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Abstract
Purpose  The purpose of this study is to evaluate diagnostic performance of a commercially available radiomics research 
prototype vs. an in-house radiomics software in the binary classification of CT images from patients with pancreatic ductal 
adenocarcinoma (PDAC) vs. healthy controls.
Materials and methods  In this retrospective case–control study, 190 patients with PDAC (97 men, 93 women; 66 ± 9 years) 
from 2012 to 2017 and 190 healthy potential renal donors (96 men, 94 women; 52 ± 8 years) without known pancreatic dis-
ease from 2005 to 2009 were identified from radiology and pathology databases. 3D volume of the pancreas was manually 
segmented from preoperative CT scans. Four hundred and seventy-eight radiomics features were extracted using in-house 
radiomics software. Eight hundred and fifty-four radiomics features were extracted using a commercially available research 
prototype. Random forest classifier was used for binary classification of PDAC vs. normal pancreas. Accuracy, sensitivity, 
and specificity of commercially available radiomics software were compared to in-house software.
Results  When 40 radiomics features were used in the random forest classification, in-house software achieved superior 
sensitivity (1.00) and accuracy (0.992) compared to the commercially available research prototype (sensitivity = 0.950, 
accuracy = 0.968). When the number of features was reduced to five features, diagnostic performance of the in-house soft-
ware decreased to sensitivity (0.950), specificity (0.923), and accuracy (0.936). Diagnostic performance of the commercially 
available research prototype was unchanged.
Conclusion  Commercially available and in-house radiomics software achieve similar diagnostic performance, which may 
lower the barrier of entry for radiomics research and allow more clinician-scientists to perform radiomics research.
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Introduction

Radiomics converts imaging data into high-dimensional 
mineable features, which have the potential to yield 
imaging biomarkers for tumor classification and prog-
nostication [1]. This is currently a “hot topic” and excit-
ing frontier in radiology research. Radiomics and other 
artificial intelligence approaches dominate discussions at 
our radiology meetings and our publications [2, 3]. These 
publications usually report impressive results with high 
level of statistical significance [4–6], but most if not all of 
these publications end with the same disclaimers related 
to reproducibility [5, 7, 8]. This is because there currently 
are no standardized image acquisition and post-processing 
protocols in radiomics. Technical parameters related to 
image acquisition (dose, phase) [9, 10], reconstruction 
(slice thickness, reconstruction kernel) [9, 11], segmenta-
tion technique [10], and radiomics feature extraction [12]. 
A number of studies have explored using compensation 
techniques or deep-learning based algorithms to mitigate 
the effect of these technical parameters on radiomics fea-
tures [13–16]. In addition, there is high barrier to entry in 
radiomics research due to amount of data required for anal-
ysis and many of the published reports have used in-house 
radiomics software that required expertise in computer sci-
ence. To our knowledge, only one publication has investi-
gated the effect of in-house vs. freely available radiomics 
software in the calculated radiomics features [12]. Foy 
et al. evaluated radiomics features extracted from regions 
of interests from 40 mammograms and 39 head and neck 
CTs using two in-house radiomics software programs and 
two freely available radiomics packages, and found that 
there were significant variations in the calculated values 
across software platforms [12]. In this study, the authors 
evaluated the effect of software on the calculated radiom-
ics features but they did not evaluate whether these vari-
ations affected the overall performance in a classification 
task. The purpose of this study is to evaluate the diag-
nostic performance of a commercially available radiomics 
research prototype vs. an in-house radiomics software in 
binary classification of CT images from patients with pan-
creatic ductal adenocarcinoma (PDAC) vs. healthy control 
subjects.

Materials and methods

Patients

This study was an Institutional Review Board-approved 
HIPAA-compliant retrospective study. The same dataset 

of patients with PDAC and healthy controls [6] was used 
for both in-house radiomics software and commercially 
available software. Results for the in-house software were 
previously published [6]. Briefly, 190 patients with surgi-
cally resected PDAC were identified from the radiology 
and pathology databases at our institution from 2012 to 
2017. One hundred and ninety healthy renal donors with-
out known pancreatic disease were identified from the 
radiology database from 2005 to 2009. Patients with sus-
pected PDAC based on imaging features without surgical 
proof were excluded. Medical records of potential renal 
donors were reviewed to exclude participants with pancre-
atic disease (e.g., pancreatitis, pancreatic mass) and diabe-
tes mellitus. Preoperative CT scans of patients with PDAC 
and healthy control subjects were analyzed. The dataset 
was divided into 255 training cases (125 healthy control 
cases and 130 PDAC cases) and 125 validation cases (65 
healthy control cases and 60 PDAC cases). The training 
and testing cases were randomly selected from total 380 
cases (190 PDAC + 190 normal) as the 2/3 for training 
(255 cases, 67%) and the remaining 1/3 (125 cases, 33%) 
for testing. The number of training cases was twice of the 
testing cases so that the samples can statistically cover the 
distribution of testing cases.

CT acquisition

Patients with PDAC were scanned on a 64-slice MDCT 
scanner (Sensation 64, Siemens Healthineers) or dual-
source MDCT scanner (FLASH, Siemens Healthineers), and 
healthy control subjects were scanned on a 64-slice MDCT 
scanner (Sensation 64 Siemens Healthineers). Patients 
with PDAC and healthy control subjects were injected with 
100–120 mL of iohexol (Omnipaque, GE Healthcare) at an 
injection rate of 4–5 mL/s. Scanning protocols were custom-
ized for each patient to minimize dose but were in the order 
of 120 kVp, 300 mAs, and 0.6–0.8 pitch. Both arterial and 
venous phases were acquired per institution protocol, for 
both patients with PDAC and healthy renal donors.

Image segmentation

Venous phase 0.75 mm slices were chosen for image seg-
mentation and radiomics analysis. The whole 3D volume 
of pancreas for healthy control cases and the whole 3D 
volume of the tumor, background pancreas, and whole 
pancreas (including tumor region and background normal 
pancreas) for PDAC cases were manually segmented by 
four researchers (a radiation oncologist with 30 years of 
experience, a CT technologist with 20 years of experience, 
and two post-doctoral fellows with 1 year experience) using 
commercial segmentation software (Velocity 3.2.0, Var-
ian Medical Systems). The contours were verified by three 
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abdominal radiologists with 5–30 years of experience. Fea-
tures extracted from whole pancreas contours were used in 
radiomics analysis.

Image analysis

Image analysis using in-house software has been described 
in detail in [6], and 478 features were extracted. The features 
were based on tumor intensity, shape, texture, and wavelet 
features as described in [17], and the process was imple-
mented using C++ language by our computer scientist. 

Because the number of features was larger than the number 
of training cases, it was necessary to reduce the redundancy 
of computed features. Minimum-redundancy maximum-rel-
evancy feature selection was applied to the computed feature 
set and 40 features (and subset of 5 most relevant features) 
were selected for random forest classification.

Image analysis using commercial software was performed 
on syngo.via Frontier Radiomics prototype (syngo.via Fron-
tier, Siemens Healthineers). Eight hundred and fifty-four 
radiomics features including first-order statistics, shape, and 
texture were extracted from the original images. Additional 
first-order statistics and texture features were computed from 
filtered images, such as wavelet filters. Feature reduction was 
performed and 40 most relevant features were selected for 
random forest classification. Decision trees for random forest 
were developed based on the training dataset and tested on 
the test set by majority voting. Performance of the algorithm 
was evaluated by overall sensitivity, specificity, and accuracy 
in binary classification of cases from patients with PDAC 
and healthy control subjects.

Results

Demographic information of the 190 patients with surgically 
resected PDAC and 190 healthy control subjects is shown in 
Table 1. The mean and SD of the maximal 2D diameter of 
the tumor was 4.1 ± 1.7 cm for the 190 patients with PDAC. 

Table 1   Demographics characteristics of patients with pancreatic 
ductal adenocarcinoma (PDAC) and healthy control subjects

Healthy control 
subjects (n = 
190)

Patients with 
PDAC (n = 
190)

Age (years) 52 ± 8 66 ± 9
Gender, M 96 (50.5%) 97 (51.1%)
Background pancreas attenuation 

(HU)
89 ± 26 80 ± 27

Tumor attenuation (HU) N/A 66 ± 21
Mean tumor diameter (cm) N/A 4.1 ± 1.7
Tumor location N/A
 Head or neck 100 (53%)
 Body or tail 88 (46%)
 Diffuse 2 (1%)

Fig. 1   Heat map representation of radiomics features on y-axis and 
cases on x-axis. Left color bar represents color coding of Z-scores 
of each radiomics features of 380 cases for patients with PDAC 

and healthy controls. There are different clustered patterns between 
patients with PDAC and healthy controls
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The unsupervised clustering results of all 854 radiomics fea-
tures extracted using commercially available research pro-
totype for both the PDAC cases and healthy control cases 
are shown in Fig. 1. This heat map represents a color-coded 
array of all feature values (y-axis) in all cases (x-axis). For 
visualization, each individual radiomics feature is normal-
ized on the basis of all 380 cases.

Forty features were selected from the commercially avail-
able research prototype using minimum-redundancy maxi-
mum-relevancy feature selection and the 10 most relevant 
features are shown in Table 2. The number of features was 
further reduced to five features to allow more direct compar-
ison with results from the previous publication [6]. Diagnos-
tic performance of the commercially available research pro-
totype and in-house software in classifying CT cases from 
patients with PDAC and healthy control subjects is shown in 
Table 3. When 40 radiomics features were used, the in-house 
software achieved superior sensitivity (1.00) and accuracy 
(0.992) compared to the commercially available research 
prototype (sensitivity = 0.950, accuracy = 0.968). Both soft-
ware achieved the same specificity (0.985). When the num-
ber of features was reduced to five features, diagnostic per-
formance of the in-house software decreased to sensitivity 
(0.950), specificity (0.923), and accuracy (0.936), whereas 
the diagnostic performance of the commercially available 
research prototype was unchanged (sensitivity 0.950, speci-
ficity 0.985, and accuracy 0.968).

Although both radiomics software programs generated 
three false negatives when only five radiomics features were 
used (sensitivity = 0.950), they only shared one of the false 
negatives in common. The case that was misclassified as 
false negative by both programs was a predominantly exo-
phytic mass arising from the head of pancreas with con-
tiguous porta hepatic lymphadenopathy (Fig. 2). The other 
two false negatives that were misclassified by one radiom-
ics software program were correctly classified by the other 
radiomics software (Figs. 3, 4). The discrepancy was likely 
due to differences in computation and selection of relevant 
features (Table 4).

Discussion

Radiomics has the potential to generate imaging biomarkers 
for classification and prognostication. Technical parameters 
from image acquisition to feature extraction and analysis 
have the potential to affect radiomics features [9–12]. The 
current study used the same CT images with manual seg-
mentation on both a commercially available research pro-
totype and in-house radiomics software to control for any 
variability at the image acquisition step and compared the 
diagnostic performance of the two programs. Both programs 
achieved similar diagnostic performance in the binary classi-
fication of CT images from patients with PDAC and healthy 

Table 2   Ten most relevant 
radiomics features selected 
by commercially available 
research prototype for binary 
classification of pancreatic 
ductal adenocarcinoma cases vs. 
healthy control cases

Wavelet filter used in x-, y-, and z-directions
L low-pass filter, H high-pass filter

Radiomics features AUC​ p-value

Wavelet (LLH): gray level co-occurrence matrix: correlation 0.974 6.87e−58
Wavelet (LLH): gray level run length matrix: length non-uniformity normalized 0.934 2.41e−43
Wavelet (LLH): gray level co-occurrence matrix: inverse difference normalized 0.937 2.81e−43
Wavelet (LLL): gray level dependence matrix: entropy 0.938 6.38e−42
Wavelet (LLL): gray level co-occurrence matrix: informational measure of correlation 0.930 1.13e−41
Wavelet (LHH): gray level size zone matrix: small area emphasis 0.884 2.37e−32
Wavelet (LLH): gray level co-occurrence matrix: inverse difference moment 0.878 3.67e−31
Wavelet (LLL): neighboring gray tone difference matrix: coarseness 0.866 6.01e−26
Wavelet (LLH): gray level co-occurrence matrix: informational measure of correlation 0.859 2.31e−22
Wavelet (HHL): gray level co-occurrence matrix: inverse difference normalized 0.809 2.69e−18

Table 3   Diagnostic performance of commercially available radiomics research prototype vs. in-house software in binary classification of pancre-
atic ductal adenocarcinoma and healthy control subjects

Sensitivity Specificity Accuracy

Commercially available research prototype, 40 features 0.950 (57/60) 0.985 (64/65) 0.968 (121/125)
Commercially available research prototype, 5 features 0.950 (57/60) 0.985 (64/65) 0.968 (121/125)
In-house software, 40 features [6] 1.00 (60/60) 0.985 (64/65) 0.992 (124/125)
In-house software, 5 features [6] 0.950 (57/60) 0.923 (60/65) 0.936 (117/125)
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control subjects, despite differences in the radiomics fea-
tures they employed (854 features in commercial program 
vs. 478 features in in-house program). This is reassuring that 
even though there may be variations in the computed values 
for radiomics features, the differences do not seem to sig-
nificantly impact the overall diagnostic performance of the 
constellation of radiomics features. This is important for the 
broader implementation of radiomics research. Currently, 
many radiomics studies have been performed using propri-
etary in-house software, which requires in-house expertise in 
computer science, a luxury that only a few academic centers 
can afford. The results of this study show that commercially 
available radiomics software may be a viable alternative to 
in-house computer science expertise, which can lower the 
barrier of entry for radiomics research and allow clinicians 
to validate findings of the published studies with their own 
local datasets.

In the previously published study [6], we observed a 
decrease in diagnostic performance when the number of 
features was reduced from 40 features to 5 features. In the 
current study, there is no change in performance when the 
number of features was reduced. Interesting, although both 
programs achieve the same sensitivity (0.950) using five 
features, the false negative cases are not the same across 
both programs, likely due to differences in computation and 
selection of relevant features. The cases that were misclassi-
fied as false negatives by one or both software show diverse 

Fig. 2   False negative case of pancreatic ductal adenocarcinoma that 
is misclassified with both commercially available and in-house radi-
omics software, using five radiomics features for classification. Cor-
onal IV contrast-enhanced CT image of a 85-year-old man shows a 
predominantly exophytic mass arising from head of pancreas that is 
contiguous with locoregional lymphadenopathy (arrows)

Fig. 3   False negative cases of pancreatic ductal adenocarcinoma that 
are misclassified by the commercially available software but were 
correctly classified by the in-house software, using five radiomics fea-
tures for classification. a Axial IV contrast-enhanced CT image of a 
62-year-old woman shows diffusely infiltrative tumor throughout the 

pancreatic body and tail (white arrow) associated with dilatation of 
the pancreatic duct (black arrow). b Axial IV contrast-enhanced CT 
image of a 65-year-old woman shows an exophytic hypoenhancing 
mass arising from the uncinate process of the pancreas (arrow)
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imaging appearance ranging from small subtle isoenhanc-
ing mass to diffuse tumor infiltration of the pancreas. These 
algorithms appear to be focusing on different imaging fea-
tures as the basis for the classification. It may be possible 
to combine different algorithms to achieve superior perfor-
mance. Due to “blackbox” nature of radiomics, it is not easy 
pinpoint the exact cause of the difference in performance 
of these programs. Future research is needed to understand 
these differences.

This study has a number of limitations. First, it was a retro-
spective study with a relatively small sample size. The study 
population was selected based on the previously published 
study to allow for direct comparison of diagnostic performance 
between the commercially available and the in-house software. 
Second, this study compared the performance of two software 

on one specific application. Future research is needed to deter-
mine if other commercially available radiomics software will 
achieve similar results and if these software will achieve simi-
lar results for other clinical applications and imaging modality. 
Third, there is currently no standardization of imaging protocol 
for radiomics studies. In the future, these radiomics software 
will require validation across different institutions, vendors, 
and scanning protocols.

Conclusion

This study showed that a commercially available radiom-
ics software may be able to achieve similar diagnostic per-
formance as an in-house radiomics software. The results 

Fig. 4   False negative cases of pancreatic ductal adenocarcinoma that 
are misclassified by the in-house software but were correctly classi-
fied by the commercially available software, using five radiomics 
features for classification. a Coronal IV contrast-enhanced CT image 
of a 59-year-old man shows dilated common bile duct and pancreatic 

duct with a subtle isoenhancing mass at the transition point in the 
ampullary region (arrow). b Axial IV contrast-enhanced CT image 
of a 69-year-old man shows a hypoenhancing mass in the pancreatic 
body (arrow)

Table 4   Five maximally relevant features in the commercially available radiomics research prototype and in-house software

Commercially available research prototype In-house radiomics software

Wavelet (LLH): gray level co-occurrence matrix: correlation Gray-level co-occurrence matrix: 
informational measure of cor-
relation

Wavelet (LLH): gray level run length matrix: length non-uniformity normalized Sum entropy
Wavelet (LLH): gray level co-occurrence matrix: inverse difference normalized Spherical disproportion
Wavelet (LLL): gray level dependence matrix: entropy Wavelet (LLH): mean intensity
Wavelet (LLL): gray level co-occurrence matrix: informational measure of correlation Wavelet (LLL): maximal intensity
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obtained from one radiomics software may be transferra-
ble to another system. Availability of commercial radiom-
ics software may lower the barrier of entry for radiomics 
research and allow more researchers to engage in this excit-
ing area of research.
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