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Abstract
Purpose This study aimed to discriminate fat-poor angiomyolipoma (fp-AML) from clear cell renal cell carcinoma (ccRCC) 
by constructing radiomics-based logistic classifiers in comparison with conventional computed tomography (CT) analysis 
at three CT phases.
Materials and methods Twenty-two fp-AML patients and 62 ccRCC patients who were pathologically identified were 
enrolled in this study, and underwent three-phase (unenhanced phase, UP; corticomedullary phase, CMP; nephrographic 
phase, NP) CT examinations. Whole-tumor regions of interest (ROIs) were contoured in ITK software by two radiologists. 
Radiomic features were dimensionally reduced by means of ANOVA + MW, correlation analysis, and LASSO. Four radiomics 
logistic classifiers including the UP group, CMP group, NP group, and sum group were built, and the radiomic scores (rad-
scores) were calculated. After collecting the qualitative and quantitative conventional CT characteristics, the conventional CT 
analysis logistic classifier and the radiomics-based logistic classifier were constructed. The receiver operating characteristic 
curve (ROC) was constructed to evaluate the validity of each classifier.
Results The area under curve (AUC) of the conventional CT analysis logistic classifier including angular interface, cyst 
degeneration, and pseudocapsule was 0.935 (95% CI 0.860–0.977). Regarding logistic classifiers for radiomics analysis, the 
AUCs of the UP group were 0.950 (95% CI 0.895–1.000) and 0.917 (95% CI 0.801–1.000) in the training set and testing 
set, respectively, which were higher than those of the CMP and NP groups. The AUCs of the sum group were observed to 
be the highest. The top three selected features for the UP and sum groups belonged to GLCM parameters and histogram 
parameters. The radiomics-based logistic classifier encompassed cyst degeneration, pseudocapsule, and sum rad-score, and 
the AUC of the model was 0.988 (95% CI 0.935–1.000).
Conclusion Whole-tumor radiomics-based CT analysis is superior to conventional CT analysis in the differentiation of fp-
AML from ccRCC. Cyst degeneration, pseudocapsule, and sum rad-score are the most significant factors. The radiomics 
analysis of the UP group shows a higher AUC than that of the CMP and NP groups.
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Introduction

AML is a member of perivascular epithelioid cell tumors 
(PEComas) [1], which is composed of varying amounts of 
dysmorphic blood tissue, smooth muscle components, and 
mature adipose tissue [2]. It is the most common benign 
solid renal neoplasm [2]. Macroscopic fat may be easily 
detected in most AML patients on computed tomography 
(CT), or magnetic resonance imaging (MRI) [3]. However, 
up to 5% of renal AMLs lack macroscopic fat [4], mak-
ing these lesions controversial to differentiate from renal 
cancer in conventional CT analysis [5]. Fp-AML is defined 
as an angiomyolipoma containing little to no fat. It is most 
commonly encountered in the 4th to 6th decades of life, 
exhibiting female preponderance [6]. Terms like “angio-
myolipoma without visible fat” [7], “angiomyolipoma with 
minimal fat” [8], and “lipid-poor angiomyolipoma” [9] 
have been used in previous studies to describe this con-
dition. To deter confusion and potential errors, the term 
“fat-poor angiomyolipoma” was denominated to chosen.

Varieties of studies have been investigated the differen-
tiation of fp-AML from ccRCC via CT images. Kim et al. 
[10] showed that fp-AML tends to be hyperattenuating, 
has an angular interface on unenhanced CT and possesses 
a homogeneous, prolonged enhancement on enhanced CT. 
However, other studies have stated that these CT find-
ings are non-specific, and that both fp-AML and ccRCC 
patients present with heterogeneous enhancement [11]. 
Yan et al. [8] believed that multi-phase CT scanning may 
be able to distinguish between fp-AML, papillary RCC, 
and ccRCC. The enhancement degree of fp-AML varies 
according to the number of vessels, and is sometimes simi-
lar to that of ccRCC. It is the visual similarity of substan-
tial overlapping characteristics between two diseases that 
makes it imperative to differentiate.

Radiomics, a newly emerging computer-assisted tech-
nique, converts the conventional visual images into large 
amounts of quantitative features [12]. These features 
cover voxel intensity, three-dimensional shape and size, 
appearance of surface, and gray-level co-occurrence. 
Feng et al. [13] have pointed out that machine learning-
based quantitative texture analysis may facilitate the 
accurate differentiation of fp-AML from renal cell car-
cinoma (RCC). However, CT texture analysis presents 
lower lesion homogeneity and higher lesion entropy in 
RCCs than in fp-AMLs on unenhanced CT images [14]. 
One study has demonstrated that single/selected-slice 
ROI texture analysis may help differentiate fp-AML from 
RCC [12]. Though, radiomic features of the lesions may 
cover the data obtained from conventional CT analysis. 
The inconsistent expression and varied repeatability make 
such a comparison necessary. Therefore, diagnosis using 

conventional CT analysis along with the help of radiomics 
analysis may provide advantages in differentiating fp-AML 
from ccRCC.

To the best of our knowledge, no study has compared 
the differentiation of the two maladies between conventional 
CT analysis and radiomics-based CT analysis. Therefore, 
this study puts forward the construction of a whole-tumor 
radiomics-based logistic classifier to better differentiate fp-
AML from ccRCC in CT imaging.

Materials and methods

Patient acquisition

This retrospective study was approved by the institutional 
review board. For this type of study, formal written consent 
was not required.

All data were collected from the Picture Archiving and 
Communication System (PACS) database from January 
2014 to January 2019. There were 534 patients diagnosed 
as renal masses or suspected renal tumors. The inclusion 
criteria of this study were as follows: (1) All patients under-
went three-phase CT scan (UP, CMP and NP) with the same 
CT protocols. (2) Their diagnosis were histopathologically 
confirmed by partial or total surgical resection. (3) There 
was no visible macroscopic fat within the renal masses on 
unenhanced CT images, diagnosed by two radiologists. (4) 
All patients were found to harbor primarily solid lesions, 
without hemorrhage, or large fluid collection. Finally, our 
cohort involved 22 fp-AML patients, and 62 ccRCC patients 
(Fig. 1).

CT examination

All examinations were performed using 64/128-slice multi-
detector CT (SOMATOM Definition AS, Siemens Health-
care). By the computer-assisted bolus-tracking technol-
ogy, scan delays were 15 s and 30 s for the CMP and NP, 
respectively, with a 100-Hu threshold in the abdominal 
aorta at the level of the celiac artery as the baseline. Patients 
received 90-100 milliliters of contrast material (lopromide, 
370), which was administered into an antercubital vein 
with a power injector at a rate of 3.0 mL/s. The scanning 
parameters were as follows: tube voltage, 120 kV; tube cur-
rent, 200 mA; collimation, 64 × 0.625 mm; rotation time, 
0.75 s;pitch, 1.375:1; and field of view, 360 mm.

Conventional CT analysis

Two radiologists with 10-year and 7-year CT diagnos-
tic experience analyzed all of the images, respectively. 
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Eventually, the data were recorded upon reaching a final 
decision after consensus or adjudication by two radiologists.

Conventional qualitative CT features of location (left/
right), growth pattern (exophytic, endophytic), angular inter-
face (pyramidal, interface with a definable apex within the 
parenchyma and an exophytic bulging of the mass beyond 
the renal capsule [7], Fig. 2a), cyst degeneration, calcifi-
cation, pseudocapsule (pathologically, a fibrous tissue that 
compressed renal mass, showing the high-attenuation rim 
around the mass on contrast-enhanced CT images [7], 
Fig. 2b), enhancement pattern (homogeneous, heterogene-
ous), and gender were analyzed (Table 1).

Conventional quantitative CT features including size, UP 
CT value (UP renal mass CT value), CMP-enhanced CT 
value (calculated as: CMP renal mass CT value − UP renal 
mass CT value), CMP/renal% (defined as: CMP-enhanced 
CT value/renal parenchyma CT value × 100%), NP-enhanced 

CT value (calculated as: NP renal mass CT value − CMP 
renal mass CT value), NP/renal% (estimated as: NP-
enhanced CT value/renal parenchyma CT value × 100%) 
,and age were calculated (Table 1). To reduce attenuation 
variation due to individual patient and examination technol-
ogy, relative renal mass CT value was obtained. The rela-
tive lesion CT value was normalized by renal parenchyma 
attenuation.

Image segmentation and features selection

The slice thickness for all three-phase images was 5 mm, 
with the window width and level were 300 Hu and 40 Hu. 
The manual defined smooth curve ROI was delineated 
slightly smaller in size than the actual tumor size, maintain-
ing an approximate 2–3 mm distance from the tumor margin, 
to minimize the partial volume effect from surrounding renal 

hemorrhage 
or large fluid 
collec�on 
(n=24) 

macroscopic 
fat (n=12) 

Pa�ents of AML 
(n=34) 

Pa�ents excluded

Pa�ents histopathologically confirmed (n=136) 

Suspected renal tumor pa�ents in the PACS from 
January 2014 to August 2018 (n=534) 

No enhanced CT images (n=277) 
No surgeries (n=121)

Pa�ents of ccRCC 
(n=86) 

Mixed renal tumor 
(n=16) 

pRCC (n=4) 
chRCC (n=3) 
oncocytoma (n=6) 
mixed RCC (n=3) 

Pa�ents with 
fp-AML (n=22) Pa�ents with ccRCC 

enrolled (n=62) 

Fig. 1  pRCC  papillary renal cell carcinoma; chRCC  chromophobe renal cell carcinoma; mixed RCC  included renal collecting duct carcinoma, 
and neuroendocrine tumor
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parenchyma and perinephric fat (Fig. 3a, b). Whole-tumor 
ROIs were constructed using all slice images except for the 
first and last ones. After offering the corresponding contrast 
CT images, the margin of the mass at UP was defined. The 
ROIs were depicted in the software “ITK-SNAP” Version 
3.4.0 (http://www.itksn ap.org/).

Radiomics features referring to histogram parameters, 
texture parameters, form factor parameters, GLCM param-
eters, and RLM parameters, were calculated by AK software 
(Artificial Intelligence Kit, Version 3.0.0, GE Healthcare). A 
totally of 396 features were extracted by three steps: Firstly, 
it replaced the abnormal values by mean to standardize 

Fig. 2  a Exhibited the sign of imageangular interface, showing the 
pyramidal interface within the parenchyma and an exophytic bulging 
of the mass beyond the renal capsule. b Exhibited the sign of pseudo-

capsule, showing the high-attenuation rim around the mass on con-
trast-enhanced CT images

Table 1  Data of Conventional 
CT analysis

The conventional qualitative CT features, including gender, location, growth pattern, angular interface, cyst 
degeneration, calcification, pseudocapsule, enhancement pattern, were compared using method of Chi-
square test in SPSS. The conventional quantitative CT features including age, size, UP CT value, CMP-
enhanced CT value, CMP/renal%, NP-enhanced CT value, NP/renal%, were compared with method of 
independent t test
p < 0.05 Showed significant difference

Conventional CT features ccRCC fp-AML p value

Gender (female/male) 24 (38.7%)/38 (61.3%) 16 (72.7%)/6 (27.3%) 0.070
Age 57.9 ± 10.8 50.5 ± 12.8 0.010
Size 37.4 ± 15.6 32.0 ± 9.8 0.065
Location (left/right) 28 (45.2%)/34 (54.8%) 8 (36.4%)/14 (63.6%) 0.617
Growth pattern (exophytic/endophytic) 28 (45.2%)/34 (54.8%) 9 (40.9%)/13 (59.1%) 0.806
Angular interface 2(3.2%) 14 (63.6%) 0.000
Cyst degeneration 38 (61.3%) 2 (9.1%) 0.000
Calcification 8 (12.9%) 1 (4.5%) 0.434
Pseudocapsule 38 (61.3%) 1 (4.5%) 0.000
Enhancement pattern (homogeneous/het-

erogeneous)
20 (32.3%)/42 (67.7%) 14 (63.6%)/8 (36.4%) 0.321

UP CT value 75.5 ± 20.4 91.8 ± 11.3 0.000
CMP-enhanced CT value 85.3 ± 34.8 69.2 ± 35.9 0.079
CMP/renal% 64.3 ± 23.8 50.1 ± 22.5 0.024
NP-enhanced CT value 28.9 ± 22.2 20.4 ± 17.6 0.352
NP/renal% 23.6 ± 20.6 12.9 ± 10.8 0.012

http://www.itksnap.org/
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the data, which could remove the unit limits of the data. 
Secondly, it partitioned the training set and testing set with 
a proportion of 7:3. Thirdly, by the methods of variance 
(ANOVA), Mann–Whitney U test (MW), the correlation 
test, and the Least Absolute Shrinkage and Selection Opera-
tor (LASSO), the features were further extracted to reduce 
the redundant dimensions.

Conventional CT analysis and radiomics‑based 
logistic classifiers construction

Four simple radiomics logistic classifiers including the UP 
group, CMP group, NP group, and sum group models were 
constructed to evaluate the radiomics diagnostic accuracy at 
different phases. And rad-scores including the UP rad-score, 
CMP rad-score, NP rad-score, and sum rad-score of every 
patient at different phases were calculated. The conventional 
CT analysis logistic classifier including qualitative and quan-
titative CT features was constructed. The sum rad-score as 
a radiomic factor was used to construct a radiomics-based 
logistic classifier, which also included the conventional CT 
features. The AUCs of ROC curve in the training set and 
testing set were calculated to evaluate the predictive accu-
racy of the different logistic classifiers.

Statistical analysis

The ANOVA + MW, correlation analysis, and LASSO 
statistical analysis were performed using R software (ver-
sion 3.6.1). The four simple radiomics logistic classifiers 
(UP group, CMP group, NP group, sum group models) 
and the rad-scores were also constructed and analyzed by 
R software. The significant set was 0.05. The Chi-square 
test, independent t test, and multivariate logistic regression 
were performed by SPSS (IBM Statistics SPSS 22.0). A p 
value of < 0.05 was considered as statistically significant. 
The conventional CT qualitative and quantitative features 

were analyzed by Chi-square test or independent t test, and 
the features with p < 0.05 were considered as candidate fac-
tors in a multivariate logistic model. The comparative ROC 
curve of the conventional CT analysis and raiomics-based 
analysis was performed by MedCalc. The intra-class correla-
tion coefficient (ICC) was used to evaluate the intra-observer 
agreement.

Results

Conventional qualitative and quantitative CT 
analysis

In this cohort, 22 fp-AML patients (including, 72.7% of 
females with a mean age of 50.5 ± 12.8 years) and 62 ccRCC 
patients (including, 38.7% of females with a mean age of 
57.9 ± 10.8 years) were enrolled. There was no statistical 
significance in some qualitative variables (gender, location, 
growth pattern, calcification, and enhancement pattern) as 
well as certain quantitative variables (size, CMP-enhanced 
CT value, and NP-enhanced CT value). The variables 
including angular interface (p = 0.000), cyst degeneration 
(p = 0.000), pseudocapsule (p = 0.000), age (p = 0.010), UP 
CT value (p = 0.000), CMP/renal% (p = 0.024), and NP/
renal% (p = 0.012) demonstrated statistical significance and 
were selected as independent predictors to construct conven-
tional CT analysis logistic model (Table 1). Angular inter-
face, cyst degeneration, and pseudocapsule were determined 
to be the final optimal features in the logistic classifier. The 
AUC of the conventional CT analysis model was 0.935 (95% 
CI 0.860-0.977).

Radiomics analysis

Four single radiomics analysis logistic classifiers, namely 
the UP group, CMP group, NP group and sum group, were 

Fig. 3  The lesion contour at unenhanced phase (a) was guided by the corresponding contrast-enhanced CT image (b). Manual defined smooth 
curve ROIs were delineated maintaining a 2–3 mm distance from the tumor margin
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constructed, respectively. The UP group finally included 
seven optimal features with AUCs of 0.950 (95% CI 
0.895–1.000) and 0.917 (95% CI 0.801–1.000) in the train-
ing set and testing set (Fig. 4a). In regard to the CMP group, 
six optimal features were involved, with AUCs of 0.839 
(95% CI 0.710–0.967) and 0.827 (95% CI 0.662–0.992) 
in the training set and testing set. The NP group finally 
contained 3 optimal features with AUCs of 0.840 (95% CI 
0.735–0.946) and 0.865 (95% CI 0.723–1.000) in the two 
sets. Six optimal features were finally remained in the sum 
group (Fig. 4b), with the corresponding AUCs of 0.964 (95% 
CI 0.915–1.000) and 0.925 (95% CI 0.824–1.000) in the two 
sets (Table 2). The AUC of the UP group was larger than that 
of either the CMP group or the NP group, while the AUC of 
the sum group was observed to be the largest.

The radiomics-based logistic model was constructed 
and encompassed the factors of angular interface, cyst 

degeneration, pseudocapsule, age, UP CT value, CMP/
renal%, NP/renal%, and sum rad-scores. The AUC of this 
model was 0.988 (95% CI 0.935–1.000), which was slightly 
higher than 0.935 (95% CI 0.860–0.977) of the conventional 
CT analysis mode, but shared a overlapping 95% CI (Fig. 5).

Fig. 4  Plot of LASSO coefficients-lambda for the UP group (a) and 
sum group (b). Ten fold cross-validation via minimum criteria was 
used in the LASSO model. The dotted vertical lines were drawn 

taking the optimal values, seven and six features were eventually 
selected for the UP group and sum group

Table 2  The diagnosis of simple radiomic classifiers

Logistic clas-
sifier

AUC of 
training 
set

95% CI AUC of 
testing 
set

95% CI

UP group model 0.950 0.895–1.000 0.917 0.801–1.000
CMP group 

model
0.839 0.710–0.967 0.827 0.662–0.992

NP group model 0.840 0.735–0.946 0.865 0.723–1.000
Sum group 

model
0.964 0.915–1.000 0.925 0.824–1.000

Fig. 5  ROC curve of conventional CT analysis and radiomics-based 
analysis. The AUCs were 0.935 (95% CI 0.860 to 0.977) and 0.988 
(95% CI 0.935 to 1.000), respectively
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The intra‑observer agreement

Two radiologists with 10-years and 7-years CT diagnostic 
experience delineated the ROIs and collected the conven-
tional CT features, respectively. We compared the data of 
the extracted radiomics features in the sum group and the 
conventional CT features collected by two radiologists, and 
the ICC was found to be 0.796 to 0.939. An ICC greater than 
0.75 was considered to be of good agreement.

Discussion

Conventional CT analysis has provided useful information 
regarding the differentiation between fp-AML and ccRCC. 
In this study, the angular interface, cyst degeneration, and 
pseudocapsule were determined to be the final optimal fea-
tures among conventional CT analysis logistic classifier. The 
ccRCC lesions are more vulnerable to be accompanied by 
cyst degeneration and pseudocapsule, while fp-AML lesions 
often present with a sign of angular interface. Furthermore, 
the lesion shape may help to differentiate fp-AML from 
ccRCC. The angular interface indicates the angular con-
figuration of the parenchymal portions of a tumor [15]. The 
absence of pseudocapsule is another significant characteris-
tics of fp-AML [8]. Pseudocapsule is composed of fibrous 
tissue and compressed renal parenchyma, which was seen 
in 66% of RCC with a diameter of no larger than 4 cm [16].

Compared with the CMP and NP groups, the UP group 
radiomics model showed a higher AUC. This diverseness 
illuminates that UP plays a predominant role in distinguish-
ing between two diseases, which aligns with the findings 
of previous studies. However, the CMP radiomics model, 
as Shu et al. [17] pointed out, showed the least amount of 
accuracy in differentiating Fuhrman grades of ccRCC. These 
corresponding outcomes emphasize the importance of the 
unenhanced CT scan. While, the degree of enhancement in 
fp-AML is susceptible to the number of blood vessels in a 
lesion in an enhanced study. Nonetheless, a part of the expla-
nation may lie in the different scan time. Moreover, there 
is no standard or consensus on the corresponding CT scan 
protocols due to the plethora of available scanning technolo-
gies, machines, and so forth. A study have directly took 25-s 
and 70-s delay after contrast injection at CMP and NP [17], 
while another study have took 30-s and 65 to 70-s delay [18]. 
Unlike in previous studies, this study adopted the technology 
of computer-assisted bolus-tracking, and selected 15-s and 
30-s delay with a 100-Hu threshold in the abdominal aorta 
in the CMP and NP. The result pertaining to feature selec-
tion for UP group model revealed that the Entropy of GLCM 
parameters (GLCMEntropy_AllDirection_offset7_SD), 
haralick features (HaralickCorrelation_angle90_offset7), 
and histogram parameters (root mean square, RMS) were 

the top three ranked parameters. Compared with ccRCC, 
fp-AML was characterized by a higher Entropy, which may 
significantly reflect the tumor invasiveness and heterogene-
ity as previously proven. Haralick features are calculated 
from the GLCM and are defined as a two dimensional (2D) 
histogram of pixel gray level, by counting the co-occurrence 
of neighboring gray levels in images [19].

In this study, the AUC of the sum group was the highest, 
and the entire diagnostic accuracy in enhanced CT was bet-
ter than that of unenhanced CT examination. The result of 
feature selection for the sum group model revealed that the 
GLCM parameters (Correlation_AllDirection_offset4_SD), 
histogram parameters (root mean square, RMS), and haralick 
features (HaralickCorrelation_angle90_offset7) to be the top 
three parameters. The correlation of GLCM measures the 
similarity of the gray levels in neighboring pixels, reflecting 
how correlated a pixel is with its neighbor throughout the 
whole image.

Percutaneous biopsy has been prevalent in pathological 
diagnosis, though it is attributed with a 10–20% non-diag-
nostic rate [20]. However, radiological diagnosis still takes 
an important role in differentiating fp-AML from ccRCC. 
The radiomics-based logistic classifier may improve the 
accuracy of differentiation to 0.988 from 0.935 of the con-
ventional CT analysis logistic classifier. Thus, this novel 
and non-invasive biomarker may help better differentiate 
the two diseases. However, a comparison between patho-
logical biopsy and diagnostic CT features among the same 
cohort remains further study. So far, a number of studies 
have involved the application of machine-based quantita-
tive analyses in differentiating fp-AML from ccRCC [2, 12], 
though most of them are confined to histogram or texture 
analysis [12]. Performing a histogram analysis as first order 
statistics depicts the most intuitive image features in applica-
tion. It only reflects the distribution of gray level but ignores 
the spatial interaction between pixels. However, whether the 
whole-tumor analysis is superior to the 2-dimensional analy-
sis remains a moot point [17]. Hotker et al. [20] discovered 
that whole-tumor analysis demonstrates better inter-observer 
agreement and lower variability. Moreover, Feng et al. [13] 
have uncovered that whole-tumor analysis appears to be 
more indicative in evaluating tumor heterogeneity than a 
2-dimensional analysis. In this study, radiomics analysis was 
quantified in detail, with a total of 396 features (e.g., his-
togram parameters, texture parameters, form factor param-
eters, GLCM parameters, and RLM parameters) offered for 
further selection using statistical methods. Furthermore, the 
rad-score was computed, which expressed all the radiomics 
parameters, and elevated the AUC from 0.935 to 0.988, com-
pared with the conventional CT analysis. The angular inter-
face, cyst degeneration, and sum rad-score were observed to 
be independent factors according to radiomics-based logistic 
regression when differentiating fp-AML from ccRCC.
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Besides, there are several limitations in the present study. 
Firstly, the total sample size of this study is small, because 
many patients with a correct diagnosis of fp-AML were sug-
gested to follow-up without surgery and were thus excluded 
from the study. Secondly, owing to the insufficient sample 
size, the Fuhrman classification in ccRCC group was lim-
ited. Thirdly, the data of two groups may not identically 
match in size, gender, and age. Hence, a multicentric trial 
employing a larger samples size is essential in diminishing 
the differences between the groups.

Conclusions

Radiomics-based analysis may better differentiate fp-AML 
from ccRCC in three CT phases. The angular interface, cyst 
degeneration, and sum rad-score are independent factors for 
the radiomics-based logistic classifier. The AUC of the UP 
radiomics logistic classifier is higher than that of the CMP 
and NP logistic classifier, which accentuates the importance 
of UP. The selected features from the histogram parameters 
and GLCM parameters may be potential radiomic biomark-
ers for distinguishing between the fat-poor angiomyolipoma 
and clear cell renal cell carcinoma.
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