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Abstract
The diagnosis of hepatocellular carcinoma relies largely on non-invasive imaging, and is well suited for radiomics analysis. 
Radiomics is an emerging method for quantification of tumor heterogeneity by mathematically analyzing the spatial dis-
tribution and relationships of gray levels in medical images. The published studies on radiomics analysis of HCC provide 
encouraging data demonstrating potential utility for prediction of tumor biology, molecular profiles, post-therapy response, 
and outcome. The combination of radiomics data and clinical/laboratory information provides added value in many studies. 
Radiomics is a multi-step process that requires optimization and standardization, the development of semi-automated or 
automated segmentation methods, robust data quality control, and refinement of algorithms and modeling approaches for 
high-throughput data analysis. While radiomics remains largely in the research setting, the strong associations of predictive 
models and nomograms with certain pathologic, molecular, and immune markers with tumor aggressiveness and patient 
outcomes, provide great potential for clinical applications to inform optimized treatment strategies and patient prognosis.

Keywords Hepatocellular carcinoma (HCC) · Radiomics · Texture analysis · Predictive modeling · Histopathology · 
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Introduction

Hepatocellular carcinoma (HCC) is the third leading cause 
of cancer-related death in the US [1]. HCC is typically diag-
nosed and staged using cross-sectional imaging techniques 
such as magnetic resonance imaging (MRI) and computed 
tomography (CT) and generally has a poor prognosis, often 
due to advanced stage at the time of diagnosis [2]. While 
early and intermediate stage HCC can be treated with 

surgical and locoregional therapies (LRT), patients with 
advanced HCC may benefit from systemic treatment [3]. 
Tyrosine kinase (TK) inhibitor sorafenib was the first sys-
temic therapy approved for HCC that was shown to confer 
a survival benefit in patients with advanced disease [4], and 
recent clinical trials have found that newer systemic agents, 
such as other TK Inhibitors and immune checkpoint inhibi-
tors, also show improvements in outcome [3, 5].

Because HCC is a heterogeneous and therapy-resistant 
disease, HCC characterization at the individual patient level 
is urgently needed in order to stratify patients to a personal-
ized systemic, surgical or LRT regimen to maximize their 
prognosis. Inaccuracy in this regard could result in unneces-
sary harm to patients, preclude the use of curative therapies, 
and impact healthcare costs [6]. While pathological, molecu-
lar, and immune classifications of HCC are promising for 
prognostication and prediction of post-therapy response of 
HCC [7, 8], these techniques require invasive tissue sam-
pling, specialized equipment and analysis.

Radiomics is an emerging field in image analysis, 
which consists of the extraction of large numbers of fea-
tures from the imaging data, which are hypothesized to 
contain information that reflects underlying tissue biology 
[9]. The number of publications in the field of radiomics, 
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in particular for tumor characterization including HCC, 
have increased exponentially in recent years [10]. In this 
review, we will provide an overview of a typical HCC 
radiomics workflow, discuss key applications relevant to 
HCC, review limitations, and discuss future directions of 
this emerging field with emphasis on CT and MRI.

Radiomics workflow

Radiomics is defined as the quantitative extraction, analy-
sis, and modeling of a large amount of features from medi-
cal images in relation to prediction targets, such as clinical 
end-points, and pathological and genomic features [11]. 
Radiomics analysis has numerous applications in research 
[9, 11, 12], but is not yet validated for clinical practice. 
Here, we will provide a brief overview of the typical radi-
omics workflow. Radiomics analysis requires in-house 
developed or commercial software, several of which are 
available as open-source. The Imaging Biomarker Stand-
ardization Initiative (IBSI) is an independent international 
collaboration to standardize the extraction of radiomics 
features across software applications and imaging plat-
forms to allow for high-throughput radiomics studies with 
large patient cohorts. The IBSI manual is a useful ref-
erence for the development of robust radiomics analysis 
tools [13]. When using either commercial or open-source 
software, it is advisable to check whether the specific tool 
is in agreement with the IBSI guidelines.

A radiomics study can generally be divided in five 
phases: data selection, segmentation, feature extraction, 
exploratory analysis, and modeling (Fig. 1).

Data selection

A radiomics study begins with the selection of imaging 
data (in retrospective studies) or the set-up of an imaging 
protocol (in prospective studies), the tissue of interest, and 
the prediction target (i.e., the event/characteristic that one 
wishes to predict). Images from any modality (e.g., MRI, 
CT, PET, ultrasound) can be used, while most studies have 
investigated CT or MRI. While standardized imaging pro-
tocols would be optimal for radiomics analysis, in clinical 
reality, large variability in imaging protocols across cent-
ers and platforms is common and can influence feature 
measurement [10]. For reproducibility and comparability 
of radiomics studies, it is therefore of critical importance 
that the used imaging protocols are extensively described 
in publications [11].

Segmentation

Volumes of interest (VOIs) or regions of interest (ROIs) 
in the tissue of interest can be segmented either manually 
or (semi-)automatically [10]. Manual segmentation is both 
time-consuming and affected by inter-observer variabil-
ity. For these reasons, radiomics studies typically advise 
using a semi-automated approach for tissue segmentation 
[10]. The segmentation should be performed carefully 
and consistently, since variability in the segmentation 
may introduce bias in the radiomics quantification. For 
radiomics studies in tumors, such as HCC, the inclusion 
of non-tumor tissue in the tumor ROI should be avoided, 
as this would also influence the feature extraction. Never-
theless, several recent studies have shown potential utility 
of a separate peritumoral ROI in the liver parenchyma for 
improved diagnostic performance of radiomics in HCC 
[14–16].

Feature extraction

Radiomics features can be divided into semantic and agnos-
tic features [9]. An overview of the different types of radi-
omics features can be found in Table 1. Semantic features 
include qualitative features that are typically included in 
radiology reports, including lesion size, shape, location, 
and necrosis. While semantic feature analysis is easily 
implemented in clinical practice, it is observer dependent 
and prone to inter- and intra-observer variability. Agnostic 
features are mathematically extracted quantitative descrip-
tors in the tissue of interest and are not included in clinical 
radiological analysis of medical images or radiology reports. 
Agnostic features are each defined by an advanced math-
ematical algorithm and can be divided into morphological 
and statistical features [17]. Morphological features describe 
the shape and physical composition of the segmented vol-
ume. Statistical features can be further classified into first-
order, second-order, and higher order features. First-order 
statistical features describe the distribution of pixel intensity 
values in the VOIs without taking into account spatial rela-
tionships [18]. Second-order features are most often referred 
as texture features. Image texture describes the spatial rela-
tionships of voxels with a certain gray level with adjacent 
voxels with (dis)similar gray levels (Fig. 2). Gray-level co-
occurrence matrix (GLCM) features introduced by Haral-
ick et al. are the most often analyzed texture features [19]. 
However, there are many texture analysis methods resulting 
in hundreds of possible texture features that can be included 
in radiomics analysis [13, 20, 21]. Higher order radiomics 
methods impose filters on the images to extract patterns.
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Fig. 1  Schematic diagram outlining radiomics workflow in a patient with HCC

Table 1  Classification of 
radiomics features

Category Subclassification Technique or examples

Semantic – Size, shape, location, vascularity, speculation, necrosis
Agnostic Morphological –First order, e.g., volume, maxim diameter

–Higher order, e.g., Minkowski functionals, fractal dimension
Statistical –First-order histogram statistics, e.g., mean, median, standard devia-

tion, kurtosis, skewness, minimum, maximum
–Second-order texture, e.g., gray-level co-occurrence matrix (GLCM), 

gray-level neighborhood difference matrix (GLNDM), gray-level 
run length matrix (GLRLM), gray-level size zone (GLSZM) fea-
tures

–Higher order, e.g., Fourier, Gabor, Wavelet and Laplacian transforms
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Exploratory analysis and feature reduction

The large number of assessed features in radiomics comes 
with a considerable risk of overfitting in the developed radi-
omics models [12]. Datasets consisting of a minimum of 
10–15 patients per assessed feature have been recommended 
for radiomics studies [10]. The relationships between the 
extracted features and the prediction target can be assessed 
prior to modeling to aid in feature selection, for example, 
using correlation or univariate logistic regression analysis. 
Only features that show significant diagnostic performance 
for assessment of the prediction target can be selected for 
further analysis. In addition, further feature reduction can 
be performed by elimination of redundant and/or non-robust 
features [11]. Robustness of features can be assessed by per-
forming repeatability and reproducibility studies, including 
test–retest experiments and radiomics assessment by mul-
tiple observers.

Modeling

The selection of statistical methods for data analysis in 
radiomics is dependent upon several factors, including the 
sample size and whether radiomics measurements are used 
as the predictor or the outcome measure. There is a wide 
selection of models types for radiomics analysis, includ-
ing a variety of statistical methods and machine learning 
approaches, such as random forest, linear regression, logis-
tic regression, Cox proportional hazards regression, and 
nomograms [22]. The selection of the model is known to 
affect the performance of the radiomics model for assess-
ment of the prediction target [23]. For small pilot studies 
where it is not possible to achieve a large sample size, uni-
variate analysis may be a preferred statistical method [24]. 
While small pilot or retrospective studies are important 
for providing preliminary evidence or proof-of-concept 
that certain features or analytical methods warrant further 
investigation as imaging biomarkers and surrogates for 
tumor biology, it should be emphasized that feature selec-
tion bias and false-positive results can be found when the 
number of radiomics features assessed exceeds the number 

of patients [10]. It is therefore advisable to test several 
model types to select the best performing model.

Validation

The models can be validated by internal cross-valida-
tion, which may be used to further optimize the model 
to maximize its prediction performance. The optimized 
final model should be validated in a separate independent 
patient cohort that was not used for model optimization. 
Typically, learning set should be at least equal to or is 2–4 
times the size of the independent testing set, which should 
be ideally prospectively collected [22, 25]. Furthermore, 
the clinical utility of the radiomics-derived nomograms 
can be assessed using decision curve analysis, in which 
the probabilities of net benefits are assessed at different 
thresholds in the training and validation sets.

HCC tumor heterogeneity

HCC is a tumor type of interest for radiomics analysis, 
because HCC lesions have shown to exhibit substantial 
intra- and inter-tumor heterogeneity on the biological 
level [26–29]. With respect to inter-tumor heterogeneity, 
genome-wide molecular profiling of HCC tissues has iden-
tified heterogeneous molecular aberrations across lesions 
[30]. Large-scale transcriptome analysis in 603 HCC 
patients revealed distinct aggressive and indolent molecu-
lar subclasses of HCC [31]. In terms of immunophenotyp-
ing, gene expression analysis in 956 patients has identified 
a distinct immune class, characterized by expression of 
markers of an inflammatory response, which consisted of 
two subclasses reflecting adaptive and exhausted immune 
responses [32]. Separate analysis of response to molecular 
targets in these identified distinct HCC subtypes may have 
significant clinical utility for the development of future 
clinical trials that are enriched for a certain subtype [29]. 
Next to the biological variability across HCC tumors, 
significant intra-tumoral heterogeneity has also been 
observed in HCC, including on the histopathological and 
molecular genomic levels [27, 33]. Unfortunately, HCC 
biopsies generally only sample a small part of the tumor, 
precluding analysis of intratumoral heterogeneity. Radi-
omics analysis is a powerful, non-invasive tool to extract 
numerous features on the whole lesion level which may be 
reflective of HCC heterogeneity and aggressiveness, and 
potentially inform on an optimal therapeutic approach. The 
value of radiomics for prediction of HCC characteristics 
has been studied quite extensively in the last few years, as 
summarized in the next sections.

Fig. 2  Schematic diagram illustrates two types of second-order 
agnostic radiomics features [gray-level co-occurrence (GLCM) and 
gray-level run length (GLRL)] that describe the relationships between 
image voxels. Each texture feature is defined by an advanced math-
ematical algorithm
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Radiomics for characterization of HCC 
pathology

Certain histopathologic markers provide valuable infor-
mation regarding HCC aggressiveness and prognosis, 
including tumor grade, presence of microvascular inva-
sion (MVI), and immunohistochemical (IHC) expression 
of markers such as proliferation marker Ki-67 and progeni-
tor cell marker Cytokeratin 19 (CK19). Histologic grade 
of HCC is determined by the combination of structural 
and cellular features, and according to a recent meta-anal-
ysis, poor tumor differentiation is associated with worse 
prognosis [34]. First-order radiomics (histogram analysis) 
found that minimum apparent diffusion coefficient (ADC-
min) derived from diffusion-weighted imaging (DWI) 
[35, 36] and values on the lower end of the ADC percen-
tile range (i.e., < 30% percentile) [36] were of value for 
predicting poorly differentiated HCC, which most likely 
reflects increased tumor cellularity (Fig. 3). Radiomics 
signatures based on conventional pre-contrast T1-W, post-
contrast T1-W, and T2-W MRI and CE-CT imaging, either 
alone or in combination with clinical information [37], 
have also shown value for the identification of poorly dif-
ferentiated HCC [37–39].

MVI is defined by the invasion of tumor cells into 
a vascular space lined by endothelium, including the 
microscopic vessels of the portal vein, hepatic artery, and 

lymphatic vessels, and is not readily detected at conven-
tional imaging [40]. MVI has been reported as the strong-
est independent predictor of early tumor recurrence [41, 
42] and poor prognosis [43]. Most of the studies investi-
gating radiomics analysis for prediction of MVI were in 
HCC patients undergoing surgical resection, demonstrat-
ing that both semantic features and quantitative models 
have shown value. Radiomics scores comprised of seman-
tic features have been validated, such as “radiogenomic 
venous invasion” (RVI) score, which takes into account 
internal arteries, hypointense halo and liver-tumor differ-
ence [44], and the “two-trait predictor of venous invasion” 
(TTPVI) [45], that takes into account the presence of inter-
nal arteries and hypodense halo (Fig. 4).

Quantitative radiomics data, models, or nomograms have 
demonstrated high performance for CT [46–50], MRI [51–53], 
and US [54] for the prediction of MVI. These studies have 
investigated arterial phase (AP) and portal venous phase 
(PVP) for both CT and MRI and DWI. A radiomics model 
derived from pre-operative multiphase CT outperformed 
models comprised of RVI and TTPVI semantic features alone 
(AUC 0.76 vs. AUCs 0.49-0.53, respectively) [48]. The addi-
tion of semantic imaging features, clinical and/or laboratory 
data has improved quantitative model performance in several 
studies [15, 46, 49, 51, 54]. For example, in a study of 495 
HCC patients who underwent pre-operative CT and surgi-
cal resection, a combined model yielded excellent accuracy 

Fig. 3  First-order radiomics (histogram) analysis obtained from DWI-
MRI. A 54-year-old male with a well-differentiated HCC in segment 
6 on arterial phase T1-W a and ADC map b and a 59-year-old male 

with poorly differentiated HCC in segment 2 on arterial phase T1-W 
d and ADC map e. Differences in histogram parameters are noted 
between the well-differentiated c and poorly differentiated f tumors
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in estimating the risk of MVI, with an AUC of 0.909 in the 
training/validation set and 0.889 in the test set [49].

Other pathologic markers identified at IHC with prognostic 
implications have also been investigated. High Ki-67 labeling 
index values (marker of cell proliferation) are associated with 
worse prognosis [55]. Histogram analysis obtained from ADC 
(mean, median, 5th, 25th, 75th percentiles) and AP CE-MRI 
(mean, median, 25th, 75th, 95th percentiles) found significant 
inverse correlations between parameters and high Ki-67 val-
ues [56]. A separate study also found that texture analysis of 
hepatobiliary phase (HBP), AP, and PVP CE-MRI using gado-
benate dimeglumine was also valuable for predicting Ki-67 
expression [57]. Lastly, higher measurement of progenitor cell 
marker cytokeratin 19 (CK19) was associated with a higher 
rate of tumor recurrence and metastasis [58, 59]. Texture 
analysis of conventional T1-W and T2-W MRI outperformed 
other AFP and qualitative arterial phase rim enhancement for 
identification of CK19 positivity in HCC, while the combina-
tion of these clinical, semantic, and texture features was not 
significantly better than texture features alone (p = 0.0788) 
[60]. Finally, a separate study evaluating multi-modal US 
comprised of B-mode ultrasound, shear wave elastography, 
and shear wave viscosity imaging found that texture analysis 
was valuable for prediction of three biomarkers, including pro-
grammed cell death protein 1 (PD-1), Ki-67, and MVI [61].

Radiomics for characterization of HCC 
molecular and immune characteristics

Certain gene signatures and immune phenotypes are asso-
ciated with aggressive tumor behavior and patient out-
comes [6, 62]. The majority of the radiogenomic studies to 
date have described semantic features obtained from CT or 
MRI. For example, combinations of 28 qualitative traits at 
CE-CT were able to reconstruct 78% of HCC global gene 
expression profiles [63]. In another study, only tumor size 
showed association with fractional allelic imbalance (FAI) 
rate index (p = 0.005), which is a molecular marker associ-
ated with early tumor recurrence (ER) in liver transplant 
patients, while there was a non-significant weak positive 
correlation (r = 0.264) with LI-RADS categorization [64]. 
In 39 HCC patients, qualitative imaging traits on CT and 
MRI, including infiltrative pattern, mosaic appearance, 
presence of macrovascular invasion, and large size, dem-
onstrated significant associations with gene signatures of 
aggressive HCC phenotype (G3-Boyault, Proliferation-
Chiang profiles, CK19-Villanueva, S1/S2-Hoshida), with 
odds ratios (OR) ranging from 4.44 to 12.73 (p < 0.045) 
[65]. These particular gene signatures are associated with 
increased cellular proliferation, vascular invasion, distant 

Fig. 4  A 78-year-old male with chronic hepatitis B infection and 
pathologically confirmed microvascular invasion (MVI). A 4.9  cm 
HCC is present in segment 8 on arterial phase a and portal venous 
phase b contrast-enhanced CT. The tumor demonstrates the radiog-
enomic venous invasion (RVI) marker, which is comprised of internal 
arteries (arrows, arterial phase), “hypodense halo” as defined by a rim 
of hypoattenuation partially or completely circumscribing the tumor 

(arrowhead) and the “tumor-liver difference” as defined by focal or 
circumferential sharp transition in attenuation between the tumor and 
the adjacent liver parenchyma (dashed arrow) [44]. The findings of 
internal arteries and portal venous phase hypointense halos in this 
example also fulfill the criteria for the “two-trait predictor of venous 
invasion” [45]
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metastases, and poor prognosis. A doxorubicin response 
gene expression program has also been described previ-
ously [66], and was found to have significant associations 
with the qualitative appearance of tumor margins on AP 
CT (p < 0.05, q < 0.1), which may inform treatment plan-
ning for patients receiving transarterial chemoemboliza-
tion (TACE) [67].

More recently, agnostic features have shown value for 
predicting gene signatures with prognostic and therapeu-
tic implications. Specifically, in a study of 38 patients with 
CE-CT, texture features volume fraction and textural hetero-
geneity correlated with prognostic gene modules that were 
associated with overall survival (OS) [68]. Hectors et al. 
performed histogram analysis of parameters obtained from 
functional multiparametric MRI, including DWI, blood-
oxygenation level-dependent (BOLD), tissue-oxygenation 
level-dependent (TOLD), and dynamic contrast-enhanced 
(DCE)-MRI and assessed the associations of these histogram 

metrics with molecular and immune characteristics of HCC 
(Fig. 5) [69]. It was found that central tendency parame-
ters (mean and median) significantly correlated with gene 
expression of Wnt target GLUL, pharmacological target 
FGFR4, stemness markers EPCAM and KRT19, and immune 
checkpoint PDCD1. In the same study, central tendency 
parameters from functional multiparametric (mp)MRI also 
showed significant correlations with count of endothelial 
cells (CD31 monoclonal antibody), macrophages (CD68), 
and T-cells (CD3) quantified at multiplexed immunohis-
tochemical analysis (all p values < 0.05) [69]. In a large-
scale study of 207 HCC patients, immunoscoring, defined 
as the comprehensive analysis of the type, functional ori-
entation, density, and spatial location of tumor infiltrat-
ing lymphocytes, was accurately predicted using radiom-
ics data extracted from HCC and the peritumoral regions 
based on gadoxetic acid-enhanced MRI (AUC 0.904) [70]. 
Thus, knowledge of potential actionable treatment targets 

Fig. 5  Multiparametric MRI histogram analysis in HCC. Example 
shows a 54-year-old male patient with cirrhosis secondary to chronic 
hepatitis B virus infection and HCC. a Representative magnified 
parametric maps of dynamic contrast-enhanced MRI (DCE-MRI, top 
row) and blood blood-oxygenation level-dependent (BOLD) and tis-
sue-oxygenation level-dependent MRI (TOLD; bottom row) in a large 
(8.3 cm) HCC. Location of the tumor within the liver is indicated by 
the white arrow on the  T2-weighted image (bottom row, right). Sub-
stantial intratumor heterogeneity was observed, in particular on the 

arterial, portal, and total flow  (Fa,  Fp, and  Ft) maps of DCE-MRI and 
 R2* maps of BOLD. b Histograms of  Fa,  R2* pre  O2,  R1 pre  O2, and 
ADC in the same lesion. The extensive heterogeneity observed in the 
parameter maps is also reflected in the histograms, as illustrated by 
the fat tails and pronounced skewness. ADC apparent diffusion coef-
ficient, ART  arterial fraction, DV distribution volume, Fa arterial flow, 
Fp portal flow, Ft total flow, MTT mean transit time, R1 longitudinal 
relaxation rate, R2* transverse relaxation rate Adapted from Hectors 
et al. [69]
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and immune phenotypes using a non-invasive radiomics 
approach could enable improved identification of potential 
responders to novel immunotherapeutic agents, especially 
as molecular profiling, advanced immunohistochemistry 
and immune profiling are plagued by the need for tissue 
specimens, specialized equipment and expertise, all of which 
limit routine use.

Radiomics for prediction of HCC response 
to therapy

LRT, including transarterial chemoembolization (TACE), 
radioembolization (RE), ablative methods, external beam 
radiation, and systemic therapy, are used for patients with 
intermediate to advanced stage HCC or in patients who are 
not surgical candidates [71]. These methods which offer 
excellent tumor control and improved outcomes for HCC 
patients, however, have procedure-associated risks and can 
be costly. Radiomics analysis serves two major roles in 
patients undergoing treatment for HCC: For the prediction 
of therapeutic efficacy based on pre-treatment imaging and 
response assessment based on post-treatment imaging.

A combined model including radiomics features (surface 
area-to-volume ratio, kurtosis, median, GLCM contrast, and 
size zone variability) extracted from pre-TACE AP CT and 
clinical factors (Child–Pugh score, AFP, and tumor size) 
were found to be a stronger predictor of survival (HR 19.88; 
p < 0.0001) compared to either the clinical or the radiomics 
models alone [72]. Other studies agree with these results, 
and found the value for radiomics features extracted from 
pre-treatment CE-CT or CE-MRI for prediction of tumor 
response [73–76] and post-therapy response evaluation in 
patients undergoing TACE [73, 76]. Combinations of LRTs 
can be administered simultaneously. Two other studies have 
shown that texture analysis obtained from pre-treatment CE-
MRI or IVIM-DWI in patients undergoing combined TACE 
and high-frequency ultrasound (HIFU) found that texture 
features obtained from both pre-treatment and post-treat-
ment MRI were significant predictors of an early response 
[76] and patient outcome, respectively [77].

Regarding Y90 RE, volumetric histogram analysis of 
ADC in 22 patients demonstrated that histogram parameters 
obtained at 6 w and early changes in ADC compared to base-
line (delta) were predictive of objective response (complete 
and partial response), while pre-treatment vADC histogram 
parameters were not [78]. These results are conflicting to 
a separate study in 22 patients undergoing pre-RE CT, in 
which histogram parameters obtained from AP CT were pre-
dictive of response at follow-up (mean follow-up period was 
129 days) [79]. The differences in the results of these studies 
could be attributed to small sample size, different modali-
ties/sequences analyzed, and the duration of the follow-up 

period (6 weeks vs. 18 weeks), which is especially relevant 
as the radiologic response after RE evolves over time given 
the longer period needed for radiation to achieve maximal 
cytotoxic effect on HCC [80].

Radiomics for prediction of HCC outcome

Using radiomics to predict outcome 
after non‑surgical treatment for HCC

Quantitative radiomics analysis and models have been shown 
to predict outcome in patients undergoing LRT and systemic 
therapy in several studies. For example, in a study investigat-
ing pre-treatment PET imaging in patients with unresectable 
HCC undergoing Y90 RE, a whole liver radiomics score 
including both tumor and background liver was predictive 
of both progression-free survival (PFS) and overall survival 
(OS) [81]. In both PFS and OS models, the texture features 
strength (based on the neighborhood gray-level difference 
matrix) and variance (describes the deviation from the 
mean of textural feature numbers) were the most predictive 
[81]. For patients undergoing ablation, both histogram data 
obtained from MRI (the ratio of  ADCmedian relative to the 
background liver) were the only independent predictor of 
tumor progression (p = 0.04) compared to other parameters 
[82] and radiomics models derived from PVP CT combined 
with clinicopathologic information yielded excellent model 
performance for the prediction of early recurrence (training 
set, C-index = 0.792; validation set, C-index = 0.755 [83] in 
a separate study. The radiomics geometry feature compac-
ity extracted from non-contrast pre-treatment CT was the 
only variable found in Cox model that was significant for 
predicting 12-month survival after external beam radio-
therapy (AUC 0.80, p < 0.0001) [84]. In another study in 
patients with advanced HCC undergoing systemic therapy 
(sorafenib), entropy derived from PVP CT was found to be 
an independent predictor of OS in the training cohort (fine 
filtration, HR 5.08; p = 0.0033), and then confirmed in the 
validation cohort (p < 0.05) [85].

Using radiomics to predict outcome after surgical 
treatment for HCC

Radiomics analysis has been investigated for patient out-
comes after surgery, which remains a significant clinical 
problem as up to 40% and 31.6% of HCC patients under-
going partial hepatectomy or liver transplant, respectively, 
develop tumor recurrence [86, 87]. Certain semantic and 
agnostic radiomics features extracted from both CT and MRI 
have also been shown to identify patients who develop early 
recurrence (ER), shorter recurrence-free survival (RFS), or 
overall survival (OS) after surgical resection [39, 44, 88–92]. 
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For example, pre-operative MRI texture features were evalu-
ated in 100 patients undergoing hepatic resection and found 
that the feature entropy on AP images, a manifestation of 
higher tumor heterogeneity, had the greatest predictive 
power for ER, regardless of tumor size [91]. In another study 
investigating CE-CT with measurement of Gabor and Wave-
let radiomics features in patients with a single HCC treated 
by hepatectomy, several features were associated with both 
OS and DFS (all p values < 0.05), while the Barcelona-Clínic 
Liver Cancer (BCLC) parameters were not correlated with 
OS (p = 0.057) [90]. Similar results in a separate study found 
risk scores developed from radiomics nomograms obtained 
from CE-CT texture data outperformed traditional clinical 
staging systems (BCLC, TNM, etc.) in both the training and 
validation cohorts for both tumor recurrence and OS [50].

The combination of clinical, laboratory and radiomics 
data has improved quantitative model performance for sev-
eral studies [15, 16, 91, 93–95]. Recent studies have also 
included assessment of the peritumoral liver parenchyma 
into the analysis and models [14–16], which has demon-
strated predictive information on treatment response and 
outcomes other tumor types [96, 97]. In 156 patients under-
going resection or ablation for HCC, CT-based peritumoral 
radiomics model improved model performance for predict-
ing ER and showed greater efficiency compared to the tumor 
radiomics model alone and conventional imaging features 
[14]. However, in another study also using gadoxetic acid-
enhanced MRI, combined clinical and radiomics models, 
including analysis of 3 mm border of peritumoral tissue, 
demonstrated equivalent performance compared to the clin-
icopathologic model for the prediction of ER [C-index 0.716 
vs. 0.696, p = 0.788] [16].

In patients undergoing liver transplant, modeling based 
on the radiomics features extracted from the AP CT demon-
strated superior performance compared to PVP or the com-
bination of both of AP + PVP for the prediction of tumor 
recurrence [87]. In this same study, a radiomics nomogram 
based on a model comprised of both the radiomics signature 
and clinical risk factors showed good predictive performance 
for RFS with a C-index of 0.785 in the training dataset and 
0.789 in the validation dataset [87].

Limitations

Despite the ubiquitous studies on HCC radiomics showing 
encouraging results on its potential utility to predict tumor 
biology, response, and outcome, several significant hurdles 
exist before radiomics analysis can be applied in the clinical 
setting. Radiomics requires the use of specialized software 
packages, which may result in additional costs and need for 
user training. Additional key limitations include the cur-
rent lack of standardization in radiomics studies, in terms 

of image acquisition protocol, segmentation methods, and 
the radiomics tools employed for analysis, which may result 
in differences in radiomics feature measurement that are not 
attributable to biological variations [9]. In retrospective stud-
ies, using data from different imaging vendors, platforms, 
and protocols, pre-processing consisting of normalization 
and resampling is essential to reduce, yet not eliminate, the 
signal variation between acquisitions [98]. Interestingly, the 
consensus is emerging that the most optimum segmentation 
can be reached by using a semi-automated approach con-
sisting of computer-aided tumor edge detection followed by 
manual curation [9]. As mentioned before, for the selection 
of the radiomics software tool, it is advisable to select a 
software that is in agreement with the IBSI guidelines which 
promotes standardization of radiomics analysis [13].

There is also a need for selection of radiomics features 
that are most robust in terms of repeatability and reproduc-
ibility. An increasing number of studies is being performed 
on this particular topic (see review in [99]), but only one in 
HCC [100]. The latter study assessed reproducibility and 
redundancy of CT radiomics features in 26 HCC patients, 
finding that significant variation in reproducibility across 
features and segmentation methods (percentage of excellent 
reproducible features 69–79% dependent on segmentation 
method) and recommended that only the most reliable and 
uniform radiomics features should be selected for the clinical 
use of radiomics features [100].

Detailed reporting of radiomics studies is also essential to 
advance this emerging field toward clinical translation and 
to improve reproducibility of study results. The radiomics 
quality score (RQS) has been proposed for assessment of 
radiomics study in terms of its compliance with best-practice 
procedures [11]. The RQS metrics provide useful guidance 
for the drafting of manuscripts on radiomics studies. Finally, 
explaining the associations between biologic processes and 
radiomics features, and especially texture feature obtained 
using higher order analysis, remains very challenging.

Future directions

Radiomics is still an emerging analytical method and several 
advances are required for widespread implementation for any 
clinical application, such as HCC. As described above, each 
step of the radiomics process will require optimization and 
standardization, ranging from harmonization of imaging pro-
tocols and parameters, the development of (semi-)automated 
segmentation methods, robust data QA/QC, and refinement 
of algorithms and modeling approaches for high-throughput 
analysis [101]. Furthermore, any radiomics study will require 
validation and further testing in large independent datasets in 
order to ensure reproducibility of results. Data sharing in the 
future may enable such an approach. There is also a need for 
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well-designed, prospective, comprehensive studies to integrate 
radiomics with advanced histopathology, genomics/molecular 
classification, immune phenotyping, and patient outcomes in 
HCC [101]. There is growing interest in leveraging the spatial 
and temporal information in medical imaging to use radiomics 
to characterize intra-tumor heterogeneity and describe discrete 
tumor microenvironments that may demonstrate distinct bio-
logical behavior [101].

With the exponentially growing interest in and development 
of artificial intelligence (AI) applications, there are also oppor-
tunities to leverage AI in radiomics analysis. Deep learning 
methods, in particular convolutional neural networks (CNNs), 
are capable of capturing textural information in the initial con-
volutional layers. CNNs could thus eventually replace several 
current methods for radiomics analysis [102]. Recently, a new 
concept named “deep radiomics” was introduced, which com-
bines radiomics and deep learning analysis by creating feature 
images from texture features, which are then used as input for a 
CNN to classify the images. Initial results in a lung CT screen-
ing study suggest that this combined deep radiomics approach 
outperforms both separate radiomics and deep learning analy-
sis [103]. These promising data warrant further investigation 
into the combination of radiomics and deep learning.

Conclusion

Radiomics analysis is a promising method for assessment 
of HCC characteristics, by allowing a one-stop-shop non-
invasive analysis of tumor aggressiveness. The identifica-
tion of high-risk features is especially important as HCC is 
typically diagnosed with imaging and often then managed 
without obtaining tissue sampling. Given the strong asso-
ciation of both semantic and agnostic radiomics markers 
with certain pathologic, molecular, and immune markers 
with tumor aggressiveness and patient outcomes, radiomics 
analysis may aid in the development of optimized and per-
sonalized treatment strategies, resource allocation, and for 
prognostication. Many studies have indicated that radiomics 
in combination with clinical and laboratory information may 
provide additional added value. Future work is warranted to 
develop a standardized method for quantifying and analyz-
ing multi-dimensional radiomics data to enable widespread 
clinical application, for future clinical trial design of novel 
therapeutic agents and to enable advanced analysis including 
the application of AI.
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