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Abstract
Purpose To investigate the value of T2-radiomics combined with anatomical MRI staging criteria from pre-treatment rectal 
MRI in predicting complete response to neoadjuvant chemoradiation therapy (CRT).
Methods This retrospective study included patients with locally advanced rectal cancer who underwent rectal MRI before 
neoadjuvant CRT from October 2011 to January 2015 and then surgery. Surgical histopathologic analysis was used as the 
reference standard for pathologic complete response. Anatomical MRI staging criteria were extracted from our institutional 
standardized radiology report. In radiomics analysis, one radiologist manually segmented the primary tumor on T2-weighted 
images for all 102 patients (i.e., training set); two different radiologists independently segmented 66/102 patients (i.e., vali-
dation set). 108 radiomics features were extracted. Then, scanner-independent features were identified and least absolute 
shrinkage operator analysis was used to extract a radiomics score. Finally, a support vector machine model combining the 
radiomics score and anatomical MRI staging criteria was compared against both anatomical MRI-only and radiomics-only 
models using the deLong test.
Results The study included 102 patients (42 women; median age = 61 years).The radiomics score produced an area under 
the curve (AUC) of 0.75. Comparable results were found using the validation set (AUCs = 0.75 and 0.71 for each radiologist, 
respectively). The anatomical MRI-only model had an accuracy of 67% (sensitivity 42%, specificity 72%); when adding the 
radiomics score, the accuracy increased to 74% (sensitivity 58%, specificity 77%).
Conclusion Combining T2-radiomics and anatomical MRI staging criteria from pre-treatment rectal MRI may help to stratify 
patients based on the prediction of treatment response to neoadjuvant therapy.
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Introduction

The treatment for locally advanced rectal cancer involves neo-
adjuvant chemoradiation therapy (CRT) followed by surgery 
and then adjuvant chemotherapy. After neoadjuvant treat-
ment, approximately 50–60% of patients are downstaged and 
15–27% demonstrates a pathologic complete response (pCR) 
[1]. Hence, a non-operative approach presents an increas-
ingly attractive alternative to surgery for these patients after 
neoadjuvant treatment [2]. However, the accurate prediction 
of complete response after neoadjuvant treatment remains a 
challenge.

To diagnose a pCR after neoadjuvant treatment, digital rec-
tal examination and endoscopy have accuracies of approxi-
mately 85% but are limited in extra-luminal assessment and the 
interpretation varies among surgeons [3, 4]. Meanwhile, rectal 
MRI is the preferred imaging modality for local staging and 
restaging of rectal cancer; in clinical practice, it is preferably 
performed with endoscopy [5]. A limitation in current clinical 
practice for all these imaging modalities is that they all involve 
qualitative assessment with variable reproducibility between 
different readers [6]. For rectal MRI, T2-weighted imaging and 
diffusion-weighted imaging (DWI) are the two most frequent 
sequences used to diagnose tumor response [3, 7–9]. How-
ever, the reproducibility is suboptimal, predominantly fair for 
T2-weighted imaging and moderate for DWI [10, 11].Thus, 
there is a critical need for accurate, consistent, and quantitative 
measures of response. Such measures could help to stratify 
patients before treatment and allow alternative and more effec-
tive individualized therapies to be offered to patients.

Particularly, quantitative measures derived from the com-
puterized analysis of MR images have been shown to predict 
survival [12, 13]. Thus, they may also allow the identification 
of risk factors for local recurrence and distant disease, serv-
ing as imaging markers to tailor treatment. Such an approach 
involving computer automated analysis of images is known 
as radiomics [14, 15].Research involving radiomics analysis 
in rectal cancer is emerging [16–20], with a focus on predict-
ing and diagnosing treatment response after neoadjuvant CRT 
[12, 19, 21–25].

The purpose of this study was to investigate the value of 
T2-radiomics extracted from pre-treatment rectal MRI com-
bined with anatomical MRI staging criteria in predicting com-
plete response after neoadjuvant CRT for rectal cancer. We 
hypothesized that the non-invasive radiomics classifiers could 
add value to stratify patients at the time of initial cancer diag-
nosis based on the predicted treatment response.

Materials and methods

Study population

This retrospective, single-institution study was compliant 
with the Health and Insurance Portability and Account-
ability Act and was approved by the institutional review 
board with a waiver for written informed consent. We 
examined our retrospective database for consecutive 
patients who underwent pre-treatment rectal MRI before 
starting neoadjuvant CRT from October 2011 to January 
2015 followed by surgery (a and b).The most common 
treatment at our institution during the study period was 
radiation (50.4 GY) with preferably Capecitabine over 
5 weeks [26, 27]. We did not separate our analyses based 
on drugs or doses received, since it was not a scope of our 
study. All 102 patients in this study have been previously 
analyzed in a previous study [19]. In the previous study, 
the same patients were used to analyze the added value 
of radiomic features on restaging rectal MRI performed 
after neoadjuvant treatment, whereas here we focused on 
the value of radiomic features on the baseline rectal MRI 
performed before neoadjuvant treatment.

The exclusion criteria were: (a) unavailable baseline MRI 
scan, (b) mucinous tumor, (c) poor image quality, (d) incom-
plete tumor coverage on MRI, and (e) rectal perforation. 
(See Fig. 1 for the flowchart for patient inclusion.)

MRI protocol

Of 102 rectal MRI examinations, 93/102 (91%) were per-
formed at our institution while the remaining 9/102 (9%) 
examinations were performed at outside institutions. MRI 
examinations were performed using different GE Healthcare 
System platforms (Discovery 2MR750, Optima MR450w, 
Signa EXCITE, and Signa HDxt; Waukesha, WI) with a 
phased-array coil. MRI parameters at our institution are 
summarized in Table 1. The minimum requirements for the 
inclusion of MRI sequences were: (a) high-spatial-resolu-
tion axial oblique T2-weighted imaging through the tumor, 
(b) section thickness of 2–4 mm, and (c) field of view of 
180–220 mm. DWI and dynamic contrast-enhanced imaging 
were included in the qualitative assessment when available.

Qualitative MRI assessment

Anatomical MRI staging criteria were collected from insti-
tutional standardized reports for rectal MRI used in clini-
cal practice routinely. The standardized reports were made 
by our group of specialized radiologists with 5–15 years of 
experience; in cases of discrepancy or lack of information, 
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they were resolved by a radiologist with training in onco-
logic imaging (EO).

The following anatomical MRI staging criteria were 
assessed to complete the standardized reports: (a) tumor 
location, (b) tumor length, (c) tumor T stage, (d) extramural 

Fig. 1  Flowchart of patient 
inclusion

Table 1  MRI parameters at our institution

BW bandwidth, TE echo time, FA flip angle, FOV field of view, FSE fast spin echo, FSPGR fast spoiled gradient echo, TR repetition time, SG 
section gap, ST slice thickness, T2WI T2-weighted image

Parameter Sequence TR/TE (ms) Matrix FOV (mm) ST/SG (mm) BW (kHz)/FA B value (s/mm2)

Oblique T2WI
 1.5 T FSE 4000–6000/120 320 × 224 180 3/1 31/160 –
 3.0 T 4000–6000/120 320 × 320 180 3/1 41/110 –

DWI
 1.5 T DWI 6000/minimum 128 × 128 240 5/1 250/90 0,800
 3.0 T 6000/minimum 128 × 128 240 5/1 250/90 0,800

DCE
 1.5 T 3D FSPGR Minimum 256 × 160 240 5/0 62/12 –
 3.0 T Minimum 256 × 160 240 5/0 62/12 –

Fig. 2  Qualitative features assessed on rectal MRI in this study. a Tumor (arrow) length (yellow line); b T4a tumor (arrowhead) abutting anterior 
peritoneal reflection (arrow); c extramural vascular invasion (arrow), arrowhead pointing to tumor
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depth of invasion, and (e) extramural vascular invasion 
(See Fig. 2).Tumor location was specified according to 
the distance from the anal verge as low (0–5 cm), middle 
(5.1–10 cm), or high (10.1–15 cm) [28]. Tumor stage was 
determined according to the American Joint Committee on 
Cancer Staging Manual of TNM staging [29] as follows: 
T1 (tumors are confined to mucosal/submucosal layer), 
T2 (tumors invade muscularis propria), T3 (tumors invade 
the mesorectum), and T4 (tumors invade the peritoneum or 
adjacent organs). Extramural vascular invasion was defined 
as present when there was expansion or irregularity of ves-
sel wall, loss of normal vascular flow void, and intraluminal 
tumor signal within a vessel contiguous with the tumor [30, 
31].

Quantitative MRI texture analysis

Image segmentation

For the training set, a radiologist with training in oncologic 
imaging (EO) manually segmented the volume of interest 
(VOI) on all slices on all 102 high resolution axial oblique 
T2-weighted images using open-source software (ITK-
SNAP, version 3.4.0; http://itksn ap.org). Tumor deposits, 
desmoplastic reaction, and extramural vascular invasion 
were excluded from the segmentation. For the validation set, 
two different radiologists (JGP and VP) with 5 years of expe-
rience in rectal MRI, respectively, independently reviewed 
all images and segmented tumors on all slices on 66/102 
T2-weighted images following the same guidelines as above.

Quantitative texture analysis

Prior to radiomics feature extraction, all images and segmen-
tations were resampled to obtain isotropic voxels of 1  mm3 
to compute radiomics features in 3D. A total of 108 radiom-
ics features were extracted using the CERR software which 
is compliant with the Imaging Biomarker Standardization 
Initiative (IBSI) standards [32]. These features were divided 
into the following categories: 20 features from the intensity 
histogram, 26 features from the gray-level co-occurrence 
matrix (GLCM), 15 from the gray-level size-zone matrix 
(GLSZM), 7 shape features, and 40 edges descriptors. 
GLCM and GLSZM were constructed with a bin size of 128, 
where the normalized MRI signal intensities were grouped 
by their values into those bins. Then, a merging strategy 
was used to compute the GLCM measures, whereby the co-
occurrence matrices computed using directional offsets in 
all directions (N = 24) were combined by averaging [33]. 
Edge descriptors metrics were obtained with first order sta-
tistics (mean, standard deviation, skewness, and kurtosis) 
of edge maps computed with Sobel, Laplacian of Gaussian, 

and Gabor (2 bandwidths (σ)—2, 2
√

2 and 4 angles (θ)—0°, 
30°, 45°, 90°) edge filters.

Reference standard

The reference standard was the standardized histopathologic 
report of the surgical resection specimens from total meso-
rectal excision. No additional pathologic analysis was done 
for our project. pCR was defined as stage ypT0N0.

Statistical analysis

All statistical analyses were performed using R studio with 
R version 3.5.1 and pROC and caret packages. For selecting 
radiomics features robust to the magnetic field strength, the 
Wilcoxon test was performed with a significance threshold 
of p < 0.05 after Bonferroni adjustment for multiple com-
parisons. Radiomics features that were not dependent on the 
considered scanner parameters were deemed stable and used 
in the subsequent analysis.

From the stable radiomics features, Least Absolute 
Shrinkage and Selection Operator (LASSO) with five-
fold stratified cross-validation was computed to select the 
most relevant radiomics features for classification. Strati-
fied cross-validation considers that the outcomes (or class 
labels) are imbalanced, such that all cross-validation folds 
in the model computation have a similar prevalence of 
classes. For this study, this strategy maintained the ratio of 
the number of patients who had a pCR to those who did 
not. The selected most relevant radiomics features and their 
coefficients were used to compute a radiomics score [34] 
which was the weighted sum of features according to their 
relevance as determined by the LASSO classifier. The capac-
ity of this radiomics score to discriminate pCR patients was 
investigated with the Wilcoxon test and receiver operating 
characteristic (ROC) curves. The radiomics score was also 
computed from all three different radiologist’s segmenta-
tions to evaluate its inter-rater robustness.

Finally, a support vector machine (SVM) model with a 
radial basis function combining the radiomics and anatomi-
cal MRI staging criteria was computed. The two models, 
namely, the radiomics only and anatomical MRI-radiomics 
based models were then compared using the deLong test 
of their ROC curves. The SVM classifier was again trained 
using cross-validation and the accuracy was computed by 
evaluating the classifier model in each fold using data that 
were never used in the model training.

The radiomics features were extracted using the open-
source CERR software (https ://githu b.com/cerr/CERR/
wiki/Radio mics). All code including the R code used in the 
machine learning analysis are available through the github 
repository.

http://itksnap.org
https://github.com/cerr/CERR/wiki/Radiomics
https://github.com/cerr/CERR/wiki/Radiomics
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Results

Patient characteristics

Our final study population included 102 patients, 60 (59%) 
men and 42 (41%) women, with a median age of 61 years 
(range, 31–91 years). Eighty-three patients (81%) achieved 
pathologic partial response (pPR) at pathologic examina-
tion of surgical specimens and 18 (19%) achieved pCR. 
The average time between end of the CRT and surgery 
for this study population (n = 84, 18 no date available of 
end of radiation) was 91.86  days (interquartile range 
(IQR), 30.5 days). Among those with a complete response 
(n = 16), the average time between end of CRT and surgery 
was 85.69 days (IQR, 25 days).Among those with a partial 
response (n = 68), the average time between end of CRT and 
surgery was 93.32 days (IQR, 32.5 days). We conducted 
a t test to compare the means of the complete and partial 
responders: the p-value was 0.72 (no significant difference 
between the two groups).

Qualitative MRI evaluation

Anatomical MRI staging criteria were available for all 
patients. The median tumor length was 4.65 cm (range 
2.6–9.4 cm). Most patients had tumor in the mid rectum 
(47/102,45.7%), T3 stage, and no extramural vascular inva-
sion (80/102, 78.4%). Table 2 summarizes the anatomical 
MRI staging criteria.

Radiomic classification of pCR

Of 108 radiomics features, 35 were not robust to the mag-
netic field strength and were removed for the rest of the 
analysis (See Supplemental Information). Non-robust 
features mostly comprised those describing global statis-
tics (16/20 features); edge features from Sobel (4/4); and 
some GLCM, GLSZM, and Gabor edge features (8/25, 
3/15, and 4/40, respectively). Of the remaining 73 fea-
tures, 6 were selected by LASSO: 2 shape features [surface 
area (coeff = 0.28) and compactness (coeff = − 0.02)], 1 
GLCM feature [difference variance (coeff = − 0.0005)], 
1 GLSZM feature  [size-zone low-gray level emphasis 
(coeff = 0.10)] and 2 edges descriptors [standard devia-
tion of  Gaborσ=2, θ=30°(coeff = 0.11) and kurtosis of 
 Gaborσ=2√2, θ=30° (coeff = 0.05)].

The radiomics score computed as a weighted sum of 
these 6 radiomics features produced an area under the 
curve (AUC) of 0.75 (95% CI: 0.63–0.87) for distinguish-
ing patients by pCR. The best cut-off value of 1.39 was 
associated with a specificity of 0.74 and a sensitivity of 
0.70. The Wilcoxon test using the radiomics score showed 
a significant association with pCR (p = 0.001), where those 
with pCR had a lower radiomics score (median = 1.30, 
IQR = 0.35) when compared with patients with partial 
response (median = 1.51, IQR = 0.44) (See Fig. 3a).

Table 2  Demographics and 
tumor characterization

Numbers in parentheses are percentages unless otherwise indicated
cCR clinical complete response, cPR clinical partial response

Total n = 102 CCR n = 19 CPR n = 83

Age (years): median (range) 61 (31–91) 55.78, 13.41 63.23, 11.76
Gender
 Male 60 (58.82) 12 (63.16) 48 (57.83)
 Female 42 (41.18) 7 (36.84) 35 (42.17)

Tumor localization
 Upper 19 (18.63) 2 (10.53) 17 (20.48)
 Middle 54 (52.94) 13 (68.42) 41 (49.40)
 Lower 29 (28.43) 4 (21.05) 25 (30.12)

Tumor length (cm): median (range) 4.60 (2.0, 9.4) 3.7 (2.7,8.5) 4.70 (2.0, 9.4)
T stage
 T1/T2 9 (8.82) 3 (15.79) 6 (7.23)
 T3 85 (83.33) 16 (84.21) 69 (83.13)
 T4 8 (7.84) 0 (0.00) 8 (9.64)

Extramuralvascular invasion
 Yes 20 (19.61) 1 (5.26) 19 (22.89)
 No 81 (79.41) 18 (94.74) 63 (75.90)
 Equivocal 1 (0.98) 0 (0.00) 1 (1.20)
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Robustness of radiomics features from different 
segmentations for classifying pCR

Two independently computed radiomics classifiers using 
the features extracted from the segmentations from the two 
radiologists classified pCR with an AUC of 0.75 (95% CI 
0.59–0.91) and 0.71 (95% CI 0.52–0.90), respectively (See 
Fig. 3b, c). The radiomics score cut-off value identified on 
the full training set was also applied to split the patients 
into two groups, i.e., pCR vs. not complete response (nCR), 
using the radiomics scores computed from features using 
segmentations from the two radiologists. These splits were 
also associated with pCR as determined using the Wilcoxon 
test (R1 p = 0.01, R2 p = 0.03) and resulted in a specificity of 
0.73 and 0.82 and sensitivity of 0.69 and 0.64, respectively.

Support vector machine classifier model for pCR 
prediction

Using only the anatomical MRI staging criteria, the most 
important clinical features selected by the SVM model, 
in order, were the tumor length, the depth of extramural 
infiltration, a mid-rectum location, and presence/absence 
of extramural vascular invasion (Fig. 4a). This anatomical 
MRI-only model achieved an accuracy of 67% (sensitivity: 
42%, specificity: 72%).The same model built in combination 
with the radiomics score showed an increase in accuracy to 
74% (sensitivity 58%, specificity 77%), and the most impor-
tant features were the radiomic score followed by the same 
anatomical MRI staging criteria from the other SVM model 
(Fig. 4b).

Discussion

To allow non-operative management following neoadju-
vant chemotherapy, the accurate prediction of complete 
response is essential but remains a challenge. In our 
study, we were able to compute a radiomics score using 
T2-weighted images from baseline rectal MRI scans that 
distinguished patients with pCR from patients with pPR 
after neoadjuvant chemotherapy (AUC = 0.75). The pre-
dictive value of this score was robust, i.e., not affected 
when computed using the segmentations of three dif-
ferent radiologists. When the radiomics score was used 

in combination with anatomical MRI staging criteria, 
the prediction of pCR was improved (74% for the com-
bined model vs. 67% for the clinical-only model).To our 
knowledge, this is the first study to date using a combined 
approach including radiomics and anatomical MRI stag-
ing criteria to predict complete response after neoadjuvant 
therapy in rectal cancer patients.

A prior study using CT scans showed that texture analy-
sis can predict five-year overall survival in colorectal can-
cer patients [35]. However, rectal MRI is the gold standard 
imaging technique for preoperative staging and has been 
proven to allow preoperative stratification of patients and 
permit better targeted therapy [36]. In a recent study, De 
Cecco et al. demonstrated the potential of T2-based texture 
parameters to act as predictive tumoral markers of response 
to neoadjuvant CRT in rectal cancer; however, this study 
was limited by a small number of patients [21]. In another 
recent study, Nie et al. assessed the relationship between pre-
treatment MRI values and pCR to build predictive models, 
showing encouraging results [24]. In our study, the com-
puted radiomics score (AUC 0.75) is in line with those of 
other recently published baseline radiomic studies in rectal 
cancer; for example, Vandendorpe et al. reported an AUC 
of 0.70 in predicting downstaging of locally advanced rectal 
cancer from neoadjuvant CRT using baseline CT images 
[37].

Our approach combined both T2-radiomics and anatomi-
cal MRI staging criteria in one model. Using this combi-
nation, compared with using an anatomical MRI-only or 
radiomics-only model, we were able to improve the accuracy 
to predict tumor response and stratify patients at baseline to 
complete responders or partial responders. Our results are 
in line with the current movement towards individualized 
treatment in oncology in general and locally advanced rectal 
cancer specifically. In addition, our results are in line with 
the need to reliably assess response to treatment earlier. The 
development of tumor markers based on images such as ana-
tomical and functional MRI may offer additional guidance 
and the applied field of radiomics such as that used in our 
study warrants further investigation. Important considera-
tions when performing radiomics analysis is the reproduci-
bility of the extracted features and accounting for the sources 
of variability starting from the volumetric segmentation of 
the tumor [38]. To evaluate reproducibility in our study, we 
used segmentations from three different radiologists with 
different skill levels and found no difference in the predictive 
value of the radiomics score. We validated if the model we 
built is robust to the segmentation by using the segmenta-
tion from two other radiologists. While we were not able to 
split the data into a training and testing set because of the 
imbalanced dataset (only 19 complete responders), we were 
able to validate the robustness of the radiomics signature to 
segmentation.

Fig. 3  Receiver operating curves showing the specificity and sensitiv-
ity of the radiomics score to identify pathologic complete response 
(pCR) patients (on the left) and boxplots showing the distribution of 
the radiomics score for pathologic partial response and pCR patients 
using the best cut-off value (on the right). a Results based on manual 
segmentations of one radiologist for the entire cohort (n = 102). b, c 
Results based on manual segmentations of two radiologists for a sub-
set of patients (n = 66) performed independently of each other

◂
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The present study suggests that combined visual and 
quantitative characterization of rectal tumors may potentially 
enhance the discrimination between complete responders 
and partial responders to neoadjuvant treatment at the time 
of diagnosis. Further studies and correlation with pathologic 
material will be important to better understand the potential 
interplay between combined radiomics features calculated in 
the radiomics score, and tumor stromal elements. We pos-
tulate that tumor biology and stromal elements are different 
between complete responders and partial responders, and 
radiomics assessment may provide valuable information in 
a form of virtual biopsy to aid current diagnostic methods. 
Knowledge of the predicted response after CRT using radi-
omic features may influence the treatment decisions of the 
multidisciplinary team, thereby allowing a more personal-
ized treatment and improving the cost-effectiveness of rectal 
cancer treatment.

Our results should be interpreted in light of the limita-
tions associated with our study design. First, the number of 
patients was limited due to the retrospective nature of this 
study. Second, we did not include patients on nonsurgical 
management which may have introduced selection bias into 
the study. However, this decision was made so as to have 
histopathologic reference standard for all patients as well 
as to achieve a homogeneous dataset to develop a radiomics 
algorithm. Third, we were limited to an imbalanced dataset 
between patients with partial response (n = 83) and patients 
with complete response (n = 19). However, we note that the 
percentage of patients with complete response in our cohort 
is in the range of what is described in the literature [1]. 
Therefore, the limitation is not that our data is imbalanced 
compared with what we see in clinical practice and what is 

described in the literature but rather that the limitation is 
statistical in nature. Fourth, we did not separate our analyses 
based on drugs or doses received. Our study was designed 
as a pilot study, mainly to see if complete responders have 
radiomics features that may be identified at baseline. For 
partial responders, further studies are needed to investigate 
different drugs and doses on a larger dataset. Fifth, the ana-
tomical MRI staging criteria was based on available clinical 
reports which were made inconsensus; we did not evaluate 
the inter-reader agreement of the anatomical MRI staging 
criteria assessment since it was not an aim in our study. 
Sixth, radiomics was performed on only T2-weighted images 
to minimize variability in acquisition parameters. Further 
studies exploring performance of other imaging sequences 
may improve radiomics analysis. Seventh, manual segmen-
tation of volume of interest is a time-consuming process; 
hence, there is a great need to develop easy-to-use automated 
or semi-automated tools to encourage real-world application 
of radiomics in daily clinical practice. Finally, our study did 
not have external validation. We performed internal valida-
tion using segmentations from three different radiologists. 
Hence, further studies are needed to resolve these limitations 
and validate our data to provide generalization of the results.

In conclusion, our preliminary results suggest that 
radiomics features derived from T2-weighted MR images 
of rectal cancer have the potential to serve as imaging 
markers of tumoral response to neoadjuvant chemother-
apy at time of initial diagnosis of rectal cancer, and when 
combined with standardanatomical MRI staging criteria, 
improve accuracy. Further studies with larger sample sizes 
are warranted for additional evaluation and validation of 
our preliminary data.

Fig. 4  Importance of the selected features in the support vector machine models using a anatomical MRI staging criteria and b anatomical MRI 
staging criteria and the T2-radiomics score in combination
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