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Abstract
Background  Controversy still exists on the optimal surgical resection for potentially curable gastric cancer (GC). Use of 
radiologic evaluation and machine learning algorithms might predict extent of lymphadenectomy to limit unnecessary sur-
gical treatment. We purposed to design a machine learning-based clinical decision-support model for predicting extent of 
lymphadenectomy (D1 vs. D2) in local advanced GC.
Methods  Clinicoradiologic features available from routine clinical assignments in 557 patients with GCs were retrospectively 
interpreted by an expert panel blinded to all histopathologic information. All patients underwent surgery using standard D2 
resection. Decision models were developed with a logistic regression (LR), support vector machine (SVM) and auto-encoder 
(AE) algorithm in 371 training and tested in 186 test data, respectively. The primary end point was to measure diagnostic 
performance of decision model and a Japanese gastric cancer treatment guideline version 4th (JPN 4th) criteria for discrimi-
nate D1 (pT1 + pN0) versus D2 (≥ pT1 + ≥ pN1) lymphadenectomy.
Results  The decision model with AE analysis produced highest area under ROC curve (train: 0.965, 95% confidence inter-
val (CI) 0.948–0.978; test: 0.946, 95% CI 0.925–0.978), followed by SVM (train: 0.925, 95% CI 0.902–0.944; test: 0.942, 
95% CI 0.922–0.973) and LR (train: 0.886, 95% CI 0.858–0.910; test: 0.891, 95% CI 0.891–0.952). By this improvement, 
overtreatment was reduced from 21.7% (121/557) by treat-all pattern, to 15.1% (84/557) by JPN 4th criteria, and to 0.7–0.9% 
(4–5/557) by the new approach.
Conclusions  The decision model with machine learning analysis demonstrates high accuracy for identifying patients who 
are candidates for D1 versus D2 resection. Its approximate 14–20% improvements in overtreatment compared to treat-all 
pattern and JPN 4th criteria potentially increase the number of patients with local advanced GCs who can safely avoid 
unnecessary lymphadenectomy.

Keywords  Tomography · Gastric cancer · Machine learning · Lymphadenectomy · Decision-support model

Introduction

Gastric cancer (GC) is one of most common malignant 
tumor and the second leading cause of cancer-related death 
in eastern Asia [1]. Generally, D2 gastrectomy is considered 
the standard surgical treatment for locally advanced GCs, 
and the evidence of survival benefit from it was demon-
strated on observational studies [2, 3]. However, controversy 
still exists on the optimal surgical resection for potentially 
curable GCs because of high complication and death rates 
following D2 gastrectomy [4, 5]. From recent Japanese 
gastric cancer treatment guidelines (ver. 4) [6], endoscopic 
submucosal dissection (ESD), D1 or D1+ gastrectomy is 
preferred in cT1 and cN0 cancers because of minimal injury, 
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lower cost, high safety margin, and long-term excellent prog-
nosis. The extent of tumor spread through the gastric wall 
and nodal status are currently the most important prognostic 
factors of GCs and make significant influence on selecting 
the optimal type of surgery. The major challenges exist on 
correctly defining the tumor invasion (T), and the assess-
ment of N stage is deeply influenced by the extent of lym-
phadenectomy (D1 vs. D2). As a result, a “stage migration” 
can occur especially when a limited lymphadenectomy is 
performed.

The role of computed tomography (CT) in the preopera-
tive staging of GC, even if controversial, may be fundamen-
tal for evaluating T and N stage of the gastric disease [7–9]. 
However, its efficacy in identifying metastatic lymph nodes 
(LNs) is unsatisfactory, with approximate accuracy of 60% 
[7, 10–13]. At present, there isn’t a uniform standard about 
the LN metastasis of GCs using either CT or endoscopy 
[11, 14–16]. The previous researches focused on the size 
of perigastric LNs, and the size threshold ranges from 5 to 
15 mm [8, 11, 17, 18]. However, it is unreliable to evalu-
ate the metastatic LNs by the size of LNs alone, especially 
when the metastatic LNs were in normal size [15, 19]. Util-
ity of CT may be acceptable for classifying T stage of gastric 
lesions, especially in locally advanced cases [20]. Evidence 
shows that the overall accuracy of CT for detecting the depth 
of tumor invasion ranges from 60 to 90% [8, 21–23]. When 
using CT, there was a tendency to over stage T2 tumors 
as T3 tumors; additionally, the detectability of early GC is 
very low, with a rate of 20% to 50% [24]. Some authors 
suggested that a combination of signs at CT or a scoring 
system designed for scaling the risk of tumor invasion and 
LN metastasis in the general population of patients with GC 
would be useful [25–29]. However, the CT findings used in 
previous scoring system were not comprehensive, and some 
major CT findings of GCs were not investigated. Further-
more, the weights attributed to each of the scoring system 
variables in these studies were not based on statistical analy-
ses but rather based on subjective assessments. To maximize 
a future diagnostic scoring system to accurately diagnose 
tumor invasion and N stage in GCs, the number and type 
of CT findings need be rigorously determined and clearly 
evaluated. Machine learning is a newly emerging form of 
data analysis that uses a series of data mining algorithms 
or statistical tools analyses of high-throughput features to 
obtain predictive or prognostic information. By building 
appropriate models with refined features, it has shown suc-
cessful assessment and prediction abilities in various chal-
lenging clinical tasks [30–32].

Therefore, our purpose is to design a machine learning-
based decision-support model that relies primarily on the 
evidence-based clinical and CT imaging data, with the aim 
to elaborate on this information for preoperatively predicting 
extent of lymphadenectomy (D1 vs. D2) in patients with GC.

Materials and methods

Patients

This was a retrospective study involving routine at a single 
medical center. Ethics Committee approval was granted 
by Local Institutional Ethics Review Board with a waiver 
of written informed consent. All procedures performed 
in studies involving human participants were in accord-
ance with the 1964 Helsinki Declaration and its later 
amendments.

We queried our institution’s pathology database to 
derive all histologically proved cases of GCs between 
January 2014 and December 2016. Total 789 histologically 
proved cases of GCs were identified in this query. Among 
all patients, we included patients who fulfilled the follow-
ing criteria: (1) patients who had preoperative CT images 
with optimal gastric distension, (2) patients whose primary 
gastric lesion were detectable on axial scans of CT images, 
and (3) patients who underwent standard D2 gastrectomy 
[6] and without the history of preoperative chemoradiation 
therapy. According to the initial inclusion criteria, 232 
patients were excluded because some patients were with 
history of preoperative chemoradiation therapy (n = 20) 
or with an endoscopic resection of the cancer (n = 131), 
some were with end-stage GCs failed to undergo radical 
gastrectomy (n = 36), others were with lack of preoperative 
CT imaging or underwent CT examination from outside 
institutions (n = 45). At last, 557 patients with histopatho-
logic-confirmed GCs who underwent gastrointestinal CT 
scan before standard D2 gastrectomy were retrospectively 
included. Median time interval between CT examination 
and surgery was 9 days (range 6–14 days).

CT image acquisition

All gastric CT studies were performed with a 64-slice 
scanner (SOMATOM, Definition AS+, Siemens, Forch-
heim, Germany). The CT scans, covering from the liver 
to hypogastric region, were acquired during a breath-hold 
with the patient supine. All patients drank 600–800 mL 
of water before CT examination. The CT scan parame-
ters were as follows: 120 kVp, effective 160 mAs, rota-
tion time 0.5 s, detector collimation 32 × 1.2 mm, field 
of view 350 × 350 mm, matrix 512 × 512, and reconstruc-
tion section thickness 1.5  mm. Patients were injected 
with non-ionic contrast material (Ultravist; 300 mg  I/
mL, Bayer Schering Pharma AG, Berlin, Germany) with 
antecubital venous access at a rate of 3.0 mL/s, a total of 
90–120 mL (1.5 mL/kg of body weight) was injected by 
using the CT-compatible power injector during arterial and 
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parenchymal phase. The scanning delay for arterial imag-
ing was determined by using automated scan-triggering 
software (Care-Bolus; Siemens Medical Systems, Iselin, 
NJ). Arterial scanning automatically began 7.0 s after the 
trigger attenuation threshold (100 HU) was reached at the 
level of the supraceliac abdominal aorta. At a delay of 
40 s after arterial scanning, parenchymal scanning began.

Imaging analysis

All CT images were retrospectively interpreted by two radi-
ologists (C.L. and L.Q.) who had 3-year (C.L.) and 10-year 
(L.Q.) experience in reading gastrointestinal images. Both 
the readers were members of the institution’s GI disease 
management team and had read > 500 GI CT studies. Before 
the study, they were provided with a whole day lecture-based 
and hands-on instruction that explained in detail a structured 
gastrointestinal image reporting scheme, in which 40 cases 
randomly selected from institutional RIS/PACS database 
(not involved in this study cohort) were reviewed individu-
ally, scored, and then reviewed as a group.

Our gastrointestinal imaging scoring scheme, referring to 
the methods of previous studies [7, 8, 16, 33, 34], included 
several structured imaging features of GCs: (1) region of 
tumor involvement (1, cardia; 2, fundus; 3, body; 4, antrum), 
(2) maximum length of the tumor (Lmax), (3) tumor margin 
(0, sharply defined; 1, ill-defined), (4) tumor growth pat-
tern (0, intra-gastric; 1, mixed), (5) intra-tumor necrosis (0, 
absent; 1, present), (6) tumor ulceration (0, absent; 1, pre-
sent), (7) serosal invasion (0, absent; 1, present), wherein, 
the serosal invasion was defined as an irregular or nodular 
outer margin of the serosal layer and/or a dense band-like 
perigastric fat infiltration [13], (8) perigastric fat invasion 

(0, absent; 1, present), (9) radiologic T stage (T1–4), which 
referred to the standards of Kim et al. and Ahn et al. [7, 
8], (10) peritoneal seeding sign (0, absent; 1, present), (11) 
tumor arterial enhancement (TAE), which measured the CT 
HU at a represent region of interest (ROI), (12) tumor paren-
chymal enhancement (TPE), (13) the tumor contrast between 
arterial and parenchymal enhancement (CAP), and (14) the 
short axis length of the largest LN discernible (LND) was 
individually determined, and LNDs of less than 5 mm were 
rounded down to 0 mm in this study. The two radiologists 
independently reviewed the gastric images. Any disagree-
ment in imaging interpretations between the readers were 
discussed until a final standard consensus was generated. 
The measurable radiologic features such as Lmax, LND, TAE, 
TPE, and CAP were averaged between the two radiologists. 
This procedure was performed after an inter-observer reli-
ability analysis (Supplemental Data, S1). Representative 
imaging examples (Fig. 1) are provided to describe applied 
methodologies for image interpretation along with different 
radiologic categories.

Histopathology and reference standard

All patients underwent standard D2 gastrectomy. Both N1 
and N2 LNs were systematically dissected, regardless of 
their CT images. N3 and N4 LNs were dissected if they 
were visible and palpable at surgery. Node packets were 
sent separately and submitted for microscopic examina-
tion to evaluate for the presence of metastasis. The pT 
and pN stage were reported according to the 7th American 
Joint Committee on Cancer Staging (AJCC) system [20]. 
Regarding the reference standard, patients with pT1 and 

L-max

LND 0.8 cmUlcer
* fat space

* fat space

* fat space

LND 1.3cmLND < 0.5 cm

(A) (B) (C) (D)

Fig. 1   The illustration of typical radiologic features of gastric cancer. 
a A 68-year-old man presented with an intra-cavity mass in anterior 
wall of body of stomach; the Lmax of the mass is shown with red line; 
a small ulcer is determined at internal surface of the mass (arrow); 
the adjacent serosal surface is smooth, implying a T2-stage lesion; 
and perigastric fat space is clear (*, yellow outline), suggesting a 
negative fat invasion; clustering lymph nodes (LNs) are detected in 
N1 station with size of < 0.5  cm, suggesting a negative LN finding. 
b A 63-year-old man was found with an irregular mass in antrum of 
stomach, which presented with undefined boundary (yellow outline) 

and blurry perigastric fat space (*), suggesting an extra-stomach 
extension and perigastric fat infiltration (T4a stage). c A 69-year-old 
man was found with a solid mass in body of stomach. The mass had 
an extra-gastric wall extension and the perigastric fat space is disap-
peared (*), implying a suspected adjacent organ involvement (T4b 
stage). The measured LN size (LND) in this case is less than 1  cm 
(blue line), demonstrating negative LN finding. d A mass in antrum 
of stomach presented with an enlarged LN (blue line, LND 1.3 cm), 
demonstrating a typical metastatic LN
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pN0 stage were classified into D1-resection group, and 
patients with ≥ pT1 and ≥ pN1 stage were classified into 
D2-resection group.

Model development

The patients were divided into two groups (2:1) in a ran-
domized fashion: one group was designated train group 
(n = 371) for training the decision model, and the other 
group was designated test group (n = 186) for the evalua-
tion of the accuracy of decision model. This randomized 
fashion for the classification of patients is an advisable 
way to avoid over fitting. Clinicoradiologic candidate pre-
dictors such as age, sex, tumor location, Lmax, tumor mar-
gin, tumor growth pattern, intratumoral necrosis, intratu-
moral ulceration, serosal invasion, perigastric fat invasion, 
peritoneal seeding sign, radiologic T stage, TAE, TPE, 
CAP, and LND were included as input variables. Before 
the machine learning analysis, continuous variables such 
as Lmax, LND, TAE, TPE, and CAP were binarily reclassi-
fied using a receiver operating characteristic (ROC) analy-
sis (Supplemental Data, S2). Values lower than the defined 
ROC threshold were designated score 0, and those higher 
the threshold were designated score 1.

The decision models, discriminating patients who were 
candidates for D1 versus D2 resection, were developed 
using a logistic regression (LR) classification, a support 
vector machine (SVM) and an auto-encoder (AE) machine 
learning analysis, respectively. In LR analysis, variables 
associated with D2-endpoint by univariate analyses at a 
significant level were candidates for stepwise multivari-
ate analysis. Predictive model was formulated based on 
the results of multivariate regression analysis. The details 
of SVM and AE networks regarding feature selection, 
hyper-parameter optimization and model development 
are explained in Supplemental Data, S3. At the end of 
classification, the output of classifiers was converted to 
a probability (PI). The value of PI indicates individual 
surgical index for D2 resection.

As primary objective of the study is to investigate poten-
tial benefit of new decision model for preoperatively dis-
criminating between D1 and D2 resection, we used Japanese 
gastric cancer treatment guideline version 4th (JPN 4th) as 
a control method for comparison [6]. In JPN 4th criteria, 
patients were classified into cD1 group if a cT1 and cN0 
stage was determined at CT imaging, and patients were 
classified into cD2 group if a ≥ cT1 and ≥ cN1 stage was 
determined. The threshold for cN1 at CT imaging was set at 
LND > 10 mm. Nodes were considered positive or negative 
on basis of the groups as a whole; that is, positive if one 
or more LNs metastases were discernible in the group and 
negative if none was discernible.

Statistical analysis

Performance analysis comprised three activities. First, 
model discrimination was quantified with a ROC curve 
analysis. The sensitivity and specificity were computed for 
the cutoff on the ROC curve that maximizes the product of 
both measures. Second, a decision curve analysis, proposed 
by Vickers and Elkin [35], was performed to evaluate the 
clinical usefulness between JPN 4th and decision models. 
The decision curve estimates the net benefit of a model by 
the difference between the number of true-positive and false-
positive rates, weighted by the odds of the selected threshold 
probability of risk. The statistical analysis was conducted 
with an R-package (version 3.3.4; http://www.Rproj​ect.org). 
The reported statistical significance levels were all two-
sided, with statistical significance set at 0.05.

Results

Of 557 patients included, pD1 was diagnosed in explanted 
tissue of 121/557 (21.7%) patients. The mean age was 
60.8 years (standard deviation 10.8 years). The distribu-
tion of pathologic tumor stage was pT1 27.6% (154/557), 
pT2 11.3% (63/557), pT3 19.7% (110/557), and pT4 41.3% 
(230/557). The distribution of pathologic nodal status was 
pN0 40.0% (223/557), pN1 14.5% (81/557), pN2 15.3% 
(85/557), pN3a 17.4% (97/557), and pN3b 12.7% (71/557). 
The detail histopathologic results of nodal packages resected 
at surgery were summarized in Table 1.

Radiologic finings of GCs in 557 patients examined were 
listed in Table 2. In SVM analysis, among all 27 clinico-
radiologic features, feature of age, sex, intramural growth, 
and intratumoral necrosis tested with false-discovery-rate 
U-test (p > 0.05) were initially excluded. SVM with recur-
sive feature elimination (RFE) analysis selected total 11 
most important features which produced largest AUC and 
smallest bias over the bootstrapping validation (Fig. 2). In 
LR model, eight independent features were determined at 
significant level with the multivariate regression analysis. 
The coefficients of independent features and adjusted odds 
ratio (OR) were summarized and compared to SVM weights 
in Table 3. The distribution of decision scores obtained from 
LR, SVM and AE were illustrated in Fig. 3. Significant dif-
ferences of decision scores were evidenced between pD1 and 
pD2 group (LR: 0.50 ± 0.16 vs. 0.82 ± 0.15, p < 0.001; SVM: 
− 0.18 ± 0.26 vs. 0.96 ± 0.38, p < 0.001; AE: 0.21 ± 0.17 vs. 
0.95 ± 0.18, p < 0.001).

The ROC analysis shows that AE model yielded the 
highest AUC (training: AE vs. SVM, p < 0.001; AE vs. LR, 
p < 0.001; test: AE vs. SVM, p > 0.05; AE vs. LR, p < 0.001), 
followed by SVM model (training: SVM vs. LR, p < 0.001; 
test: SVM vs. LR, p < 0.001) and LR model, respectively 

http://www.Rproject.org
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(Fig. 4). Using an optimal threshold (LR score > 0.73; SVM 
score > 0.71; AE score > 0.99) that maximize the Youden 
Index, AE model achieved best diagnostic performance 
regarding both high sensitivity and specificity, followed by 
SVM and LR model. Compared to JPN 4th criteria, three 
models had significant improvement in diagnostic specific-
ity (Table 4).

As part of this study, we considered the implications of 
using decision models as a triage test to decide which men 
should undergo D1 resection, purposing to avoid unneces-
sary lymphadenectomy. In the worst-case scenario in our 
medical center, all the men with histopathology-confirmed 
GCs would undergo D2 resection. This procedure resulted 
in 21.7% (121/557) overtreatment using pathologic stage 
as reference standard. If JPN 4th criteria was used, 15.1% 
(84/557) patients would be over treated by active D2 resec-
tion and 2.7% (15/557) patients would be undertreated by 
D1 resection. When a decision-support model was used, 
the false-positive rate was reduced to 0.7% (4/557) by LR 
model, to 0.9% (5/557) by SVM model and to 0.9% (5/557) 
by AE model. While the false negative rate was LR 17% 
(95/557), SVM 10.2% (57/557), and AE 8.8% (49/557). If 

a < 10% false-judge rate is clinically tolerated, AE model 
is the only one who satisfies this criteria. Considering high 
risk of false-positive cases produced by JPN 4th criteria, 
we tested the incremental value of decision-support score 
for guiding decision-making with a decision curve analysis 

Table 1   Histopathologic results of nodes resected at surgery

No. regional lymph node metastasis, N1 1 or 2 positive lymph nodes, 
N2 3 to 6 positive lymph nodes, N3a 7 or more positive lymph nodes, 
N3b  more than 15 positive lymph nodes

Packages No. of nodes 
resected

No. of positive 
nodes

Percentage of 
positive nodes

N1 1625 245 15.1
N2 574 113 19.7
N3 6254 1359 21.7
N4 3607 661 18.3
N5 757 117 16.5
N6 1411 239 16.7
N7 911 136 14.9
N8 847 108 12.8
N9 712 109 15.3
N10 193 24 12.4
N11 404 77 19.1
N12 328 30 9.1
N13 62 14 22.6
N14 88 7 7.9
N15 13 0 0
N16 35 2 5.7
Nodal status
 N0 6817 0 0
 N1 2689 119 4.4
 N2 2671 383 14.3
 N3a 3191 1046 32.8
 N3b 2852 1776 62.3

Total 18,219 3305 18.1

Table 2   Radiologic results of GC patients between pathologic D1 and 
D2 group

Values are no. of findings, and values in parentheses are percentages 
unless indicated otherwise. Continuous data are analyzed by t test, 
counted data are analyzed by χ2 tests
Lmax maximum length of the tumor, TAE arterial enhancement of the 
tumor, TPE parenchymal enhancement of the tumor, CAP tumor con-
trast between arterial and parenchymal enhancement, LND the short 
axis diameter of the largest lymph nodes discernible
a Radiologic T and N status are based on Japanese Research Society 
for Gastric Cancer Guideline
b Reports are means and standard deviation

Imaging findings pD1 (n = 121) pD2 (n = 436) p

Origination involved
 Cardia 21/121 (17.4) 163/436 (37.4) < 0.001
 Fundus 2/121 (1.7) 70/436 (16.1) < 0.001
 Body 59/121 (48.8) 300/436 (68.8) < 0.001
 Antrum 83/121 (68.6) 224/436 (51.4) 0.001

Lmax (cm)b 2.7 ± 1.1 5.2 ± 2.1 < 0.001
Tumor margin (ill-

defined)
47/121 (38.8) 310/436 (71.1) < 0.001

Tumor growth pattern
 Intramural 121/121 (100) 434/436 (99.5) 0.455
 Extramural 0/121 (0) 66/436 (15.1) < 0.001
 Transmural 0/121 (0) 65/436 (14.9) < 0.001
 Diffuse 1/121 (0.8) 102/436 (23.4) < 0.001
 Invasive 2/121 (1.7) 196/436 (45.0) < 0.001

Intratumoral necrosis 2/121 (1.7) 9/436 (2.1) 0.774
Intratumoral ulcer 49/121 (40.5) 317/436 (72.7) < 0.001
Serosal invasion 0/121 (0) 38/436 (8.7) 0.001
Blurry fat space 3/121 (2.5) 122/436 (28.0) < 0.001
Peritoneal seeding sign 0/121 (0) 38/436 (6.8) 0.001
Radiologic T stagea

 T1 38/121 (31.4) 15/436 (3.4) < 0.001
 T2 55/121 (45.5) 69/436 (15.8) < 0.001
 T3 28/121 (23.1) 180/436 (41.3) < 0.001
 T4 0/121 (0) 172/436 (39.4) < 0.001

Radiologic N statusa

 N1 (stations 1–6) 43/121 (35.5) 365/436 (83.7) < 0.001
 N2 (stations 7–11) 13/121 (10.7) 188/436 (43.1) < 0.001
 N3 (stations 12–14) 1/121 (0.8) 63/436 (14.4) < 0.001
 N4 (stations 15, 16) 2/121 (1.7) 61/436 (14.0) < 0.001
 LND (cm)b 0.21 ± 0.36 0.73 ± 0.65 < 0.001

TAEb 1.03 ± 0.27 1.14 ± 0.26 < 0.001
TPEb 1.09 ± 0.26 1.25 ± 0.27 < 0.001
CAPb 0.94 ± 0.17 1.02 ± 0.33 < 0.001
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(Fig. 5). Decision curves were estimated using JPN 4th 
and the decision score produced by AE model. It shows 
that adding decision score to JPN 4th criteria produces 
significant benefit than use of JPN 4th criteria solely.

Discussion

The results of our study draw a conclusion that the deci-
sion model derived from machine learning analysis 
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Fig. 2   Results of feature selection, feature ranking, and model con-
struction with RFE-SVM analysis. a Distribution of weight for Fea-
tures with RFE analysis. b SVM classifier is trained by adding ranked 
feature one-by-one. The iteration repeated until the desired number of 

features was reached. The desired features and classifier parameters 
are selected to be those resulting in best accuracy and least estimated 
bias over cross-validation (blue line)

Table 3   Features weights and 
coefficients estimated by SVM 
and LR analysis

OR odds ratio with LR analysis, CI confidence interval
a Threshold obtained from a ROC analysis in Supplemental Data S1
b Only the features selected into the training model are listed

Feature SVM weightb LR coefficientb OR 95% CI

Low Upper

T stage 0.244 0.781 2.184 1.457 3.274
N1 0.193 0.705 2.024 1.141 3.59
Lmax (≤ 3.7 cm vs. > 3.7 cm)a 0.137 1.31 3.705 1.888 7.268
TPE (≤ 1.11 vs. > 1.11)a 0.094 0.568 1.765 1.036 3.008
LND (≤ 0.3 cm vs. > 0.3 cm)a 0.067
Peritoneal seeding sign 0.052
Antrum involved 0.045
CAP (≤ 1.01 vs. > 1.01)a 0.039 0.584 1.794 0.975 3.299
TAE (≤ 0.99 vs. > 0.99)a 0.034
Intratumoral ulcer 0.027
Tumor margin 0.020
Cardia involved 0.688 1.990 1.023 3.871
Blurry fat space 1.181 3.257 0.872 12.164
Invasive growth 1.544 4.685 1.012 21.701
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achieved good operation performance in local advanced 
GCs. Songun et al. indicated that D2 lymphadenectomy 
is associated with lower locoregional recurrence and 

GC-related death rates than D1 surgery. However, D2 
patients were also associated with significantly higher 
operative mortality, higher complication rate and higher 
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Fig. 3   Distribution of decision score obtained by LR (a), SVM (b) and AE (c) analysis
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Fig. 4   ROC analysis of decision models with LR, SVM, and AE algorithms

Table 4   The diagnostic 
performance of decision score 
derived from LR, SVM, and AE 
analysis, and compared to JPN 
4th criteria

SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative predictive value, CI confi-
dence interval

Group AUC (95% CI) SEN SPE PPV NPV Cutoff

Training (n = 371)
 LR 0.886 (0.858–0.910) 82.2 78.3 98.0 25.7 > 0.73
 SVM 0.925 (0.902–0.944) 89.9 78.3 98.1 37.9 > 0.71
 AE 0.965 (0.948–0.978) 90.2 89.1 99.1 41.8 > 0.99

Test (n = 186)
 LR 0.891 (0.891–0.952) 84.9 77.8 96.6 23.4 > 0.73
 SVM 0.942 (0.922–0.973) 87.2 87.4 97.2 39.3 > 0.71
 AE 0.946 (0.925–0.978) 89.6 87.0 98.8 39.7 > 0.99

JPN 4th (overall 
patients)

– 96.6 30.6 83.4 71.2 cT1 + cN0
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reoperation rate than D1 patients [4]. In addition, ESD, 
D1 or D1+ gastrectomy is preferred in cT1 and cN0 can-
cers because of minimal injury, lower cost, high safety 
margin, and long-term excellent prognosis [6].Due to the 
extremely important significance in guidance of preopera-
tive therapeutic schedules and selection of extent of lym-
phadenectomy, this decision-support calculator with high 
accuracy and good discrimination is in imminent need. 
The system is superior to JPN 4th classification regarding 
high specificity and low false-positive prediction rate. This 
would connect to better selection of optimal type of treat-
ment, thus allows to minimal injury, high safety margin, 
and long-term excellent prognosis. Therefore, we believe 
our research findings can play an important role and make 
a significant difference in current clinical work of local 
advanced GCs.

As inhomogeneous biologic feature of GCs, the treat-
ment and prognosis of GCs is significantly different among 
histological type, tumor invasion depth, and adjacent organ 
morphologic relations [36–40]. Surgical resectability of GCs 
is largely dependent on the preoperative evaluation of the 
features such as tumor invasion depth, N status, adjacent 
organ involvement, peritoneal carcinomatosis, and distant 
metastases, which can be determined at imaging-based find-
ings. However, there is still a matter of extensive debate on 
“stage migration” caused by conventional staging scheme 
that relies on morphologic features at CT images. This con-
tributes to significant increase in over diagnosis of early dis-
ease and under-diagnosis of advance cancers. Generally, the 
CT finding most suggestive of metastatic LNs involvement is 
nodal size of 1 cm or greater on CT images, presenting with 

the diagnostic accuracies of 50–80% [41, 42]. In current 
study, we define LNs as metastatic when the short axis diam-
eter (LND) is over 1 cm on CT images. Of the total 557 dis-
sected LN diseases, 455 patients with nodes were less than 
1 cm in size and 258/455 (56.7%) of them were metastatic 
histologically; and of 102 dissected LNs larger than or equal 
to 1 cm in size, benign LNs were confirmed histologically 
in 26/102 cases (25.4%). The limitation of size criteria for 
determination of N status has long been recognized, as the 
inhomogeneous biologic feature of GCs, approximately 40% 
of metastatic LNs occur in the body will have a ‘normal’ 
size. Additionally, “Stage migration” might be notified in 
classifying tumor invasion depth. In current study, we used a 
multi-detector CT including conventional 2D axial, coronal 
or sagittal multiplanar reformatted images for the evaluation 
of T stage. Of 557 resected lesions, the accuracy of CT for 
diagnosing pT1, pT2, pT3, and pT4 is 45/154 (29.2%), 25/63 
(39.7%), 47/110 (42.7%), and 119/230 (51.7%), respectively, 
significant difference with those reported previously [8, 
21–24]. Stage migration might be associated with variabili-
ties in image scanning, reconstruction and individual expe-
rience of radiologist. Using this staging strategy, i.e., JPN 
4th criteria, for guiding surgical option resulted in 84/557 
(15.1%) overtreatment of patients who were true candidates 
for D1 resection.

Decision-support model brought us new insights to 
advance diagnosis and surgical procedure. Biological char-
acters of GCs such as histological type, tumor invasion 
depth, and adjacent organ morphologic relations could be 
reflected and predicted by deep analysis of large scale imag-
ing features. This data mining approach might be helpful 
for improvement of clinical decision. Hong et al. developed 
a scoring system to predict the risk of No. 10 LN metas-
tasis for advanced upper GCs, and the AUC of this scor-
ing system was 0.82 [25]. In current study, we developed 
an image reporting scheme for introducing CT features of 
primary tumors and perigastric LNs. All variables reported 
were highly standardized and incorporated into the decision 
model using two novel machine learning methods and com-
pared them to a conventional LR analysis. Use of those two 
machine learning approaches, advantage in discriminating 
D1 versus D2 resection was clearly observed as compared 
with conventional LR approach and two-point JPN 4th cri-
teria. The diagnostic specificity was improved and overes-
timate was reduced when new scoring scheme was used.

Even inconsistent results were observed between SVM 
and LR for the feature selection, both of them demonstrated 
that higher radiologic T stage, positive findings at N1 sta-
tion, larger Lmax, and higher TPE were significant predictors 
for discriminating between D1 and D2 resection. Our find-
ings were comparable to those of previous studies, which 
reported that LN metastasis strongly correlates to tumor size 
(Lmax in this study) and tumor depth of invasion (radiologic 
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Fig. 5   Decision curve analysis of decision score for discriminating 
D1 versus D2 lymphadenectomy. The y-axis measures the net ben-
efits, and the x-axis is the risk threshold. The black line represents the 
assumption that no patients undergo D2 lymphadenectomy, the gray 
line represents the assumption that all patients have D2 lymphadenec-
tomy. The blue line represents the results estimated by JPN 4th crite-
ria. The red line represents the results estimated by a combination of 
decision-support model with JPN 4th. It shows that, the JPN 4th cri-
teria has no benefit compared to treat-all and treat-none pattern, while 
if decision score is added, it results in more benefits for patients’ dis-
crimination
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T stage in this study) [25, 43, 44]. Additionally, Miles et al. 
found that tumor contrast-enhanced density was strongly 
associated with tumor blood supply, which made it easier 
having distal invasion [45]. Fukuya et al. reported that the 
larger short axis diameter of LN (LND in this study) was the 
more probability of LN metastasis [46]. Thus, we suggested 
that GC is a rich-blood supplied malignancy; the size and 
invasion depth of the tumor increase consistently with tumor 
progression; and eventually, tumor penetrates through the 
muscle layer and infiltrates the serosa layer, which contains 
abundant capillary lymphatic net, the incidence of distant 
invasion and metastasis thus increase. We found AE model 
gave the best results against SVM and LR. Unlike conven-
tional machine learning classifiers, the AE deep learning 
network allows to learn good features automatically from 
data, and thus avoids manually-designed feature extractors. 
Secondly, AE imposes sparsity on the mapped features (i.e., 
responses of hidden nodes), thus avoiding the problem of 
trivial solutions when the dimensionality of hidden features 
is more than that of the input features. Besides, we used 
unsupervised initialization in the pre-training stage, which 
prevents the later supervised training from falling into the 
bad local minimum. Therefore, we support that the AE deep 
learning is a new way and deserved to be used in current or 
the future study.

The limitations of our study include the lack external 
validation for the new decision-support system. Our results 
were based on clinical data obtained from an eastern country 
at a single institution and may not be generalized to other 
populations of patients with GCs. Eastern countries have 
higher GC morbidity and more advanced GC patients than 
western countries. This bias in population distribution leads 
to lower early GC patients in this study, which might make 
influence on the statistical analysis. Multicenter validation 
with a larger sample size is mandatory to acquire high-level 
evidence for clinical application. In addition, Radiomics 
is a rising field of quantitative imaging that capture tumor 
phenotype characteristics non-invasively using advanced 
imaging features. Radiomics may help to determine rela-
tionships between such features and the underlying patho-
physiology; therefore, a combination of Radiomics signature 
may improve the ability to predict the stage of GC in further 
studies.

Conclusions

In current study, we designed a decision-support model 
that relies primarily on the evidence-based clinicoradio-
logic data, aiming for preoperatively predicting extent of 
lymphadenectomy in patients with GC. Using a machine 
learning-based analysis for data mining and incorporating, 

we suggested that application of such model-dependent 
approach offers an alternative to determine tumor biologi-
cal characters and predict clinical status of the patient, and 
thus permit better-informed pretreatment decisions.
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