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Abstract
Purpose The ability to reliably distinguish benign from malignant solid liver lesions on ultrasonography can increase access, 
decrease costs, and help to better triage patients for biopsy. In this study, we used deep learning to differentiate benign from 
malignant focal solid liver lesions based on their ultrasound appearance.
Methods Among the 596 patients who met the inclusion criteria, there were 911 images of individual liver lesions, of which 
535 were malignant and 376 were benign. Our training set contained 660 lesions augmented dynamically during training 
for a total of 330,000 images; our test set contained 79 images. A neural network with ResNet50 architecture was fine-tuned 
using pre-trained weights on ImageNet. Non-cystic liver lesions with definite diagnosis by histopathology or MRI were 
included. Accuracy of the final model was compared with expert interpretation. Two separate datasets were used in training 
and evaluation, one with all lesions and one with lesions deemed to be of uncertain diagnosis based on the Code Abdomen 
rating system.
Results Our model trained on the complete set of all lesions achieved a test accuracy of 0.84 (95% CI 0.74–0.90) compared 
to expert 1 with a test accuracy of 0.80 (95% CI 0.70–0.87) and expert 2 with a test accuracy of 0.73 (95% CI 0.63–0.82). Our 
model trained on the uncertain set of lesions achieved a test accuracy of 0.79 (95% CI 0.69–0.87) compared to expert 1 with 
a test accuracy of 0.70 (95% CI 0.59–0.78) and expert 2 with a test accuracy of 0.66 (95% CI 0.55–0.75). On the uncertain 
dataset, compared to all experts averaged, the model had higher test accuracy (0.79 vs. 0.68, p = 0.025).
Conclusion Deep learning algorithms proposed in the current study improve differentiation of benign from malignant 
ultrasound-captured solid liver lesions and perform comparably to expert radiologists. Deep learning tools can potentially 
be used to improve the accuracy and efficiency of clinical workflows.
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Introduction

Benign and malignant focal solid liver lesions have very 
different prognosis and management [1]. Benign lesions 
such as hemangiomas [2] are often observed, while malig-
nant lesions such as hepatocellular carcinoma (HCC) [3] 
have a variety of treatment options depending on stage at 
diagnosis. Similarly, metastatic involvement of the liver by 
cancer elsewhere in the body portends a worse prognosis 
and dictates different treatment strategies [4]. There are 
currently three main ways to diagnose liver lesions: CT, 
MRI, and biopsy [5, 6]. CT exposes patients to radiation 
and can be nondiagnostic [7], while MRI is expensive and 
may not be available in resource limited areas [8]. Further-
more, contrast used in CT and MRI can be contraindicated 
in patients with poor renal function [9, 10]. Ultrasound-
guided percutaneous liver biopsy is considered the gold 
standard for diagnosing solid liver lesions. However, the 
procedure is invasive and carries the risk of complications 
such as bleeding [11].

Ultrasound is often the first line imaging method to 
screen the abdomen. As an imaging modality, abdomi-
nal ultrasound is cheap, widely available, does not expose 
patients to ionizing radiation, and is non-invasive [6]. 
Patients with a history of viral hepatitis or liver cirrhosis 
are recommended to have semi-annual ultrasound screen-
ings for early diagnosis of liver lesions [12]. Patients with 
elevated liver function tests or abdominal pain may also be 
imaged. Additionally, ultrasound studies often reveal liver 
lesions incidentally. A major drawback of ultrasound for 
the evaluation of focal liver lesions is that it is sometimes 
difficult to make a definitive diagnosis, and additional 
workup is frequently required in the form of CT, MRI, 
or in some cases, subsequent liver biopsy for definitive 
diagnosis.

Deep learning is an increasingly popular and power-
ful technique for image pattern recognition, with modern 
approaches at the level of or exceeding expert physician 
interpretation [13–16]. One commonly used neural network 
architecture is the Residual Network (ResNet), which has 
been shown to be effective and stable during training [17]. 
This model introduces the concept of residual connections 
between convolutional layers which allows models to be 
trained to much deeper depths while still maintaining a low 
complexity. A recent study has applied deep learning for the 
diagnosis of liver tumors on CT [18]. To our knowledge, 
no study in the literature has investigated the use of deep 
learning in diagnosing focal solid liver lesion on routine 
abdominal ultrasound. In the current study, we trained a 
ResNet model to differentiate benign from malignant focal 
solid liver lesions based on their appearance on ultrasound 
and compared our model accuracies with those of experts.

Methods

Code abdomen

The Code Abdomen diagnostic system was developed in 
2014 at our institution and helps radiologists communicate 
malignancy risk of lesions found in four abdominal organs 
including the liver, adrenal glands, pancreas, and kidneys to 
ordering physicians [19]. The scale ranges from category 
0 to category 7 with 99 being nondiagnostic. Table 1 lists 
different categories and descriptions associated with each 
category.

Patient cohort

Patients who had abdominal ultrasound from 2014 to 2018 
with Code Abdomen liver categories 2, 3, 4, and 5 (C2–C5) 
were included in this current study. US units in this study 
included Philips Medical Systems model iU22 and model 
Epiq (Philips Ultrasound, Bothell, WA). Patients who did 
not undergo further work up by MRI or histopathology were 
excluded [3]. Category 0, 1, and 7 were excluded as pres-
ence of a lesion was required for training of our model and 
changes due to treatment may confound our model. Category 
6, known cancer, were included in our training set.

Among the 596 patients who met the inclusion criteria, 
there were 911 images of individual lesions. Of the 596 
patients, 300 had benign lesions while 296 had malignant 
lesions. Of the 911 lesions, 535 were malignant and 376 
were benign based on MRI or histopathology. The diagnosis 
of benign versus malignant was established by histopathol-
ogy in 265 patients and MRI in 331 patients [5, 20–25]. 
MRI was performed on 1.5 or 3.0 T scanners, with standard 
T2-weighted sequences, diffusion-weighted imaging and 
T1-weighted sequences including gradient-echo in-phase 
and out-of-phase sequences, gadolinium-enhanced three-
dimensional fat-suppressed multiphasic sequences. Every 

Table 1  Summary of patient cohort by Code Abdomen category

*Represents number of patients; multiple lesions may have originated 
from one patient

Category Description Benign:malignant* Biopsy:MRI*

C0 Incomplete evaluation – –
C1 No mass – –
C2 Benign 156:1 4:153
C3 Indeterminate 127:28 38:117
C4 Suspicious 14:116 107:23
C5 Highly suspicious 2:136 100:38
C6 Known cancer 0:15 15:0
C7 Treated cancer – –
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patient with benign or malignant lesion definitely diagnosed 
on MRI had typical imaging features of a benign or malig-
nant solid liver lesion, as interpreted in the original radiol-
ogy report and subsequently reviewed and confirmed by a 
radiologist (JW). Detailed make and model of MRI scan-
ners are in Supplementary Table S1. Malignant lesions were 
diagnosed on MRI based on clearly defined criteria such as 
enhancement and washout time in HCC [26]. Benign lesions 
had imaging follow-up lasting at least 24 months to ensure 
that they were benign.

There were 159 images in Code Abdomen liver category 
2, 238 in category 3, 217 in category 4, 256 in category 5. 
C2 and C3 lesions were more likely to have been confirmed 
by MRI, while C4 and C5 lesions were more likely to have 
been confirmed by biopsy (Table 1). The complete set was 
divided into a training set of 660 lesions with 3,30,000 aug-
mented images, validation set of 172 lesions, and a test set of 
79 lesions. The detailed clinical characteristics of the patient 
cohort is shown in Supplementary Table S2. The uncertain 
diagnosis set was divided by patient into a training set of 314 
lesions with 157,000 augmented images, a validation set of 
80 lesions, and a test set of 82 lesions.

Image segmentation

All images were downloaded in JPEG format at their origi-
nal dimensions and resolution. A novel website application 
was developed using Python, the web framework Flask, 
javascript, and the javascript framework React. With this 
tool, a radiologist specialized in abdominal imaging (JW) 
manually cropped downloaded ultrasound images to select 
the region of interest. Two segmentation schemes were used 
for all images: the first was a free crop of the lesion itself 
where a lesion was isolated in a square crop bounded tight 
to visualized lesion margins; the second was a fixed crop 
that was normalized to three real world physical centimeters 

across the x and y dimensions, centered on the lesion. Fixed 
crop images were normalized to three centimeters using 
ultrasound tick marks found in the images.

Model building

The imaging data were split into training, validation, and 
testing groups at a 7:2:1 ratio. Subgroup analysis with C3 
and C4 lesions (uncertain diagnosis set) was split into 
3:1:1 given smaller sample sizes. When multiple lesions 
originated from the same patient, these lesions were kept 
together during the randomized validation/training/test-
ing split; this ensures that the model was never evaluated 
during validation or testing on a patient that it saw when 
training. Model building was performed on the segmented 
images using the two methods described above. During 
training, images were rescaled to 200 by 200 pixel squares, 
then augmented in real-time with random horizontal/ver-
tical flips, shearing, and zooming to augment the size of 
the training set [27]. Models were trained with a batch 
size of 16, and training was stopped after 50 epochs with 
no improvement in the validation accuracy. Training was 
capped at a maximum of 500 epochs. After 100 training 
trials, the model with the best validation accuracy was 
selected.

Model architecture

The model was based on the ResNet50 architecture [17] with 
the following modifications: the 1000-class softmax fully-
connected layer was replaced with a multi-layer perceptron, 
five fully-connected layers of decreasing width (256, 128, 
64, 32, 16) with ReLU activations, and a single sigmoid 
output neuron for probability output and binary classification 
(benign or malignant); in the subgroup analysis of uncertain 

Table 2  Model and expert performance statistics in complete set (C2–C5) and uncertain diagnosis set (C3-C4) subgroups and free/fixed crop 
segmentation methods

Acc accuracy, TP true positive, TN true negative, FP false positive; TPR true positive rate, TNR true negative rate, PPV positive predictive value, 
NPV negative predictive value, FPR false positive rate, FNR false negative rate, FDR false discovery rate, CI confidence interval

Modality F1 Score ROC AUC PR AUC Acc (95% CI) TPR (95% CI) TNR (95% CI)

Complete set test
 Free—complete 0.86 0.83 0.86 0.84 (0.74–0.90) 0.87 (0.74–0.94) 0.78 (0.61–0.89)
 Fixed—complete 0.84 0.85 0.87 0.80 (0.70–0.87) 0.91 (0.80–0.97) 0.62 (0.45–0.77)
 Expert 1 0.84 N/A N/A 0.80 (0.70–0.87) 0.87 (0.74–0.94) 0.69 (0.51–0.82)
 Expert 2 0.78 N/A N/A 0.73 (0.63–0.82) 0.81 (0.67–0.90) 0.62 (0.45–0.77)

Uncertain set test
 Free—uncertain 0.80 0.79 0.75 0.79 (0.69–0.87) 0.80 (0.66–0.90) 0.78 (0.63–0.88)
 Fixed—uncertain 0.73 0.77 0.77 0.71 (0.60–0.80) 0.78 (0.63–0.88) 0.63 (0.48–0.76)
 Expert 1 0.71 N/A N/A 0.70 (0.59–0.78) 0.76 (0.60–0.86) 0.63 (0.48–0.76)
 Expert 2 0.66 N/A N/A 0.66 (0.55–0.75) 0.66 (0.50–0.79) 0.66 (0.50–0.79)
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Fig. 1  Data collection and model training pipeline. Images were col-
lected in JPEG format. Images were processed through a custom web 
application accessed by radiologists to provide segmentation and 
expert evaluation. Four experiments were set up comparing fixed seg-
mentation vs. free segmentation as well as uncertain images vs. all 
images. Images and malignancy labels were used to train a convolu-
tional neural network

◂

diagnosis set lesions, the learning rate was weighted by the 
reciprocal of the class frequency in the dataset. Pre-trained 
weights from ImageNet were used [28]. Hyperparameters, 
including batch size (8, 16, 32), base learning rate (0.001, 
0.0001, 0.00001), percent of pre-trained weights and biases 
frozen (100%, 75%, 25%, 0%), and presence of the top multi-
layer perceptron were all trialed, with the combination that 
performed best on the validation dataset selected (batch 
size = 16, learning rate = 0.0001, 0% pre-trained weights 
frozen, using top multi-layer perceptron).

Expert evaluation

Two expert radiologists (QP and DC), with 21 and 22 years 
of experience reading abdominal ultrasound, respectively, 
blindly evaluated unsegmented images for malignancy 
through our web application. The experts were given the age, 
gender and the clinical indication for the scan. The model’s 
results were compared to these expert evaluations to assess 
model performance.

Model assessment

Each trained model was assessed for its performance based 
on its accuracy, sensitivity, specificity, and area under the 
curve (AUC) of its receiver operating characteristic curve 
(ROC). In addition, the activations from the last convolu-
tional layer of the best performing models were visualized 
by t-distributed Stochastic Neighbor Embedding (t-SNE) 
[29]. Representative images from the free crop uncertain 
diagnosis set were visualized with Grad-CAM overlay [30, 
31].

Code availability

Our implementation was based on the Keras package [32] 
with the Tensorflow library as our backend [33]. Models 
were trained on a computer with an NVidia GTX 1080Ti 
GPU. To allow other researchers to develop their models, the 
code is publicly available on Github at https ://githu b.com/
intre pidle mon/deep-ultra sound . Figure 1 summarizes our 
data collection, annotation, and model training methodol-
ogy in a graphical format.

Results

Performance

Performance characteristics of our model trained on the 
complete set (C2–C5) and on the uncertain diagnosis set 
(C3–C4) using both free crop and fixed crop segmentation 
methods are summarized in Table 2.

The model trained on all free segmentation images 
achieved a test accuracy of 0.84 (95% CI 0.74–0.90), F1 
score of 0.86, precision recall AUC of 0.86, sensitivity of 
0.87 (95% CI 0.74–0.94), and specificity of 0.78 (95% CI 
0.61–0.89). The model trained on all fixed segmentation 
images achieved a test accuracy of 0.80 (95% CI 0.70–0.87), 
F1 score of 0.84, precision recall AUC of 0.87, sensitivity 
of 0.91 (95% CI 0.80–0.97), and specificity of 0.62 (95% CI 
0.45–0.77).

The model trained on uncertain free segmentation images 
achieved a test accuracy of 0.79 (95% CI 0.69–0.87), F1 
score of 0.80, precision recall AUC of 0.75, sensitivity 
of 0.80 (95% CI 0.66–0.90), and specificity of 0.78 (95% 
CI 0.63–0.88). The model trained on uncertain fixed seg-
mentation images achieved a test accuracy of 0.71 (95% CI 
0.60–0.80), F1 score of 0.73, precision recall AUC of 0.77, 
sensitivity of 0.78 (95% CI 0.63–0.88), and specificity of 
0.63 (95% CI 0.48–0.76).

In comparison, on the complete set of all images, expert 
1 achieved a test accuracy of 0.80 (95% CI 0.70–0.87), F1 
score of 0.84, and sensitivity of 0.87 (95% CI 0.74–0.94), 
and specificity of 0.69 (95% CI: 0.51–0.82); expert 2 had a 
test accuracy of 0.73 (95% CI 0.63–0.82), F1 score of 0.78, 
and sensitivity of 0.81 (95% CI 0.67–0.90), and specific-
ity of 0.62 (95% CI 0.45–0.77). On the uncertain set of 
images, expert 1 achieved a test accuracy of 0.70 (95% CI 
0.59–0.78), F1 score of 0.71, and sensitivity of 0.76 (95% 
CI 0.60–0.86), and specificity of 0.63 (95% CI 0.48–0.76) 
and expert 2 achieved a test accuracy of 0.66 (95% CI 

https://github.com/intrepidlemon/deep-ultrasound
https://github.com/intrepidlemon/deep-ultrasound
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0.55–0.75), F1 score of 0.66, and sensitivity of 0.66 (95% 
CI 0.50–0.79), and specificity of 0.66 (95% CI 0.50–0.79).

Compared to a baseline zero rule algorithm, the free 
segmentation deep learning model had higher test accuracy 
(0.84 vs. 0.59, p < 0.0001). On the complete dataset, com-
pared to all experts averaged, the free segmentation deep 
learning model had similar test accuracy (0.84 vs. 0.77, 
p = 0.18), similar test sensitivity (0.87 vs. 0.84, p = 0.69) 
and similar test specificity (0.78 vs. 0.66, p = 0.19) and the 
fixed segmentation model had similar test accuracy (0.80 
vs. 0.77, p = 0.60), similar test sensitivity (0.91 vs. 0.84, 
p = 0.23) and similar test specificity (0.62 vs. 0.66, p = 0.71). 
On the uncertain dataset, compared to all experts averaged, 
the free segmentation deep learning model had higher test 
accuracy (0.79 vs. 0.68, p = 0.025), similar test sensitivity 
(0.80 vs. 0.71, p = 0.23) and similar test specificity (0.78 
vs. 0.65, p = 0.074) and the fixed segmentation model had 
similar test accuracy (0.71 vs. 0.68, p = 0.64), similar test 
sensitivity (0.78 vs. 0.71, p = 0.39) and similar test specific-
ity (0.63 vs. 0.65, p = 0.87). Figure 2 shows the ROC curves 
of all models overlaid with expert performance.

Figure 3 breaks down accuracy performance of models 
and experts by Code Abdomen category. t-SNE representa-
tion of the final dense layer of ResNet demonstrates good 
separation of malignant and benign lesions by the model 
when compared to histopathological diagnosis (Fig. 4). 
Confusion matrices for all models and experts is shown in 
Supplementary Fig. S1.

Discussion

In the current study, ResNet models were trained to dis-
tinguish benign from malignant solid liver lesions on rou-
tine abdominal ultrasound images. Overall, these models 
achieved high test accuracy on the complete set along with 
high sensitivity, which is important for not missing a malig-
nant diagnosis at a time of presentation where intervention 
may have been possible. At the same time, on the uncertain 
diagnosis set containing C3 (indeterminate) and C4 (suspi-
cious for malignancy) lesions where usually a subsequent 
MRI and/or biopsy is recommended for further evaluation, 
the free crop model performed significantly better than 
experts in terms of accuracy and was trending toward statis-
tical significance in specificity. High specificity is crucial in 
a screening setting where appropriate triage to subsequent 
MRI or biopsy can decrease cost and spare patients from 
unnecessary invasive procedures for patients with truly 
benign lesions.

Comparing segmentation methods, fixed crop methods 
trended toward performing worse. One possible explanation 
is fixed crop images contained varying amounts of surround-
ing tissue. Free crop images maintained an approximately 

consistent ratio of surrounding tissue to lesion tissue. In con-
trast, fixed crop images can range from including no sur-
rounding tissue (when the lesion is wider and taller than 3 
cm), to consisting of mostly surrounding tissue (when the 
lesion is much smaller than 3 cm). Nevertheless, it seems 
that the model architecture is robust to the difference in 
availability of surrounding tissue to some degree, i.e., the 
model trained on images using the fixed cropped method 
still achieved a high accuracy within the 95% confidence 
interval of the free crop model in both complete and uncer-
tain diagnosis sets. This is likely due to the use of zoom 
augmentation during training.

Although models built on the complete set and the 
uncertain diagnosis set using the free crop segmentation 
method both performed well, achieving similar test accura-
cies, differences appear when broken down by code abdo-
men category. The free crop model seemed to perform 
better than the fixed crop model on C2 and C3 lesions 
while the two methods were similar in C4 and C5 lesions. 
This suggests that the fixed crop model’s incorporation of 
more surrounding tissue may have made a benign, simpler 
lesion seem more complex and malignant. Compared to 
experts, the free crop model excelled at identifying benign 
C2 lesions, and performed similar to experts in all other 
code categories. As for the uncertain diagnosis set, the 
free crop and fixed crop models both demonstrated a sub-
stantial increase in accuracy in C3 lesions when trained 
only on uncertain diagnosis lesions (C3 and C4), which 
suggests that training focused on uncertain lesions may 
lead to more clinically useful models.

Figure 3 shows that both experts and models generally 
performed better on C2 and C5 lesions and worse on C3 
and C4 lesions. This is expected as C2 and C5 are respec-
tively defined as “benign” and “highly suspicious” lesions, 
while C3 and C4 are defined as “indeterminate” and “suspi-
cious”. There were also differences in the performance of 
the two experts: expert 1 had significantly higher accuracy 
than expert 2.

The t-SNE visualization (Fig. 4) of the final neural net-
work layer weights demonstrates clear clustering between 
malignant and benign lesions. This representation offers a 
glimpse into the hyperspace of features for each lesion at the 
final neural network layer. The borders along which the final 
classifier is categorizing lesions is visible. Most importantly, 
the t-SNE demonstrates that the gold standard labels also 
cluster and correspond well with the features derived in the 
neural network.

The free crop segmentation method matched expert radi-
ologist performance by every metric, although none was sta-
tistically significant. The fixed crop segmentation method 
outperformed experts in most metrics. In the uncertain 
diagnosis set, every malignant lesion that the model pre-
dicted incorrectly as benign was also predicted incorrectly 
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as benign by expert 1. This demonstrates that our model 
allows for interpretation of liver lesions that matches and 
trend toward exceeding a radiologist’s expertise.

Machine learning models have been trained with ultra-
sound images in a number of organ systems including the 
thyroid [34], breast [35], and liver [36]. These previous stud-
ies most often extracted features from ultrasound images that 
were then fed into a support vector machine (SVM) or other 
traditional machine learning classification model [35–37]. 
Chi et al. used deep learning to remove image artifacts and 
to extract features from thyroid ultrasound images; these 
features were then fed into a random forest model for clas-
sification [34]. Shan et al. identifies features most important 
in classifying BI-RADS categories from breast ultrasound 
images in a number of different model architectures includ-
ing neural network, decision tree and random forest [35]. 
Xian et al. reported high accuracy in distinguishing benign 
from malignant liver lesions from ultrasound data using 
image features fed into a fuzzy SVM [37]. However, the 
authors failed to assess their model using a separate valida-
tion set so its generalizability is unknown.

Previous studies achieved good results in using deep 
learning to categorize liver lesions on other imaging 
modalities. Yasaka et al. used deep learning to differenti-
ate among liver lesions on CT [18]. Wu et al. trained a 
deep learning model on contrast enhancement time series 
data extracted from ultrasound videos to classify focal 
liver lesions in a small patient sample set [38]. Our study 

improves upon previous studies in a number of ways. By 
using only ultrasound images with no contrast, our method 
of image capture is the least invasive, most accessible, and 
safest. CT scans expose patients to radiation, while MRI 
is expensive and may not be available in resource limited 
areas. Our method eliminates the need for contrast injec-
tion which can be contraindicated in some people. In addi-
tion, our model is based solely on a single captured image 
from routine abdominal ultrasound using a well-validated 
deep neural network architecture, and thus can be easily 
integrated into routine clinical workflow.

Our study has several limitations. First, our cohort 
size is limited since the Code Abdomen system was only 
implemented at our institution since 2014, limiting the 
pool of available annotated ultrasound images. Second, 
while our models performed well without clinical data, the 
addition of clinical data such as history of viral hepatitis 
infection or cirrhosis may further improve accuracy. Third, 
the quality of an ultrasound image depends to a certain 
degree on body habitus, background liver disease, machine 
functionality, and operator skill. Thus, our deep learning 
model may not perform as well on images of lower qual-
ity as result of machine type or low operator skill. Fourth, 
our model currently depends on human segmentation of 
lesions, whereas the most ideal pipeline would accept raw 
ultrasound images as input. Given the wide variation in 
inclusion of surrounding tissue by operators, using whole 
images without a manual segmentation step is not likely 

Fig. 2  Receiver operating 
curves with model and expert 
performance. Receiver operat-
ing characteristic curves on 
both complete and uncertain 
diagnosis set overlaid with 
expert performance. TPR True 
positive rate, FPR False positive 
rate, AUC  area under the curve, 
Acc accuracy
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to result in optimal performance. It may be possible to 
use deep learning to develop an automated segmentation 
algorithm that may be used in tandem with our proposed 
neural network model, and such a study would be the next 
step for this work. Lastly, only 271 of 609 patients were 
diagnosed via histopathology. However, only lesions with 
typical malignant imaging features on MRI as defined in 
the guidelines were included in the analysis, while benign 
lesions had a reasonable period of follow-up to ensure that 
they were benign.

Conclusion

Through this study, we have shown that a deep learning 
model can be trained to distinguish benign from malignant 
solid liver lesion visualized using ultrasound to a skill level 
that matches that of our expert radiologists. Given that this 
model has shown potential for this clinical application, 
it may be integrated into clinical workflow of ultrasound 
practitioners to increase access, decrease cost and facilitate 
triage.

Fig. 3  Model performance by Code Abdomen category. Accuracy 
of both complete and uncertain diagnosis set models by cropping 
method, split by category. Our free crop models performed consist-

ently better than experts in code abdomen 3 and 4 categories. C2–
C5 Code abdomen categories
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