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Abstract
Purpose  To explore the preponderant diagnostic performances of IVIM and DKI in predicting the Gleason score (GS) of 
prostate cancer.
Methods  Diffusion-weighted imaging data were postprocessed using monoexponential, lVIM and DK models to quantitate 
the apparent diffusion coefficient (ADC), molecular diffusion coefficient (D), perfusion-related diffusion coefficient (Dstar), 
perfusion fraction (F), apparent diffusion for Gaussian distribution (Dapp), and apparent kurtosis coefficient (Kapp). Spear-
man’s rank correlation coefficient was used to explore the relationship between those parameters and the GS, Kruskal–Wal-
lis test, and Mann–Whitney U test were performed to compare the above parameters between the different groups, and a 
receiver-operating characteristic (ROC) curve was used to analyze the differential diagnosis ability. The interpretation of 
the results is in view of histopathologic tumor tissue composition.
Results  The area under the ROC curves (AUCs) of ADC, F, D, Dapp, and Kapp in differentiating GS ≤ 3 + 4 and GS > 3 + 4 
PCa were 0.744 (95% CI 0.581–0.868), 0.726 (95% CI 0.563–0.855), 0.732 (95% CI 0.569–0.860), and 0.752 (95% CI 
0.590–0.875), 0.766 (95% CI 0.606–0.885), respectively, and those in differentiating GS ≤ 7 and GS > 7 PCa were 0.755 
(95% CI 0.594–0.877), 0.734 (95% CI 0.571–0.861), 0.724 (95% CI0.560–0.853), and 0.716 (95% CI 0.552–0.847), 0.828 
(95% CI 0.676–0.929), respectively. All the P values were less than 0.05. There was no significant difference in the AUC 
for the detection of different GS groups by using those parameters.
Conclusion  Both the IVIM and DKI models are beneficial to predict GS of PCa and indirectly predict its aggressiveness, 
and they have a comparable diagnostic performance with each other as well as ADC.

Keywords  Prostate cancer · Diffusion-weighted imaging · Diffusion kurtosis imaging · Magnetic resonance imaging · 
Intravoxel incoherent motion · Gleason score
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Introduction

Prostate cancer (PCa) is a significant health issue affect-
ing predominantly elderly men worldwide. Its incidence 
has been ranked high for many years in the global can-
cer survey, and its mortality rate is second to lung can-
cer [1–3]. The Gleason scoring system is the most widely 
used scoring system for judging the malignant degree of 
PCa; the higher the GS, the higher the malignancy and 
the corresponding invasiveness [4]. For low-risk tumors 
(GS < 7), no immediate treatment is required, that is, either 
watchful waiting or active surveillance; for intermediate-
risk (GS = 7), monotherapy is offered, and for high-risk 
prostate cancer (GS > 7), combination therapy will be the 
best treatment option [5]. Recently, much greater attention 
is given to the intermediate risk group to be subdivided 
into GS = 3 + 4 and GS = 4 + 3 for subanalysis due to prog-
nostic differences between the two groups [4, 6]. Kamel 
et al. [7] showed that PCa with GS = 4 + 3 was more prone 
to metastasis than GS = 3 + 4, the probability was about 
2.8%, 0.9%, and the overall survival rate was 23% lower 
than the latter. Recent studies have shown that GS = 3 + 4 
tumors have high biological inertia and good prognosis, 
and active monitoring is recommended to avoid overtreat-
ment [8]. Transrectal ultrasound-guided prostate biopsy 
(TRUS-biopsy) can cause side-effects including bleeding, 
pain, and infection, and it is less sensitive than what we 
expected [9, 10].

Diffusion-weighted magnetic resonance imaging (DW-
MRI) offers a noninvasive visualization approach that 
reflects the diffusion characteristics of water molecules in 
biological tissues and indirectly reflects the microscopic 
changes in tissue structures, which characterize the organi-
zation. It is an informative MRI modality in detecting PCa, 
and it shows moderately high diagnostic accuracy [11]. 
Routinely, in our clinical work, apparent diffusion coeffi-
cient (ADC) values are calculated by means of a monoex-
ponential model via assumption of the diffusion in defer-
ence to Gaussian distribution similar to that in pure water. 
Nevertheless, these movements in biological tissue include 
molecular diffusion of water and blood microcirculations 
in a network of capillaries (perfusion). The microcircu-
lation or perfusion of blood can also be considered an 
incoherent movement due to the pseudorandom tissue of 
the capillary network at the voxel level. In a significant 
development, Le Bihan [12] established an in vivo bi-
exponential model, which is also known as the intravoxel 
incoherent motion (IVIM) model. This model correlates 
the molecular diffusion coefficient and perfusion. A study 
by Hiroshi Shinmoto showed that the molecular diffusion 
coefficient and perfusion fraction in prostate cancer were 
significantly lower than those found in the peripheral zone 

(PZ) [13]. Liu et al. found that IVIM could potentially 
improve the differentiation of prostate cancer in the central 
gland and offer better accuracy than ADC for differentiat-
ing stromal hyperplasia and prostate cancer [14]. Further-
more, some studies concluded that perfusion-free diffusion 
parameter D performed better in differentiating the GS of 
PCa [15–18]. When higher b values are added, the perfu-
sion is depressed, and the molecular diffusion was proven 
to depart from the conventional random diffusion process 
due to the existence of barriers within cellular complex 
environments, which is acknowledged as non-Gaussian 
diffusion behavior. This calls for more advanced modeling 
of DWI to characterize non-Gaussian behavior—the idea 
of reflecting organizational heterogeneity and irregular-
ity—detected using high b values. The DKI model allows 
for the estimation of kurtosis, and higher kurtosis values 
indicate a more peaked, non-Gaussian distribution of dif-
fusion [19]. Previous studies have shown that the DKI 
model improves PCa detection and diagnosis [20–24]. 
Wang et al. reported that the 90th Kapp exhibited better 
diagnostic performance in differentiating the GS of PCa 
[23]; Wu’s team reported that DKI may help in predicting 
GS upgrade in biopsy-proven GS 6 prostate cancer [24]. 
A recent study by Tamada et al. [25] reported that Kapp 
performed well in differentiating GS ≤ 3 + 3 and GS ≥ 3 + 4 
tumors, GS ≤ 3 + 4 and GS ≥ 4 + 3 tumors, which were 
similar to the diagnostic performance of ADC; and ADC 
and Kapp were highly correlated.

Although much work as we mentioned above had been 
done, studies on these two models are relatively deficient. 
And the GS results used in many studies were obtained 
from biopsies which can be inaccurate due to sampling 
error considering the fact that the GS is upgraded in every 
third patient following radical prostatectomy (RP) [26]. The 
GSs used in this study were obtained from RP. We aimed to 
explore the preponderant diagnostic perfor°mances of these 
two models in predicting the aggression of PCa; and what 
their unique parameters added to monoexponential model 
(ADC).

Materials and methods

Patient population

From May 2017 to December 2018, 121 consecutive patients 
were enrolled as a part of an ongoing prospective study. 
All the patients underwent diffusion-weighted MR scanning 
and gave informed consent. Our target population was peo-
ple who exhibited remarkable findings in serum prostate-
specific antigen (PSA) test and/or digital rectal examination 
(DRE) and/ultrasonography. Patients who had previously 
undergone ultrasound-guided transrectal biopsy were also 
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included because our primary objective was to detect and 
characterize clinically significant cancer in the gland [27]. 
Recently, Jung et al. showed that postbiopsy hemorrhage did 
not negatively affect the detection of tumors with GS ≥ 3 + 4 
or with volume ≤ 0.5 ml [28]. Through image analysis, we 
observed that only 11 (28%) cases had hemorrhage, and the 
signal of hemorrhagic foci was depressed well on high b 
value (e.g., b = 2200) DW images. Eighty-one patients were 
excluded for the following reasons: (a) those who exhibited 
neither prostatectomy nor biopsy pathological proof (n = 53), 
including patients who did not have significant suspicious 
foci on all of mpMRI or refuse biopsy; (b) those in whom 
the interval between prostatectomy/biopsy was more than 
3 months (n = 4); (c) those who had prior treatment (n = 4), 
such as endocrine therapy and transurethral resection of car-
cinoma of the prostate (TURCaP); (d) those with no pros-
tatectomy (n = 6); (e) cases with poor image quality (n = 7); 

and (f) those with no lesion being identified on MR imaging 
(n = 7). Finally, we considered a total number of 43 patients 
for this study. Figure 1 presents a flowchart of the popula-
tion. All the GS scores were evaluated using radical prosta-
tectomy gross specimens. The clinical data of the 40 patients 
are summarized in Table 1. In view of lacking GS = 6 and 
good prognosis of GS = 3 + 4, patients in our study were 
divided into three risk groups as GS ≤ 3 + 4 (group A, GA), 
GS = 4 + 3 (GB), and GS > 4 + 3 (GC).

MR imaging protocol

Multiparametric MR imaging was performed using a 3.0-T 
MR imager (Discovery MR 750, GE Medical Systems, 
Milwaukee, WI, USA) and a 32-channel phased-array 
surface coil without an endorectal coil. The contraindica-
tions for enhanced magnetic resonance imaging had been 

Fig. 1   Flowchart of patient 
population. PZ peripheral zone, 
TZ transitional zone, CZ central 
zone
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excluded, and particular preparations such as gastrointesti-
nal preparation were not highly noted in this study consid-
ering that there was no consensus regarding patient prepa-
ration issues [27]. Propeller FS T2-weighted MR imaging 
was used to reduce motion artifact. The inclination angle 
of the axial-oblique scanning was adjusted according to 
the inclination degree of the prostate. Echo-planar DW 
images were acquired in the axial-oblique plane that was 

consistent with T2 W imaging using a single-shot spin-
echo echo-planar sequence. Eleven b values of 0, 50, 100, 
200, 900, 1100, 1400, 1800, 2200, 2500, and 3000 s/mm2 
(with number of averages of 1, 1, 1, 1, 4, 4, 6, 8, 10, 10, 
and 12, respectively) were determined. ADC maps were 
calculated automatically via monoexponential fitting per 
voxel of the DW images. 3D T1 liver acquisition with vol-
ume acceleration flex (LAVA FLEX) sequence was used 
for DCE-MR imaging. DCE was only used for the facilita-
tion of diagnosis in this study. The detailed parameters of 
these main acquisition sequences are shown in Table 2.

IVIM and DKI models

IVIM model and its parameters of D, Dstar, and F are fit 
for a biexponential equation:

where D characterizes extravascular diffusion of water, while 
Dstar represents signal changes attributing to the intravas-
cular movement of water. F is the perfusion fraction. Sb is 
the DWI signal intensity at a specified b value, and S0 is the 
baseline signal at b = 0.

The DKI model is based on the following equation:

In Eq. [2], Sb and S0 have the same meaning as in Eq. [1]. 
When S0 is known, Dapp and Kapp are obtained. The param-
eter Kapp represents the apparent diffusional kurtosis (unit-
less), and Dapp is the diffusion coefficient that is corrected 
to account for the observed non-Gaussian behavior [29].

(1)Sb∕S0 = (1 − F) ⋅ exp (−b ⋅ D) + F ⋅ exp (−b ⋅ Dstar),

(2)Sb∕S0 = exp
(

−b ⋅ Dapp + b
2
⋅ Dapp ⋅ Kapp∕6

)

.

Table 1   Clinical data of the 40 patients

a Mean ± standard deviation (minimum–maximum)

Characteristic Value

Patient age (year)a 70 ± 7 (57–85)
PSA lever (ng/ml)a 28.87 ± 26.02 

(4.36–
102.10)

Number of each GS
 3 + 3 2
 3 + 4 11
 4 + 3 11
 3 + 5 1
 4 + 4 2
 4 + 5 9
 5 + 4 2
 5 + 5 2

Pathologic staging
 <T2 5
 T3a 24
 T3b 7
 T4 4

Table 2   Acquisition parameter values of major Sequences

fs fat suppression

Parameter Multiplanar propeller fs T2WI DWI DCE (3D) 50 phase

Axial Sagittal Coronal

Repetition time (ms) 7972 7486 6432 2000 3.6
Echo time (ms) 93 106 95 Minimum Min full
Matrix (frequency × phase) 320 × 320 320 × 320 320 × 320 128 × 160 160 × 128
Echo train length 28 32 24 / /
Band width (KHz) 62.5 62.5 62.5 250 166.67
No. of acquired signals 3.0 2.5 2.0 b value-dependent 1
Field of view (cm) 20 × 20 22 × 22 22 × 22 28 × 25.2 28 × 28
Section thickness (mm) 3.0 3.0 3.0 3.0 4.0 (ZIP2)
Gap (mm) 0.5 0.5 0.5 0.5 0
Acquisition voxel size 0.6 × 0.6 × 3 mm 0.7 × 0.7 × 3 mm 0.7 × 0.7 × 3 mm 2.2 × 1.6 × 3 mm 1.8 × 2.2 × 4 mm
Reconstruction voxel size / / / / 0.55 × 0.55 × 2 mm
Orientation of phase encoding A/P A/P R/L A/P A/P
Acquisition time 03:54 3:30 03:34 05:48 04:43
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ROI analysis

Two experienced radiologists (Professor A with 3 years of 
experience in prostate MRI, and Professor B with 4 years 
of experience in prostate MRI) identified suspicious 
tumors in consensus according to the criteria in Prostate 
Imaging-Reporting and Data System, Version 2 [27]. 
These radiologists had not been previously informed of the 
pathological results. Usually, a patient having more than 
one suspicious focus as well as the prostatic tumor had 
usually multiple foci separated by noncancerous tissue. 
Index lesion of each patient was evaluated in this study. 
An index lesion is one that locates in the zone which is 
depicted in prostatectomy/biopsy pathologic result and can 
be found on MRI. The method for index lesion definition 
is presented in Fig. 2. The two radiologists depicted every 

region of interest (ROI) separately on high b (b = 2200 s/
mm2) DWI with reference to the ADC imaging which was 
generated automatically after scanning, using the IMAge/
enGINE MR_Diffusion software (V2.0.3, Vusion Tech, 
Hefei, China, http://www.vusio​n.com.cn) to perform each 
DW-MR imaging, obtaining parameters of the IVIM (F, 
D, and Dstar) and DKI models (Dapp, Kapp) [30]. Their 
mean values were used for data analysis. The three-dimen-
sional ROI data measurement capability of this version 
offered more convenient measurement and more compre-
hensive use of the diffusion information of lesions. The 
placement of 3D-ROIs was in accordance with the index 
lesion, avoiding the urethral and ejaculatory ducts, as well 
as hemorrhage. Figure 3 shows an example of manual ROI 
placement.

Fig. 2   Flowchart of index lesion

http://www.vusion.com.cn
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Statistical analysis

Data analysis was conducted using the SPSS software (ver-
sion 20.0; SPSS, Chicago, USA) and the MedCalc Sta-
tistical Software (version 15.8; MedCalc Software bvba, 
Ostend, Belgium; https​://www.medca​lc.org; 2015). The 
interobserver agreement for each parameter measurement 
was assessed by calculating the interclass correlation coef-
ficient (< 0.40, poor; 0.40–0.59, fair; 0.60–0.74, good; 
and 0.751–1.00, excellent) [31]. The mean values of those 
parameters measured by the two radiologists were used in 
the flowing data analysis. Shapiro–Wilk test of normality 
was performed to assess the normality of each parameter 
at P value > 0.05. Spearman’s rank correlation coefficient 
(0.0–0.2, very weak to negligible; 0.2–0.4, weak; 0.4–0.7, 
moderate; 0.7–0.9, strong; 0.9–1.0, very strong) [32] was 
used to crystallize the correlation between each param-
eter and GS. Correlations of ADC and the unique param-
eters of IVIM and DKI models were also computed. The 
Kruskal–Wallis one-way analysis of variance (ANOVA) (k 
samples) and Mann–Whitney U test were used to analyze the 
differences of each parameter between different groups. The 
ROC curves were employed to analyze the diagnostic per-
formance for predicting GS of PCa. Areas under the curves 
(AUCs) were compared using the DeLong method [33]; and 
95% confidence intervals (CIs), optimal cutoff values, and 
the corresponding sensitivity and specificity values were 
calculated. A two-sided significance level of 0.05 was set 
for the above statistical tests.

Results

These 40 index lesions consisted of 4 PI-RADS category 
3, 24 PI-RADS category 4, and 23 PI-RADS category 5 
foci. The agreements for these metrics between the two 
readers were excellent for ADC (interclass correlation 

coefficient (ICC): 0.95; 95% CI 0.90–0.97), D (ICC: 0.96; 
95% CI 0.92–0.98), Dstar (ICC: 0.94; 95% CI 0.90–0.97), 
F (ICC: 0.97; 95% CI 0.95–0.99), Dapp (ICC: 0.97; 95% CI 
0.94–0.98), and Kapp (ICC: 0.94; 95% CI 0.89–0.97).

GS was moderately inversely correlated with ADC 
(rho = − 0.487, P < 0.01), F (rho = − 0.473, P < 0.01), 
D (rho = − 0.432, P < 0.01) and Dapp (rho = − 0.436, 
P < 0.01), and positively associated with Kapp (rho = 0.611, 
P < 0.01); GS showed no significant correlation with Dstar 
(rho = 0.255, P = 0.11). The differences in ADC, F, D, Dapp, 
and Kapp values between GC and GA, GC and GA + GB, 
Gand A and GB + GC were all significant (P < 0.05) and 
were all not significant between GA and GB, and GB and 
GC. Details are presented in Table 3. The distribution of 
each parameter’s values according to different GS groups are 
shown in Fig. 4. ADC exhibited a strong positive correla-
tion with F (rho = 0.785; P < 0.001), and a strong negative 
association with Kapp (rho = − 0.849, P < 0.001).

Figure 5 and Table 4 display the results of the ROC cure 
analysis of the diffusion metrics for distinguishing different 
GS PCa values. The AUCs of ADC, F, D, Dapp, and Kapp 
in differentiating GS ≤ 3 + 4 and GS > 3 + 4 PCa were 0.744 

Fig. 3   ROIs being signed as 
green by postprocessing soft-
ware on DWI when b = 2200

Table 3   Nonparametric tests results of diffusion parameters between 
different GS group

GA: GS ≤ 3 + 4, GB: GS = 4 + 3, GC: GS > 7, GA + GB: GS ≤ 7, 
GB + GC: GS ≥ 4 + 3
a Data shown are adjusted significance of each parameter in pairwise 
comparisons (k samples)
b P values assessed by Mann–Whitney test

Sample 1–Sample 2 ADC F D Dapp Kapp

GC–GBa 0.364 0.452 0.620 0.918 0.054
GC–GAa 0.012 0.021 0.023 0.018 0.002
GB–GAa 0.751 0.844 0.663 0.381 1.000
GC–GA + GBb 0.008 0.013 0.018 0.022 0.001
GA–GB + GC 0.014 0.022 0.019 0.011 0.007

https://www.medcalc.org
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Fig. 4   Boxplots above showing the results of Kruskal–Wallis test 
of parameters for independent samples among group1 (GS ≤ 3 + 4), 
group2 (GS = 4 + 3), and group3 (GS > 7). Center line indicates 
median, top of box indicates the 75th percentile, bottom of box indi-
cates the 25th percentile, whiskers indicate the 10th and 90th per-

centiles, asterisk indicates extreme values (more than 3 interquartile 
ranges), and circles indicate outliers (between 1.5 and 3 interquartile 
ranges). ADC, F, D, and Dapp display a decreasing trend with GS, 
while Dstar and Kapp display an increasing trend with GS

Fig. 5   Graph showing utility 
of ROC curves of ADC, F, D, 
Dapp, and Kapp to differentiate 
GS ≤ 3 + 4 and GS > 3 + 4 PCa. 
Graph b shows utility of ROC 
curve of those parameters to 
differentiate GS ≤ 7 and GS > 7. 
Gray line = chance diagonal
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(95% CI 0.581–0.868), 0.726 (95% CI 0.563–0.855), 0.732 
(95% CI 0.569–0.860), and 0.752 (95% CI 0.590–0.875), 
0.766 (95% CI 0.606–0.885), respectively, and those in dif-
ferentiating GS ≤ 7 and GS > 7 PCa were 0.755 (95% CI 
0.594–0.877), 0.734 (95% CI 0.571–0.861), 0.724 (95% 
CI0.560–0.853), and 0.716 (95% CI 0.552–0.847), 0.828 
(95% CI 0.676–0.929), respectively, with all the P values 
less than 0.05. For pairwise comparisons of ROC curves, 
there were no significant differences among ADC, F, 
D, Dapp, and Kapp in differentiating different GS group 
(P = 0.0501–0.9414). Figures 6 and 7 display representative 
patients and diffusion parameter maps.

Discussion

Our study findings demonstrated that altered IVIM (F and 
D) and DKI parameters (Dapp and Kapp) in different GS 
PCa, revealed good diagnostic performance in differentiat-
ing GS ≤ 3 + 4 and GS > 3 + 4 PCa, GS ≤ 7 and GS > 7 PCa. 
We could interpret our findings in view of histopathologic 
tumor tissue composition. The increasing Gleason pat-
tern is attributed to the increased heterogeneity of prostate 
histological compartments which consist of vascular (i.e., 
capillaries), fibromuscular stroma, epithelium, and glandu-
lar lumen, correlating with tumor aggressiveness [34, 35]. 
Recently, Chatterjee et al. [36] found that Gleason patterns 
exhibited a strong positive correlation with the epithelium 
and a negative correlation with the stroma and lumen space, 
but no remarkable correlation with cellularity metrics. 
But no parameter was able to differentiate GS ≤ 3 + 4 and 

GS = 4 + 3, and this might indicate that these two GS tumors’ 
microstructures had no significant differences, and it also 
could be attributed to small samples. Similar to conventional 
ADC, D, and Dapp are the adjusted diffusion coefficients, 
respectively, for IVIM and DKI. A number of studies have 
described the relationship between ADC and GS [37–41], 
and they have almost consistently reported a negative cor-
relation. An increase of diffusion-restricting ingredients (i.e., 
vascular, epithelial fractions) associated with loss of diffu-
sion-promoting components (i.e., stromal, luminal space) in 
tumors [42], leads to the decline of values of these diffusion 
parameters.

Although previous studies have proven the influence of 
tissue perfusion on ADC [43], the nature of the biexponen-
tial model has not yet been well explained. A report of Kuru 
et al. in 2014 [15] also indicated that perfusion-free diffusion 
constant D might hold potential for improved image-based 
tumor grading, which was consistent with our findings. It 
has been reported that the Dstar was at least one magnitude 
greater than D, and perfusion may be only palpable at very 
low b values [44]. Low b values were proposed in preclud-
ing high b values for IVIM to avoid the interference by high 
b values, where the contribution due to non-Gaussian dif-
fusion was appreciable. However, in our study and other 
studies with a high b value, Le Bihan [45] suggested that the 
slow diffusion component may represent water that is associ-
ated with cell membranes and with cytoskeleton structures, 
while the fast diffusion component represents the remain-
ing, less-restricted water, which is found in both intra- and 
extracellular spaces. A study with a larger patient population 
(50 patients) concluded that b value distribution influences 

Table 4   Diagnostic test characteristics of diffusion parameters for the diagnosis of GS

GA: GS ≤ 3 + 4, GB: GS = 4 + 3, GC: GS > 7, GA + GB: GS ≤ 7, GB + GC: GS ≥ 4 + 3
AUC​ Area under the curve, 95% CI 95% confidence interval

Measurement AUC (95% CI) P Sensitivity (%) Specificity (%) Cutoff value Youden index J

ADC
 GA–GC + GB 0.744 (0.581–0.868) 0.010 76.92 70.37 > 0.59 × 10−3mm2/s 0.47
 GC–GA + GB 0.755 (0.594–0.877) 0.001 70.83 87.50 ≤ 0.59 × 10−3mm2/s 0.58

F
 GA–GC + GB 0.726 (0.563–0.855) 0.014 61.54 81.48 > 31.04% 0.43
 GC–GA + GB 0.734 (0.571–0.861) 0.006 91.67 56.25 ≤ 23.51% 0.48

D
 GA–GC + GB 0.732 (0.569–0.860) 0.032 69.23 85.19 > 0.59 × 10−3mm2/s 0.54
 GC–GA + GB 0.724 (0.560–0.853) 0.007 70.83 81.25 ≤ 0.54 × 10−3mm2/s 0.52

Dapp
 GA–GC + GB 0.752 (0.590–0.875) 0.006 84.62 62.96 > 0.98 × 10−3mm2/s 0.48
 GC–GA + GB 0.716 (0.552–0.847) 0.010 70.83 75.00 ≤ 0.98 × 10−3mm2/s 0.46

Kapp
 GA–GC + GB 0.766 (0.606–0.885) 0.002 92.31 70.37 ≤ 0.84 0.63
 GC–GA + GB 0.828 (0.676–0.929) < 0.001 75.00 87.50 > 0.84 0.63
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Fig. 6   72-year-old man with prostate cancer (GS 3 + 4 = 7, lesions 
in left lobe of prostate, < T2, PSA 4.4  ng/ml). Pictures above show 
the index lesion (0.7  cm) in left PZ, PI-RADS V2 category 4. a 
Lesion is indicated by an arrow on T2WI; b–f images obtained with 
b values of 200, 900, 1100, 2200, and 3000  s/mm2; as the b value 

increases, the high signal of the normal tissue is gradually sup-
pressed, whereas the tumors become more and more obvious; g ADC 
map processed by monoexponential model; h, l pseudo color maps of 
D (= 0.67 × 10−3mm2/s), F (= 35.76%), Dstar (= 5.97 × 10−3mm2/s), 
Dapp (= 1.30 × 10−3mm2/s), Kapp (= 0.72)

Fig. 7   70-year-old man with prostate cancer (GS 4 + 5 = 9, lesions 
in both lobes of prostate, T3a, PSA 7.9 ng/ml). Pictures above show 
the index lesion (1.8  cm) in left PZ, PI-RADS V2 category 5. a 
Lesion is indicated by an arrow on T2WI; b–f images obtained with 
b values of 200, 900, 1100, 2200, and 3000  s/mm2; as the b value 

increases, the high signal of the normal tissue is gradually sup-
pressed, whereas the tumors become more and more obvious; g ADC 
map processed by monoexponential model; h, l pseudo color maps of 
D (= 0.50 × 10−3mm2/s), F (= 25.45%), Dstar (= 8.40 × 10−3mm2/s), 
Dapp (= 0.94 × 10−3mm2/s), Kapp (= 0.94)
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mainly the repeatability of DWI-derived parameters (includ-
ing IVIM and DKI parameters) rather than the diagnostic 
performance [46]. In the present study, the measurement 
of the relevant parameter Dstar indicated remarkably large 
standard deviations of most cancer lesions, which was simi-
lar to previous studies [47, 48], and we all found negative 
result of Dstar in predicting GS; but what differentiated from 
them to our study was that D and F performed well in dif-
ferentiating different GS groups. A reason might be their 
different group (GS = 6 and GS ≥ 7). The F value can be 
calculated by assuming the random direction of the capil-
lary segment at the voxel level [12]. A relatively purer IVIM 
parameter investigation by Pang et al. [44], which used dif-
ferent combinations of five b values (0, 188, 375, 563, and 
750 s/mm2), reported a significant increase in F in tumors 
compared to benign tissues with b values below 750 s/mm2, 
and when high b values were employed, F might become 
lower or indistinguishable. However, even for low b values, 
they did not observe a significant difference in F among dif-
ferent GS tumors. Some previous studies reported that F was 
significantly smaller in PCa than in healthy PZ [13, 48], and 
in our study F was found to negatively correlated with GS. 
This may be interpreted by a theory of bulky phenomenon 
[49], where F is not only specific to perfusion but also may 
be sensitive to glandular secretion and fluid flow in the pro-
static ducts, which corresponded to the results obtained by 
Le Bihan, as stated above.

Previous studies showed that kurtosis had significant 
correlations with histopathologic parameters (cytoplasmic, 
cellular, and stromal fractions) [50, 51]. ADCs obtained 
with b values less than 1000 s/mm2 were thought to mainly 
reflect diffusion of water in the extracellular space; when 
the b value increases to more than 1000 s/mm2, the intracel-
lular interaction promotes non-Gaussian diffusion behav-
ior and increases kurtosis, and the kurtosis parameter was 
supposed to reflect the interaction of water molecules with 
cell membranes and intracellular components [50, 52]. 
Therefore, Kapp has an excellent diagnostic ability for high 
GS lesions, which is proven by our results (AUC = 0.828, 
P < 0.001). Similar results had been concluded in a recent 
study [53]. A recent study by Lawrence et al. [51] showed 
that Dapp exhibited a significant positive correlation with 
luminal space and a negative correlation with cellularity, 
which assisted in differentiating cancerous lesions from nor-
mal tissue. However, they found that only the median Kapp 
was significantly different between groups with GS ≥ 4 + 3 
and ≤ 3 + 4 (P < 0.05). Being different from them, in our 
study, mean values were used for analysis, and we found 
Dapp could also assist to differentiate GS ≥ 4 + 3 and ≤ 3 + 4. 
In another recent study, Wu et al. [24]. reported that both 
Kapp and Dapp helped in the prediction of GS upgrade in 
biopsy-proven GS 6 prostate cancer.

Although there was no significant difference in the 
AUCs among ADC, F, D, Dapp, and Kapp for differentiat-
ing GS ≤ 3 + 4 and GS > 3 + 4 PCa, GS ≤ 7 and GS > 7 PCa, 
Kapp always had the biggest one in our every periodical 
(when the number of cases was 20/34/40) analysis. A previ-
ous study with big sample size (n = 121) report that Kapp 
exhibited significantly greater sensitivity for differentiating 
low- and high-grade PCa than ADC or D (68.6% vs 51.0% 
and 49.0%, respectively; P < 0.004) [54]. That in this present 
study was 92.31% with the Youden index of 0.63. These 
might suggest a potential clinical advantage for incorpo-
rating the DKI model into prostate MRI protocols. From 
another aspect, strong correlations were observed between 
ADC and Kapp, F, which may suggest that these metrics 
individually provide similar information in PCa. The simi-
lar correlation between ADC and Kapp had been reported 
before [32].

The amount of GS = 3 + 3 PCa involved was deficient 
in this study; actually, the original number of GS = 3 + 3 
patients proved by biopsy was 13, and they all underwent 
mpMRI examination, but 7 (54%) of them upgraded to 
GS = 3 + 4 at final pathology through prostatectomy, and 4 
(31%) of them did not find a defined lesion on mpMRI. As 
the method to define prostatic foci was based on the PI-
RADS V2 which was incomprehensive, it gave the defini-
tion of clinically significant PCa as GS ≥ 7 (including 3 + 4 
with prominent but not predominant Gleason 4 component), 
and/or volume ≥ 0.5  cc, and/or extraprostatic extension 
(EPE) [27]. PI-RADS score of ≥ 3 might rarely yield PCa 
of GS ≤ 6. In our study and clinic, there could be cases in 
which mpMRI missed the diagnosis of GS ≤ 6 PCa, but for-
tunately, this group was with low risk or harmless disease 
which is not likely to cause problems in a man’s lifetime, and 
they are increasingly being managed with active surveillance 
[55]. And we recommend that those aged more than 50 years 
old without significant findings on mpMRI should follow-up 
(every 3 months) with PSA or ultrasound, etc.

There were some limitations to this study. First, the num-
ber of cases included in this study is limited, which may 
lead to errors due to sampling bias. In addition, the geo-
graphical source of our patients is relatively limited. These 
are common problems faced in other single-center studies. 
Second, the influence of image signal-to-noise ratio and the 
one-to-one correspondence between the lesion location on 
the gross specimen and the lesion location in the image were 
not solved in this study; therefore, there are some data meas-
urement errors. Regarding the extent of misregistration, it is 
hoped that in future research, the quality of the image can be 
further improved, and the layer-by-layer slice pathology can 
be used as a reference. Third, the cancerous sample analysis 
did not consider differences in the central gland and periph-
eral lesions, because many cases had cancerous lesions in 
both regions. In addition, IVIM imaging and DK imaging 
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were scanned in a series of b values simultaneously, so IVIM 
measurements might be biased to some degree, as mentioned 
above. A large-sized sample study is warranted for further 
discussion and for regulating and refining the above results.

In conclusion, both the IVIM and DKI models are benefi-
cial to predict GS of PCa and indirectly predict its aggres-
siveness. However, we found no significant additional per-
formance to ADC in the present study. Nonetheless, work 
remains to be performed to fully understand the mechanisms 
underlying these two models, as well as the manner in which 
b values generate differences.
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