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Abstract
Purpose  To evaluate the association between texture parameters based on bi-parametric MRI and Gleason score (GS) in 
patients with prostate cancer (PCa) and to evaluate diagnostic performance of any significant parameter for discriminating 
clinically significant cancer (CSC, GS ≥ 7) from non-CSC.
Methods  A total of 116 patients who had been confirmed as prostate adenocarcinoma by radical prostatectomy or biopsy 
were divided into a training (n = 65) and a validation dataset (n = 51). All of the patients underwent preoperative 3T-MRI. 
Texture analysis was performed on axial T2WI and ADC maps (generated from b values, 0 and 1000 s/mm2) using dedicated 
software to cover the whole tumor volume. The correlation coefficient was calculated to evaluate the association between 
texture parameters and GS, and subsequent multiple regression analyses were applied for the significant parameters. To 
extract an optimal cut-off value for prediction of CSC, ROC curve analysis was performed.
Results  In the training dataset, gray-level co-occurrence matrix (GLCM) entropy on ADC map was the only significant 
indicator for GS (coefficient of determination R2, 0.4227, P = 0.0034). The AUC of GLCM entropy on ADC map was 0.825 
(95% CI 0.711–0.907) with a maximum accuracy of 82%, a sensitivity of 86%, a specificity of 71%. When a cut-off value 
of 2.92 was applied to the validation dataset, it showed an accuracy of 92%, a sensitivity of 98%, and a specificity of 70%.
Conclusion  GLCM entropy on ADC map was associated with GS in patients with PCa and its estimated accuracy for dis-
criminating CSC from non-CSC was 82%.
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Introduction

Prostate cancer (PCa) is the second most frequent cancer and 
the fifth leading cause of cancer death among men world-
wide [1]. Management of PCa includes active surveillance, 
radical prostatectomy, androgen deprivation therapy, and 
radiation therapy, which is individually divided according 
to each patient’s factors such as expected survival, prostate-
specific antigen (PSA) level, Gleason score (GS), and the 
presence or absence of metastasis [2, 3].

GS is a significant parameter on risk stratification of PCa, 
and reflects a cancer’s aggressiveness. GS ≥ 7 is considered 
to indicate clinically significant cancer (CSC). Recently, 
there have been studies on the selection of optimal treat-
ment modalities for low-risk PCa (GS < 7), in which context, 
active surveillance is increasingly used [4, 5]. Therefore, it is 
crucial to discriminate patients with clinically insignificant 
cancer for active surveillance from those with CSC for radi-
cal prostatectomy using non-invasive diagnostic modalities.

Since Prostate Imaging Reporting and Data System ver-
sion 2 (PI-RADSv2) was established, there has been much 
effort to detect CSC using magnetic resonance imaging 
(MRI). This system has shown a maximum accuracy of 
82% at a threshold of ≥ PI-RADSv2 value 4 [6]. To date, bi-
parametric MRI consisting of T2-weighted images (T2WI) 
and diffusion-weighted images (DWI) has emerged as an 
alternative to multi-parametric MRI for evaluation of PCa, 
and has shown a comparable diagnostic performance to that 
of multi-parametric MRI for detection of CSC [7, 8].
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Texture analysis is a mathematical model that extracts, 
from an image, features that are not perceptible to the human 
eye [9–11]. Several studies have employed texture analysis 
on MRI as an imaging biomarker to assess the aggressive-
ness of PCa, and have shown promising results [12–19]. 
Those studies have focused on either T2WI [12, 14, 16] or 
the apparent diffusion coefficient (ADC) map [15, 18]. How-
ever, only a few studies on bi-parametric MRI using T2WI 
and ADC map have been conducted. Moreover, to the best 
of our knowledge, there are only three studies that have dis-
tinguished CSC from clinically insignificant cancer using 
texture parameters based on bi-parametric MRI [13, 17, 19].

Therefore, the aim of this study was to investigate the 
association between texture parameters based on bi-para-
metric MRI and GS in patients with PCa and to evaluate 
diagnostic performance of any significant parameter for dis-
criminating CSC from non-CSC.

Methods

This retrospective study was approved by the relevant insti-
tutional review board, and informed consent was waived.

Patients and selection criteria

For a training dataset, between January 2017 and February 
2019, a total of 267 patients were histologically confirmed 
as prostate adenocarcinoma by radical prostatectomy or non-
targeted systematic biopsy. Among them, 111 patients who 
fulfilled the inclusion criteria were enrolled in the training 
dataset. The inclusion criteria were as follows: (a) patients 
having undergone preoperative or post-biopsy 3T-MRI 
and (b) patients with data on GS. Among the 111 patients, 
46 were excluded for the following reasons: (a) previous 
treatment (hormone therapy, radiation therapy or radical 
prostatectomy) for PCa (n = 20), (b) marked metallic arti-
fact on MR images (n = 2), (c) transurethral resection of the 
prostate (n = 8), (d) no identified focal lesion on T2WI and 
DWI (n = 16). Finally, 65 patients (mean age: 69 years, range 
51–88 years) were enrolled in the training dataset (Fig. 1).

For a validation dataset, 51 consecutive patients (mean 
age: 69 years, range 47–82 years) who were confirmed as 
prostate carcinoma by radical prostatectomy between March 
2019 and April 2020 were recruited.

MR imaging

All prostate MRI scans were performed in a 3.0-T MR 
machine (Achieva; Philips Medical imaging, Best, Nether-
lands) with a parallel-array body coil (SENSE Torso/cardiac 
coil; USA Instruments, Gainesville, FL, USA).

The imaging protocol included axial, coronal and sagit-
tal T2-weighted turbo spin-echo sequences [repetition time 
(TR)/echo time (TE), 2322/90 ms; echo train length (ETL), 
15; slice thickness, 3 mm; slice gap, 0.3 mm; matrix size, 
316 × 255; number of excitations (NEX), 1; field of view 
(FOV), 220 × 220]. Diffusion-weighted single-shot echo pla-
nar imaging (b = 0 and 1000 s/mm2; TR/TE, 5725/78 ms; 
ETL, 73; slice thickness, 3 mm; slice gap, 0.3 mm; matrix 
size, 120 × 118; NEX, 1; FOV, 220 × 220) was performed in 
the axial plane parallel to the axial T2WI. An ADC map was 
automatically calculated from b values of 0 and 1000 s/mm2.

MR texture analysis

First, two radiologists with 15 and 3 years of experience in 
reading prostate MRI reviewed the T2WI, ADC map, and 
DW images and determined the location, border of each 
tumor and PIRADSv2 score. These decisions were made by 
consensus after referencing the topographic map of resected 
specimens in cases of radical prostatectomy or, if there was 
no available topographic map, the systematic biopsy results 
in cases of no surgery. The radiologists had been informed 
of the presence of PCa but were blinded to the GS of each 
tumor. When multiple lesions were found in a single patient, 
the largest one was regarded as the index tumor.

The MR DICOM images of ADC map and axial T2W 
images were transferred from a picture archiving and com-
munication system (PACS) workstation (m-view; INFINITT 
healthcare, Seoul, Korea) to a workstation equipped with in-
house software (Medical Imaging Solution for Segmentation 
and Texture Analysis, MISSTA, Seoul, Korea) that performs 
fully automated quantification of texture features using a 
dedicated C++ language (Microsoft Foundation Classes; 
Microsoft, Redmond, WA, USA) [20–24]. For tumor seg-
mentation, the radiologist with 3 years of experience who 
had participated in the tumor localization manually drew the 
regions of interest (ROIs) along the tumor border on each 

Fig. 1   Flowchart showing case accrual process in the training dataset
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section of the ADC map to cover the entire tumor volume 
using the software’s 3-dimensional measurement tool. Defi-
nite areas of fat, vessel, bowel, seminal vesicle, or urinary 
bladder were excluded from the ROIs; however, areas of 
necrosis were included in the ROIs to reflect the heteroge-
neity of the tumor [25]. Similarly, the ROIs of axial T2WI 
were drawn with reference to the ADC map. The measure-
ment was repeated to obtain intra-observer agreement by 
the abovementioned radiologist. To evaluate inter-observer 
agreement, another radiologist with 4 years of experience 
performed the task with the same manner. Both radiologists 
were blinded to the results of each other.

After the tumor segmentation, we obtained a total of 53 
texture features that the software automatically provided. 
The texture features consisted of first-order statistics (mean, 
variance, standard deviation, skewness, kurtosis, entropy, 
and homogeneity) and second-order statistics based on the 
gray-level co-occurrence matrix (GLCM) (moments, angular 
second moment [ASM], inverse difference moment [IDM], 

Table 1   Demographics of study population

CSC clinically significant cancer (Gleason score ≥ 7), Non-CSC 
(Gleason score 6), PSA prostate-specific antigen

Parameter All CSC Non-CSC

Training dataset
Histopathologic examination, n (%)
Radical prostatectomy 46 (71) 30 (61) 16 (100)
Biopsy 19 (29) 19 (39) 0 (0)
Mean PSA ng/ml 79.28 102.4112 8.4775
Tumor location, n (%)
Peripheral zone 41 (63) 29 (59) 12 (75)
Transitional zone 14 (22) 11 (22) 3 (19)
Fibromuscular zone 2 (3) 1 (2) 1 (6)
Entire zone 8 (12) 8 (16) 0 (0)
PI-RADSv2, n (%)
3 10 (15) 3 (6) 7 (44)
4 16 (25) 10 (20) 6 (37)
5 39 (60) 36 (73) 3 (19)
Validation dataset
Histopathologic examination, n (%)
Radical prostatectomy 51 (100) 41 (80) 10 (20)
Mean PSA ng/ml 25.7623 30.3537 6.9376
Tumor location, n (%)
Peripheral zone 26 (51) 17 (41) 9 (90)
Transitional zone 8 (16) 7 (17) 1 (10)
Fibromuscular zone 2 (4) 2 (5) 0 (0)
Entire zone 15 (29) 15 (37) 0 (0)
PI-RADSv2, n (%)
3 6 (12) 3 (7) 3 (30)
4 13 (25) 8 (20) 5 (50)
5 32 (63) 30 (73) 2 (20)

Table 2   Association between individual texture parameters on ADC 
map and GS

ADC apparent diffusion coefficient, GS Gleason score, GLCM gray-
level co-occurrence matrix, ASM angular second moment, GLN 
gray-level non-uniformity
a  Three-dimensional (3D) wavelet transformation was applied and fil-
tered with a low-pass filter (L) or a high-pass filter (H) along the x, y, 
and z axes, respectively,

Texture parameters Correlation coefficient, R (95% 
CI)

P value

Positive correlation
Surface area (mm2) 0.3351 (0.1237–0.5499) 0.0034
Volume (mm3) 0.3801 (0.08387–0.5212) 0.0016
Kurtosis 0.4161 (0.1935–0.5979) 0.0005
Texture_Energy 0.3194 (0.08387–0.5212) 0.0089
Texture_GLN 0.3642 (0.1339–0.5571) 0.0026
Effective diameter (mm) 0.5644 (0.3734–0.7095) <0.0001
Entropy 0.5636 (0.3723–0.7089) <0.0001
GLCM entropy 0.6407 (0.4719–0.7643) <0.0001
Wavelet LLLa 0.5267 (0.3263–0.6818) <0.0001
Negative correlation
Discrete compactness − 0.6019 (− 0.7367– − 0.4213) <0.0001
GLCM ASM − 0.5153 (− 0.6733– − 0.3122) <0.0001

Table 3   Association between individual texture parameters on T2WI 
and GS

T2WI T2-weighted image, GS Gleason score, GLCM gray-level co-
occurrence matrix, ASM angular second moment, GLN gray-level 
non-uniformity
a  Three-dimensional (3D) wavelet transformation was applied and fil-
tered with a low-pass filter (L) or a high-pass filter (H) along the x, y, 
and z axes, respectively,

Texture parameters Correlation coefficient, R (95% 
CI)

P value

Positive correlation
Surface area (mm2) 0.3495 (0.1174–0.5454) 0.0040
Volume (mm3) 0.3648 (0.1347–0.5576) 0.0026
Entropy 0.4746 (0.2628–0.6428) 0.0001
GLCM contrast 0.3528 (0.1211–0.5480) 0.0037
Texture_Energy 0.3422 (0.1092–0.5396) 0.0049
Texture_GLN 0.3754 (0.1467–0.5660) 0.0019
Wavelet HLLa 0.3385 (0.1051–0.5366) 0.0054
Wavelet LHLa 0.3360 (0.1023–0.5346) 0.0058
Wavelet LLHa 0.3331 (0.09910–0.5323) 0.0063
Standard deviation 0.5067 (0.3017–0.6669) <0.0001
Variance 0.5445 (0.3484–0.6950) <0.0001
Effective diameter (mm) 0.5561 (0.3629–0.7034) <0.0001
GLCM entropy 0.5772 (0.3895–0.7188) <0.0001
Wavelet LLLa 0.5816 (0.3952–0.7220) <0.0001
Negative correlation
GLCM ASM − 0.3476 (− 0.5439– − 0.1153) 0.0042
Discrete compactness − 0.5810 (− 0.7216– − 0.3945) <0.0001
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contrast and entropy), the gray-level run-length matrix 
(GLRLM), and wavelet transformation features.

Histopathologic analysis

The non-targeted systematic biopsy system was applied to 
all biopsy specimens, and 12 core biopsy specimens were 
obtained. All of the radical prostatectomy procedures were 
carried out by dedicated urologists. After the radical pros-
tatectomy, the excised prostate gland containing tumor tis-
sue was fixed in formalin and serially sectioned from the 
apex to the base. After paraffin embedding, slides were 
stained with H&E. Each slide was assessed by a dedicated 
pathologist in accordance with the Gleason scoring system 
[25]. A total score is calculated based on how cells look 
under a microscope, with the first half of the score based 
on the dominant and the second half based on the non-
dominant cell pattern with the highest grade. The patholo-
gist recorded the GS from the largest lesion as an index 
tumor. A topographic map was drawn by connecting the 
tumor borders from each slide.

Statistical analysis

All of the statistical analyses were performed using Med-
Calc software for Windows (MedCalc Software version 
12.7.1.0, Mariakerke, Belgium). A P value less than 0.05 
was considered significant. First, the correlation coeffi-
cient was calculated to evaluate the association between the 
texture parameters derived from the T2WI and ADC map, 
respectively, and the GS. Subsequent multiple regression 
analyses were performed with those significant parameters 
(correlation coefficient ≥ 0.3 or ≤ − 0.3) from the T2WI 
and ADC map to determine the most significant predictor 
among them. To assess the difference of texture parameters 
between the CSC and non-CSC groups, the Mann–Whitney 
U test or t test was performed. To extract an optimal cut-off 
value for prediction of CSC, a receiver operating character-
istic (ROC) curve analysis was performed. The area under 
the curve (AUC) was calculated to evaluate the diagnostic 
performance of the texture parameters’ prediction of CSC. 
After the optimal cutoff value for maximum accuracy was 
extracted, the corresponding sensitivity, specificity, positive 
predictive value (PPV) and negative predictive value (NPV) 

Fig. 2   67-year-old man having 
histopathologically confirmed 
prostate adenocarcinoma with 
Gleason score (GS) 3 + 3 = 6. 
a Axial T2-weighted image 
(T2WI) shows ovoid low signal 
intensity (SI) lesion (arrow) 
in left middle peripheral zone. 
b Axial diffusion-weighted 
image (DWI, b = 1000 s/mm2) 
shows high-SI lesion (arrow) in 
corresponding location. c Axial 
apparent diffusion coefficient 
(ADC) map generated from 
(b) shows homogenous low-SI 
lesion (arrow) in same area. 
d Dedicated texture analysis 
software with 3-dimensional 
analysis automatically calcu-
lated texture features of region 
of interest (ROI, green color) 
manually drawn along tumor 
border on axial T2WI or ADC 
map. The gray-level co-occur-
rence matrix (GLCM) entropy 
of the whole tumor was 2.920 
on ADC map
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also were estimated. The optimal cutoff value derived from 
the training dataset was verified using the validation dataset. 
To evaluate feature robustness to segmentation variabilities, 
inter- and intra-observer agreements were tested by calcu-
lating intraclass correlation coefficient (ICC) in validation 
dataset. The values were classified as poor (0.00–0.20), fair 
(0.21–0.40), moderate (0.41–0.60), good (0.61–0.80), and 
excellent (0.81–1.00).

Results

Training dataset

Among 65 patients, 46 patients were confirmed by radical 
prostatectomy and 19 patients by systematic biopsy. The 
study population consisted of patients having GS 6 (n = 16), 
GS 7 (n = 18), GS 8 (n = 20), and GS 9 (n = 11). Table 1 
summarizes the demographics of the study population. 
The detailed results on the associations between the texture 
parameters and GS are provided in Tables 2 and 3.

After multiple regression analyses on those significant 
texture parameters on the combined T2WI and ADC map, 
GLCM entropy on ADC map (R2 = 0.4227, R2-adjusted, 
0.4043, rpartial, 0.3583, P = 0.0034) was the only significant 
indicator for GS. Representative images are shown in Figs. 2 
and 3. The AUC of GLCM entropy for discriminating CSC 
from non-CSC was 0.825 (95% CI 0.711–0.907) with a max-
imum accuracy of 82%, a sensitivity of 86%, a specificity of 
71%, a PPV of 89%, and an NPV of 63% (Fig. 4).  

Validation dataset

The study population comprised GS 6 (n = 10), GS 7(n = 28), 
GS 8 (n = 8), and GS 9 (n = 5). The validation dataset 
consisted of a CSC group (n = 41) and a non-CSC group 
(n = 10). The AUC of GLCM entropy was 0.920 (95% CI 
0.808–0.977). When the cutoff value of 2.92 was applied to 
the validation dataset, GLCM entropy showed a sensitivity 
of 98%, a specificity of 70%, and an accuracy of 92%.

As for inter-and intra-observer agreement, all features 
except skewness and kurtosis on T2WI showed good or 

Fig. 3   80-year-old man having 
histopathologically confirmed 
prostate adenocarcinoma 
with GS 4 + 4 = 8. a Axial 
T2-weighted image (T2WI) 
shows large low-signal intensity 
(SI) mass (arrow) replac-
ing whole prostate gland and 
extending to rectum through 
mesorectal fat tissue. b Axial 
diffusion-weighted image (DWI, 
b = 1000 s/mm2) shows hetero-
geneously high-SI mass (arrow) 
in corresponding area. c Axial 
apparent diffusion coefficient 
(ADC) map generated from (b) 
shows reciprocal heterogene-
ous low SI mass (arrow) in 
same area. d Dedicated texture 
analysis software with 3-dimen-
sional analysis automatically 
calculated texture features of 
region of interest (ROI, green 
color) manually drawn along 
tumor border on axial T2WI 
or ADC map. The gray-level 
co-occurrence matrix (GLCM) 
entropy of the whole tumor was 
4.992 on ADC map
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excellent agreements on both ADC map and T2WI. The 
detailed results on ICCs are provided in Tables 4 and 5.

Discussion

Although dynamic contrast enhanced imaging is one of main 
sequences in multi-parametric MRI, its role in PI-RADSv2 
is minor [26, 27]. Also, several studies have revealed that 
gadolinium-based contrast media can accumulate in deep 
cerebral structures [28, 29]. Bi-parametric MRI, meanwhile, 
has shown a comparable diagnostic performance to that of 
multi-parametric MRI for detection of CSC [7, 8]. In this 
context, we used bi-parametric MRI for the texture analy-
ses, based on which, GLCM entropy on ADC map were 
associated with GS in patients with PCa. GLCM, defined 
as “a two-dimensional histogram of gray levels for a pair of 
pixels that are separated by a fixed spatial relationship,” is 
the most common second-order statistical feature of texture 
analysis [10, 30]. Given that GLCM entropy, one of the vari-
ous GLCM parameters, reflects the disorder or complexity 
of an image and that complex textures tend to have high 
entropy [30], it is obvious that the more heterogeneous a 

tumor which reflects higher GS in PCa is, the higher GLCM 
entropy is.

Our results revealed that GLCM entropy showed an accu-
racy of 82% for discriminating CSC from non-CSC in the 
training dataset, and 92% in the validation dataset. In our 
opinion, the increased accuracy in the validation dataset 
might be attributed to the segmentation process in which 
the topographic map from the radical prostatectomy speci-
men served as the reference for all study population. Two 
studies similar to the present one have been conducted to 
evaluate the aggressiveness of PCa using texture analy-
ses on bi-parametric MRI [13, 17]. Wibmer et al. deter-
mined that GS was associated with higher entropy (GS 6, 
7.4 ± 1.04; GS > 7, 8.23 ± 0.8; P = 0.0069) and lower energy 
(GS 6, 0.009 ± 0.005; GS > 7, 0.005 ± 0.003; P = 0.0039) 
on ADC map; however, none of the other texture features 
showed a significant association with GS on T2WI [13]. 
Niu et al. observed that GLCM entropy and inertia on ADC 
map were  positively associated with GS (r = 0.614 and 
r = 0.663, respectively), and found that the AUC for texture 
analysis based on logistic regression models was 0.89 (95% 
CI 0.82–0.94) with a sensitivity of 87% and a specificity 
of 89% for detection of high-grade PCa (GS ≥ 7) [17]. The 
discrepancy between this study and ours is the statistical 
approach. Niu et al. ran logistic regression models that com-
bined texture parameters and PI-RADSv2 scores, whereas 
we ran only a multiple regression model for texture param-
eters, due to the fact that the PI-RADSv2 score might differ 
between observers.

Rozenberg et al., by contrast, performed a mono-paramet-
ric texture analysis on ADC map among multi-parametric 
sequences, and reported that texture features (skewness, 
kurtosis, entropy, run-length non-uniformity) on ADC map 
were not significantly different between GS 3 + 4 = 7 and GS 
4 + 3 = 7 tumors. However, their logistic regression models 
generated by incorporating all four texture features yielded 
an AUC of 0.77 with a sensitivity of 71% and a specificity of 
78% [15]. This observation might reflect a lack of ability of 
a single texture feature to distinguish significant differences 
in a heterogeneous tumor environment between tumors with 
the same GS.

There are several limitations to our study. First, the 
pathologic reference standards for GS were derived not 
only from radical prostatectomy but also from systematic 
biopsy. Because patients with higher GS may be treated 
with hormone therapy rather than radical prostatectomy 
[31], patients with higher GS were included after sys-
tematic biopsy without radical prostatectomy. However, 
the result from biopsy is not always consistent with that 
from radical prostatectomy and may change after radical 
prostatectomy [15, 18]. Second, there was a lack of appli-
cation of specific determining sequences for the prostate 
zones. According to the PI-RADSv2, DWI is the primary 

Fig. 4   Receiver operating characteristic (ROC) curve of gray-level 
co-occurrence matrix (GLCM) entropy on apparent diffusion coeffi-
cient (ADC) map for prediction of clinically significant cancer (CSC). 
The area under the ROC curve (AUC) of the GLCM entropy on ADC 
map was 0.825 (95% CI 0.711–0.907). For an optimal cut-off value of 
2.923, the estimated maximum accuracy was 82%, with a sensitivity 
of 86% and a specificity of 71%
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determining sequence for the peripheral zone while T2WI 
is for the transitional zone [27]. However, there were vari-
ous zonal distributions including entire zone in this study. 
Moreover, T2WI alone was not sufficient for tumor identi-
fication, even after consensus review, and particularly for 
GS 6 tumors. Therefore, it was necessary to combine DWI 
and ADC map with T2WI for tumor localization and seg-
mentation, which is another reason why the texture analy-
ses were based on bi-parametric MRI. Third, We could not 
incorporate PSA data to evaluate the improvement of diag-
nostic performance because all PSA data were not optimal 
due to a long time interval over 1 month between PSA 
test and surgery or systemic Bx. Last, test- retest repeat-
ability between different scans could not be evaluated 
because of the retrospective study design. A recent study 
observed that many radiomics features and preprocessing 

combinations showed high repeatability (ICC > 0.85) 
and overall the repeatability was highly sensitive to the 
processing parameters. Therefore, it recommended pay-
ing close attention to the processing configuration when 
interpreting radiomics features [32].

In conclusion, GLCM entropy on ADC map was asso-
ciated with GS in patients with PCa, in addition, its esti-
mated accuracy for discriminating CSC from non-CSC 
was 82%.
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Table 4   Intraclass Correlation 
Coefficient on ADC map

GLCM gray-level co-occurrence matrix, ASM angular second moment, IDM inverse difference moment

Texture parameters Intra-observer variability Inter-observer variability

First-order texture features
Mean 0.98 (95% CI 0.97–0.99) 0.98 (0.95% CI 0.97–0.99)
Standard deviation 0.93 (95% CI 0.88–0.96) 0.91 (95% CI 0.85–0.95)
Skewness 0.92 (95% CI 0.86–0.96) 0.93 (95% CI 0.88–0.96)
Kurtosis 0.78 (95% CI 0.61–0.87) 0.86 (95% CI 0.76–0.92)
Entropy 0.99 (95% CI 0.97–0.99) 0.98 (95% CI 0.96–0.99)
Homogeneity 0.89 (95% CI 0.80–0.93) 0.92 (95% CI 0.85–0.95)
Second-order texture features (GLCM based)
ASM 0.99 (95% CI 0.98–0.99) 0.98 (95% CI 0.96–0.99)
IDM 0.95 (95% CI 0.91–0.97) 0.92 (95% CI 0.86–0.95)
Contrast 0.98 (95% CI 0.96–0.99) 0.98 (95% CI 0.97–0.99)
Entropy 0.98 (95% CI 0.96–0.99) 0.98 (95% CI 0.96–0.99)
Moment 0.92 (95% CI 0.85–0.95) 0.89 (95% CI 0.81–0.94)

Table 5   Intraclass Correlation 
Coefficient on T2WI

GLCM gray-level co-occurrence matrix, ASM angular second moment, IDM inverse difference moment

Texture parameters Intra-observer variability Inter-observer variability

First-order texture features
Mean 0.98 (95% CI 0.97–0.99) 0.99 (0.95% CI 0.98–0.99)
Standard deviation 0.95 (95% CI 0.91–0.97) 0.95 (95% CI 0.91–0.97)
Skewness 0.58 (95% CI 0.27–0.76) 0.53 (95% CI 0.17–0.73)
Kurtosis 0.46 (95% CI 0.06–0.69) 0.29 (95% CI -0.24–0.60)
Entropy 0.97 (95% CI 0.94–0.98) 0.97 (95% CI 0.95–0.98)
Homogeneity 0.99 (95% CI 0.98–0.99) 0.98 (95% CI 0.97–0.99)
Second-order texture features (GLCM based)
ASM 0.98 (95% CI 0.97–0.99) 0.99 (95% CI 0.98–0.99)
IDM 0.97 (95% CI 0.95–0.98) 0.98 (95% CI 0.96–0.99)
Contrast 0.96 (95% CI 0.93–0.98) 0.95 (95% CI 0.92–0.97)
Entropy 0.99 (95% CI 0.98–0.99) 0.99 (95% CI 0.99–0.99)
Moment 0.98 (95% CI 0.97–0.99) 0.98 (95% CI 0.97–0.99)
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