [41] and has been 
shown to be affected by iron, fat and collagen deposition 
[41,48,49]. Developments utilising contrast agents are not 
included, as these have been reviewed recently elsewhere 
[50] and are mainly used in characterisation of hepatocel-
lular lesions and carcinomas.

•	 T2/T2*: Since R2 = 1/T2 and R2* = 1/T2*, we will talk 
about them indiscriminately. Iron content can be meas-
ured using spin-density projection-assisted R2 [51,52] 
or T2* transverse relaxation, for example with GRE 
sequences [16,28,40,53]. These methods are standard-
ised across scanners [42,51] and commercially avail-
able (Resonance Health, Australia and Perspectum, 
UK, respectively). Semi-automated post-processing 
services with same day turnarounds are now possible 
for T2*. Fibrosis, fat, and other hepatic cellular pathol-
ogy contribute to R2 and R2* and interfere with liver 
iron content estimation [54–56]. The effect of fat has 
accuracy implications in NAFLD [55] but appears to 
be relatively small and may be minimised by math-
ematical correction [57,58]. In, addition, R2* can be 
obtained simultaneously with PDFF with Dixon-based 
sequences [55,56,59]. The confounding effect of fibro-
sis may be overcome with newer processing methods 
[54].

•	 Proton density fat fraction (PDFF): PDFF is a ratio, 
expressed as a percentage, of the fraction of the MRI-
visible protons attributable to fat divided by all MRI-
visible protons in that region of the liver attributable 
to fat and water. Taking advantage of the chemical 
shift between fat and water, pulse sequences can be 
used to acquire images at multiple echo times at which 
fat and water signals have different phases relative 
to each other [60, 61]. PDFF can be performed with 
very high precision using a multiple echo spoiled GRE 
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sequence with > 3 echo times. To avoid biasing the 
PDFF measurement it is important to image with a low 
flip angle to minimise T1 weighting (such as flip angle 
5°, TR = 12 ms at 1.5T,flip angle 3°, TR = 14 ms at 
3T) [62]. A complete set of sequence recommenda-
tions has been formulated by the quantitative imaging 
biomarkers alliance group (QIBA) [63,64]. MRI-PDFF 
is easier to perform, has high reproducibility [65, 59, 
64] and reflects fat distribution on at least one cross-
sectional slice rather than a few voxels, so has replaced 
measurement of triglyceride content using 1H MR spec-
troscopy even in guideline recommendations [17, 66] 
including for diabetes [19]. To minimise T1 bias (fat 
has shorter T1 than water), a low flip angle is used, 
along with acquisition or algorithmic corrections for 
T2* effects [59,67–69]. Developments in echo times 
[70–72] and processing improve sensitivity to field 
inhomogeneities, signal-to-noise ratios and sensitivity 
at PDFF > 50% [73,74]. These also highlight that PDFF 
accuracy is not meaningfully confounded by any of age, 
sex, BMI, inflammation or fibrosis [75,76].

•	 Magnetic resonance elastography (MRE): MRE uses low 
frequency mechanical shear waves to cause liver vibra-
tions that are detected by MRI, based on a modified 
phase contrast pulse sequence [34, 77]. 3D-MRE takes 
advantage of additional spin-echo echo-planar-imaging 
(SE-EPI) to capture shear wave displacements along 
three dimensions, and images the entire liver rather than 
regions of interest (ROI) but to date is not FDA-cleared 
[78,79]. MRE is commercially available on 1.5T and 3T 
MRI scanners once suitable hardware is added in order 
to produce the requisite mechanical waves, and once 
specific software is installed for elastogram acquisition 
(Resoundant Inc., USA). Standardisation of 2D-MRE 
exists on three major vendors [80,81], although different 
shear wave frequencies are used outside the USA that 
are not FDA-cleared [82] and there is no consensus yet 
on the standards for ROI number, size or shape, which 
can add to measurement variability [83]. This could be 
overcome by dedicated freehand ROI selection under 
supervision of an experienced radiologist or by using 
additional software to aid in this process [84]. The accu-
racy of MRE for early fibrosis is reportedly superior to 
transient elastography (TE) but equivalent in cases of 
advanced fibrosis [34,85–87], and MRE shear waves 
may propagate through small- and medium-sized ascites. 
MRE has a lower measurement failure rate than TE and 
has reportedly better repeatability [88]. However, iron 
deposition in the liver is a reported confounder for MRE 
that is significantly associated with measurement failure 
[77]. MRE is confounded by even mild iron overload, 
necessitating mpMRI with T2, T2* or, more recently, 
SE-EPI sequences [35,89,90]. Additional measurement 

of PDFF to evaluate steatosis has been attempted along-
side MRE [36,40], as PDFF and T2* can be acquired 
within a single breath-hold. As with TE, MRE values are 
affected by chronic and acute inflammation, which can 
cause overlap in elastography values of patients with no 
or mild fibrosis [9,91]. Thus, high liver stiffness values 
can be obtained without any degree of fibrosis, resulting 
in low positive predictive value.

•	 T1/corrected T1 (cT1): Modified Look-Locker inversion 
recovery (MOLLI) T1 maps provide diagnostic infor-
mation in the heart, so that increased T1 can be diag-
nostic of oedema (increased tissue water) or increased 
interstitial space [92–94], whilst increased extracellular 
volume is a powerful independent predictor of mortality 
in patients with severe aortic stenosis [95]. Similarly, the 
T1 of the water component is of diagnostic significance 
in the liver using MOLLI mapping or inversion recov-
ery echo-planar imaging readouts to characterise tissue 
[28,68,96–98]. Since iron is a ferromagnetic material, it 
can shorten tissue T1 and T2 relaxation times and this 
is further accentuated by the dependence of MOLLI T1 
on T2 [99], with potential bias equivalent to one fibrosis 
stage when hepatic iron content increases from normal 
to high levels (1.0 to 2.5 mg/g) [100,101]. The con-
founding effect of iron on T1 mapping is corrected by a 
compensatory algorithm, based on the application of a 
multi-compartment model to simulate tissue and water 
environments in the liver during changes in iron content 
and in extracellular fluid (a proxy for fibrosis) [100]. For 
simplification the resulting cT1 is treated as a parametric 
component in this review, despite requiring T2* measure-
ment. cT1 is commercially available as post-processing 
software (with T2* and PDFF, LiverMultiScan™, Per-
spectum, UK) and correlates with parenchymal fibrosis, 
inflammation and ballooning [16,28,31,32,76,102]. cT1 
shows low measurement failure rates, high repeatability 
and reproducibility that are superior to those of elas-
tography techniques in both published and preliminary 
data [42,80,88]. Fat has some additive effect on MOLLI 
T1 measurements at 3T [103] and by extension on cT1, 
but optimisation of MOLLI sequence parameters may 
be used to manage these biases, for example by use of 
asymmetric echo times during bSSFP [104]. Correlation 
of cT1 with histological disease features is maintained 
even after controlling for steatosis [76].

•	 Diffusion-weighted imaging (DWI): Quantitative meas-
ures of diffusion can be produced by measuring the 
magnitude (apparent diffusion coefficient; ADC) and 
directionality (fractional anisotropy) of diffusion. The 
accumulation of steatosis, inflammation and fibrosis 
can lead to changes in water diffusion and these can be 
measured using various DWI techniques. Whilst mainly 
applied clinically in focal lesion characterisation, recent 
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developments have potential utility in viral hepatitis and 
staging fibrosis [105–110]. Limitations include lack of 
standardisation with inconsistencies reported for field 
strength [111] and B values [112,113]. Imaging homo-
geneity artefacts can be improved with simultaneous 
multi-slice respiratory-triggered acceleration (SMS-RT-
DWI) [114]. Another DWI approach with promise is 
IVIM (intravoxel incoherent motion) that utilises diffu-
sion imaging methods to explore both microcirculatory 
water motions and diffusion. Although specialist process-
ing tools are required, recent studies indicate IVIM may 
further enhance fibrosis staging but this requires valida-
tion beyond focal disease [115–118].

Commercially available methodologies used in clinical 
practice differ in their performance and applicability to dif-
ferent MR scanner systems, with particular consequences in 
terms of operability (Table 1). Below we will describe how 
these techniques can be used for diagnosis, monitoring, and 
predicting outcomes—we will describe these in frequently 
occurring hepatology problems encountered in clinical care, 
with examples.

Applications of mpMRI in chronic liver 
disease

Haemochromatosis

The proper staging of patients with genetic heamochro-
matosis (HFE) is paramount for treatment. The ability to 
use MRI to quantify liver iron concentration and the pres-
ence of non-invasive serologic markers for fibrosis predic-
tion (serum ferritin, platelets, transaminases), have dimin-
ished the diagnostic need for biopsy in haemochromatosis. 
Genetic testing is required to differentiate true genetic 
hemochromatosis (homozygous C282Y) from the other 
forms of milder hemochromatosis or even secondary iron 
overload syndromes [22,119]. Recent studies have identi-
fied elevated iron without homozygosity for the p.C282Y 
variant in the HFE gene, highlighting the continued unde-
tected disease existing in the general population [120–122]. 
Increased iron can be co-existing in NAFLD, ALD and 
other chronic liver diseases [22,122,123]. Elevated liver 
iron has been reported in NALFD cohorts at prevalence that 
ranges between 10–34.5%, based on histochemical staining 
[40,102,124–126]. Both R2 and T2* based imaging could 
therefore be used clinically if integrated into clinical guide-
lines to identify such cases. Additional clinical applications 
for R2 and T2* are reviewed extensively by Wood [127].

Foci of increased iron occur in the regenerating nod-
ules surrounded by fibrosis in cirrhotic livers [128]. The 
development of fibrosis and liver cirrhosis changes both the 

prognosis and the management of haemochromatosis, espe-
cially as patients improve after treatment with phlebotomy 
and show liver fibrosis regression [22]. Detection of fibrosis 
through cT1 or TE is preferable to MRE in these cases due 
to the confounding effect of iron resulting in MRE technical 
failures [77].

Steatohepatitis (NASH/ASH)

Alcohol acts synergistically with obesity and diabetes in the 
progression to cirrhosis and hepatocellular carcinoma [93], 
patients with both NAFLD and ALD have more advanced 
fibrosis compared to those with NAFLD alone [25]. Indeed, 
steatohepatitis from both NAFLD and ALD is associated 
with higher risk of cardiovascular disease and outcomes than 
either NASH or ASH alone [129, 130]. Hepatic fibrosis has 
been shown to predict patient mortality [131], so clinicians 
have relied on elastographic techniques to evaluate sever-
ity and make appropriate decisions.[78]. However, other 
histological features contribute to steatohepatitis, such as 
inflammation and ballooning, collectively known as disease 
activity [17]; steatohepatitis is defined as the presence of 
5% steatosis with inflammation and hepatocyte injury (e.g. 
ballooning), with or without any degree of fibrosis. Most of 
these tissue characteristics may be detected as an increase 
in T1 relaxation time [31,96,98].

Diagnosis

The diagnostic accuracy, linearity and precision of PDFF has 
been validated in many studies, showing that PDFF assess-
ments closely correlate with steatosis assessment based on 
liver biopsy, magnetic resonance spectroscopy and chemical 
analysis of tissue samples [30,64,132]. However, PDFF can-
not differentiate simple steatosis (NAFL) from steatohepa-
titis (NASH) necessitating other measurements to identify 
disease activity and fibrosis. cT1 has been used to improve 
stratification of non-alcoholic fatty liver disease (NAFLD) 
in the general population [133], in patients with co-preva-
lent type 2 diabetes [134] and from other parenchymal dis-
ease [102], whilst MRE can also discriminate healthy from 
NAFLD individuals [135]. Thus, radiology could enable ear-
lier detection of disease before increased severity or fibrosis 
develop.

The diagnostic accuracy of fibrosis using cT1 is either 
equivalent or inferior to diagnosis by elastography based 
on comparative studies in NAFLD-only cohorts, with 
equivalent AUROC of 0.83 reported for cT1-based diag-
nosis of NASH or significant fibrosis in predominantly 
NAFLD cohorts as published and preliminary data indi-
cate [32,85,102]. This may reflect the relatively small per-
cent change in collagen percentage area that differentiates 
between stages of fibrosis [7], especially as mouse models of 
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liver fibrosis have demonstrated that T1 and T2* correlations 
to fibrotic disease severity vary with aetiology [136]. Accu-
racy improves when cT1 is applied as a composite biomarker 
with blood biomarkers (AUROC of 0.84–0.97 are reported 
for detection of NASH with significant fibrosis, as published 
and preliminary data indicate [46,137]).

Using MRE, the accuracy of diagnosis of fibro-
sis (AUROC of 0.84–0.93 reported, depending on the 
fibrosis stage) is better than for identification of NASH 
only (AUROC of 0.58–0.73), although higher accu-
racy has been reported in mainly fibrotic NASH cohorts 
[34,82,85,87,135,138,139]. 3D-MRE was shown to be supe-
rior to 2D-MRE for advanced fibrosis and equivalent for 
NASH [78]. MRE is recommended for identifying patients 
who are at risk for steatohepatitis and/or advanced fibrosis 
in guidelines.

Conversely, cT1 is superior to MRE in stratification of 
NASH as shown in NAFLD cohorts in the UK, US and 
Japan, as preliminary data show [140,141]. In NAFLD 
cohorts cT1 strongly correlated with NAFLD activity 
score [102] and ballooning [32], with an AUROC of 0.84 
for diagnosis so it may have utility in earlier detection and 
diagnosis of disease activity. Limited correlation to lobu-
lar inflammation has been observed in NALFD cohorts 
[16,32,76,102], although moderate to severe inflammation 
significantly increased T1 independently from fibrosis, using 
cT1 (or echoplanar imaging [96] in cohorts of chronic liver 
disease of mixed aetiologies [28]. This may reflect the low 
grade inflammation seen in NAFLD [142]. Use of cT1 to 
confirm disease in patients with suspected NAFLD may be 
financially advantageous as a result of reducing the need for 
further confirmatory diagnostics such as liver biopsy in UK 
and European clinical care published and preliminary data 
show [29,102,134]. Fat droplets in NASH cause changes to 
the liver parenchyma including oxidative stress, activation 
of cytokines resulting in local inflammation and eventual 
collagen deposition [143]. Such effects could also affect 
the amount of extracellular water and free water diffusion 
and have been investigated with DWI [110,115]. Emerging 
research on the derivation of ADC and IVIM signals sug-
gests that microcirculation in vessels (perfusion) rather than 
molecular diffusion within liver tissue may correlate with 
histological staging of liver fibrosis [115]. Standardisation of 
the acquisition protocols, based on respiratory-triggered fat-
saturated spin-echo echo-planar imaging sequences, would 
serve to validate these findings, with potential application 
in diagnosis of inflammation.

Monitoring

Until now there have been no licensed pharmaceutical ther-
apies for the NAFLD spectrum and, despite the difficulty 
of patient adherence to lifestyle changes, diet and exercise Ta
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have been the first-line recommendations. Bariatric surgery 
is available for morbidly obese patients with steatohepatitis 
and can be monitored by PDFF, MRE or cT1 [36] (Fig. 1). 
However, not all patients are candidates for surgery. Clinical 
practice will likely change due to the encouraging interim 
results of a phase 3 study with obeticholic acid in reduc-
ing fibrosis [144], and other phase 3 trials affecting hepatic 
metabolism, or acting as anti-inflammatory or anti-fibrotics 
[145]. MRI is critical in clinical trials for NASH, with PDFF 
and cT1 being used as primary endpoints and MRE as a 
secondary endpoint in both published and preliminary find-
ings [146,147]. A recent study of a chemical inhibitor of de 
novo lipogenesis, GS-0976, improved outcomes in NASH 
patients and reduced PDFF but no substantial change was 
detected using MRE [148].

Diagnosis of complications and predicting outcomes

Both PDFF and cT1 are significantly higher in patients 
with type 2 diabetes [149,150] and a positive correlation 
between MOLLI T1 values in the liver and history of car-
diovascular disease has been reported in a large multi-eth-
nic, adult population study spanning over 10 years [151]. 
In a smaller study MRE confirmed the association between 
fibrosis and increased cardiovascular risk in patients with 
type 2 diabetes [152]. cT1 can be used to predict liver-
related clinical outcomes (such as ascites, encephalopa-
thy, liver-related mortality and hepatocellular carcinoma) 
with 100% negative predictive value [31] and as accu-
rately as biopsy [153] in patients with ASH, NASH or 

viral hepatitis. cT1 can also be used to predict liver event-
free survival as emerging data indicate [154,155]. cT1 has 
reported application in detecting portal hypertension as 
published and preliminary data indicate [156–158] and 
MRE in predicting variceal bleeding in cirrhotic patients 
[159, 160]. Both technologies could provide additional 
value in prediction of liver-related outcomes of patients 
after hepatic resection or transplantation.

Paediatric disease

Histopathological features of NAFLD in children may dif-
fer from those in adults, particularly in younger children 
in whom steatosis may be more abundant or accentuated 
in different zones. Inflammation and fibrosis may be con-
centrated in portal tracts initially rather than the traditional 
pericentral seen in adults and ballooning is less frequent as 
well. The presence of significant steatosis or inflammation 
in a biopsy-confirmed fibrotic cohort spanning infants to 
young adults resulted in a significant reduction in MRE 
sensitivity [161]. AUROC for significant fibrosis dropped 
from 0.82 to 0.53 in the presence of steatosis [161], whilst 
in contrast data with cT1 confirms that higher disease 
activity is present with increasing obesity in emerging 
data [162] (Fig. 2). As with adults cT1 in paediatrics has 
high repeatability and reproducibility [163] and correlates 
with histological scoring of ballooning, fibrosis, and both 
portal and lobular inflammation [164], as suggested by 
preliminary data.

Fig. 1   Example mpMRI case 
showing reduction in cT1 and 
PDFF values following bariatric 
surgery



3514	 Abdominal Radiology (2020) 45:3507–3522

1 3

Viral hepatitis

Clinicians can stage fibrosis and level of inflammation with 
MRE or cT1 [28,31,102] and monitor effect of treatment 
[165], which is important to know prior to therapy deci-
sion-making for Hep C and Hep B. (Fig. 3). Compared to 
steatohepatitis, viral disease results in higher incidence of 
cirrhosis. Elevated T1 in the liver has been associated with 
increasing severity of cirrhosis using modified respiratory-
triggered inversion-recovery sequences [98]. High T1 val-
ues could stratify compensated cirrhosis from decompen-
sated cirrhosis and were associated with and predictive of 
liver disease outcomes in patients with compensated cir-
rhosis [98]. In addition, DWI, in particular IVIM, could 
stratify patients with viral hepatitis in terms of fibrosis 
[109,115,166] and inflammation [105,110,116], with recent 

publications discriminating cirrhotic livers from healthy 
livers [107,116] and stratifying disease severity based on 
blood biomarker scoring systems [106] or TE [167]. DWI 
also attains high accuracy for identification of oesophageal 
and gastric fundic varices [107]. However, as TE is more 
scalable in the developing world this is a more frequent diag-
nostic solution.

Autoimmune liver disease (AIH, cholangitis)

AIH is a disease associated with the production of autoan-
tibodies (ANA, SMA), resulting in chronic inflammation 
and, if untreated, fibrosis and cirrhosis over time [168]. AIH 
patients tend to experience disease flares throughout their 
life span. Patients require life-long monitoring to evaluate 
response to treatment options, such as corticosteroids and 

Fig. 2   Example mpMRI cases of cT1 and PDFF in normal, overweight and obese paediatric cases

Fig. 3   Example mpMRI case 
showing reduction in cT1 fol-
lowing sustained viral response 
(SVR) to 24-weeks of antiviral 
treatment for Hepatitis C
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azathioprine among others [21]. Biochemical remission is 
often challenging, and only 38–93% of patients are able to 
achieve a complete histological response [169]. Up to 50% 
of patients develop cirrhosis while undergoing treatment 
despite [170] having normal biochemical markers [171].

Diagnosis

cT1 is more sensitive to subtle changes in inflammation 
in the liver than circulating biomarkers and elastography, 
as published and preliminary data show [172–175]. This 
supports the ability of cT1 to measure liver inflammation 
without steatosis [172–175]. High AUROC for detection of 
advanced fibrosis have been reported in patients with AIH, 
using MRE [176] or DWI [109]. Additionally, as primary 
biliary cholangitis (PBC) and primary sclerosing cholangitis 
(PSC) can be co-prevalent with AIH, cT1 can be used to 
differentiate between patients with AIH and biliary disease 
as emerging data show [177]. Furthermore, these patients 
may benefit from additional characterisation with magnetic 
resonance cholangiopancreatography (MRCP) [178] or 
DWI [167], including with recently developed software to 
enhance and quantitate MRCP images (MRCP+, Perspec-
tum, UK) [179,180]. Additionally, cT1, MRE and DWI have 
reported application in detecting portal hypertension in such 
cohorts, with highest AUROC reported for MRE [157].

Monitoring

Improvements on immunosuppressive treatment (elevated 
baseline returning to normal levels at follow-up) have been 
detected by cT1 in AIH, and cT1 discriminates between 
treatment-naive AIH patients and those post-treatment, as 
published and emerging data show [173,181,182]. cT1 can 
be used to predict clinical outcomes (AUROC for future 
flare events 0.721, p = 0.003) better than TE (AUROC: 
0.502, p = 0.983) and the enhanced liver fibrosis test 
(AUROC: 0.501, p = 0.992), indicated by emerging data 
[174,182,183]. Subtle changes in disease heterogeneity can 

also be quantified by cT1, as the interquartile range (IQR) 
(Fig. 4).

Paediatric disease

In paediatric populations cT1 has shown significant cor-
relations with ballooning, fibrosis and inflammation in 
emerging data [164,182,184]. When combined with cir-
culating biomarkers, cT1 can predict flares in paediatric 
AIH with a specificity of 100% and sensitivity of 50% 
(PPV 100%, NPV 57%) [183]. Moreover, cT1 can be used 
to stratify patients with AIH from those with other liver 
diseases including Wilson’s disease in emerging data 
[183,185–187] (Fig. 5), thus suggesting a wide range of 
potential utilities. This stratification is further improved 
when cT1 is used as a composite biomarker with PDFF in 
these studies [181].

Fig. 4   Example mpMRI case showing improvement in cT1 IQR following treatment in patient with concurrent AIH and primary sclerosing 
cholangitis

Fig. 5   Scatterplot showing the distribution of cT1 and PDFF across 
paediatric disease groups and healthy controls, showing AIH 
patients on treatment, treatment naive AIH, Wilson’s disease (WD), 
primary sclerosing cholangitis (PSC) and NAFLD
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Conclusion

The studies described here demonstrate that high accuracy 
can be obtained by application of an array of MRI tech-
niques in clinical care. MRE supports stratification of fibro-
sis as a window to disease state, cT1 is diagnostic of disease 
activity and progression whilst iron content can be quanti-
fied by (reciprocal) transverse relaxation. These techniques 
have the potential to influence American College of Radi-
ology guidelines and to complement existing diagnostics, 
enabling clinicians to diagnose, stratify and monitor liver 
disease earlier and with greater confidence. In particular, 
improved monitoring of response to new and existing treat-
ments may also be possible for a variety of liver diseases. 
This may reduce the reliance on invasive liver biopsy and 
improve patient experience and outcomes.
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