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Abstract
Purpose  To predict the Fuhrman grade of clear cell renal cell carcinoma (ccRCC) with a machine learning classifier based 
on single- or three-phase computed tomography (CT) images.
Materials and methods  Patients with pathologically proven ccRCC from February 1, 2009 to September 31, 2018 who were 
not treated were retrospectively collected for machine learning-based analysis. The texture features were extracted and ranked 
from precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP) and three-phase CT images, and 
open-source gradient boosting from the decision tree library of CatBoost was used to establish a machine learning classi-
fier to differentiate low- from high-grade ccRCC. The performances of machine learning classifiers based on features from 
single- and three-phase CT images were compared with each other.
Results  A total of 231 patients with 232 pathologically proven ccRCC lesions were retrospectively collected. 35, 36, 41, and 
22 Features were extracted and ranked from PCP, CMP, NP, and three-phase CT images, respectively. The machine learning 
model based on three-phase CT images [area under the ROC curve (AUC) = 0.87] achieved the best diagnostic performance 
for differentiating low- from high-grade ccRCC, followed by single-phase NP (AUC = 0.84), CMP (AUC = 0.80), and PCP 
images (AUC = 0.82).
Conclusion  Machine learning classifiers can be promising noninvasive techniques to differentiate low- and high-Fuhrman 
nuclear grade ccRCC, and classifiers based on three-phase CT images are superior to those based on features from each 
single phase.
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Introduction

Renal cell carcinoma (RCC) is the tenth most common 
cancer and the most common kidney tumor in adults and 
accounts for 2–3% of all malignant tumors [1, 2]. Clear cell 
RCC (ccRCC) is the predominant subtype of RCC, and dif-
ferent grades of ccRCC have diverse biological behaviors 
and variable prognoses, which lead to different manage-
ment strategies in clinical practice [3]. Minimally invasive 
techniques are feasible management considerations for low-
grade ccRCC, but radical operations are more acceptable 
for high-grade ccRCC [4, 5]. Therefore, there is increasing 
interest in accurately differentiating low- and high-grade 
ccRCC in recent years.

Biopsy is the gold standard for evaluating the grade of 
ccRCC before surgery. However, patients who undergo 
biopsy are at risk of complications, such as hemorrhage and 
infection. Several noninvasive techniques have been used for 
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the preoperative assessment of the grade of ccRCC [6–9]. 
Although tumor size, enhancement pattern on computed 
tomography (CT), attenuation on unenhanced CT, wash-in 
index on magnetic resonance imaging (MRI), apparent diffu-
sion coefficient (ADC) value, and multiple kurtosis metrics 
based on functional MRI may be valuable in grading ccRCC 
before surgery, there is significant overlap in tumor size and 
imaging features between low- and high-grade ccRCC. In 
addition, the accuracy and reproducibility of these metrics 
still need to be improved.

Machine learning is a branch of artificial intelligence 
and is considered a promising technique to analyze medi-
cal images because it enables the identification of the best 
image feature combinations for making medical decisions 
[10–12]. A few previous studies have shown that CT tex-
tures or machine learning classifiers based on single- or mul-
tiphase CT images are valuable for distinguishing different 
subtypes of RCC [13–15]. However, to our knowledge, CT 
is widely used to stage RCC preoperatively, but no study 
has differentiated high-grade ccRCC from low-grade ccRCC 
using machine learning based on three-phase CT images 
with a large population.

Therefore, the aim of this study is to investigate an effi-
cient machine learning classifier based on three-phased CT 
images to predict high-grade ccRCC.

Materials and methods

Patients

We retrospectively collected patients who underwent sur-
gical resection for a renal mass from February 1, 2009 to 
September 31, 2018. The exclusion criteria were as follows: 
(1) tumor with serious hemorrhage or necrosis, (2) images 
with severe motion artifacts, and (3) lack of three-phase 
CT images. This retrospective study was approved by the 
research ethics board of our institution, which waived the 
requirement for informed consent. After retrieval of data 
from the institutional pathology database, the pathological 
diagnoses were reconfirmed by one pathologist with 10 years 
of genitourinary pathology experience. The Fuhrman grad-
ing system was adopted in the pathological analysis [16].

CT technique

All patients underwent an abdominal CT scan using a 
multidetector CT scanner (SOMATOM Force, Siemens 
Healthcare, Forchheim, Germany; SOMATOM Sensation 
16, Siemens Healthcare, Forchheim, Germany; TOSHIBA 
Aquilion 64, Toshiba Medical Systems, Tokyo, Japan). 
All CT scans were performed with the same parameters 
and reconstruction used in daily clinical practice (slice 

thickness = 1.0 mm or 3.0 mm, matrix = 512 × 512, pixel 
size = 0.625 × 0.625 mm2). All subjects also underwent a 
three-phase CT scan including a precontrast phase (PCP), 
corticomedullary phase (CMP, 30-s delay after contrast 
injection), and nephrographic phase (NP, 90-s delay after 
contrast injection). Seventy to one hundred milliliters of con-
trast material (Iopamidol, Bracco, Italy; Iohexol, Yangtze 
River, China) was intravenously administered with a power 
injector at a rate of 3 ml/s.

Tumor segmentation

CT images were retrieved from the picture archiving and 
communication system. ITK-SNAP [17] (version 3.6.0, 
www.itksn​ap.org) was used for spatial matching and seg-
mentation of tumors. A defined polygonal region of inter-
est (ROI) was delineated on the center slice for low-grade 
ccRCC, but the slices for high-grade ccRCC were over-
sampled by selecting multiple slices at intervals of 15 mm 
(starting 10 mm from the apex and ending 10 mm from the 
bottom of the mass) (Fig. 1). To avoid a partial volume effect 
from the paratumoral renal parenchyma and perinephric 
fat, the ROI was carefully delineated and maintained at 
an approximate distance of 3 mm from the tumor margin. 
Two radiologists with more than 10 years of experience in 
abdominal imaging who were blinded to clinical and patho-
logical information drew the ROIs without any divergence.

Texture analysis and machine learning

Texture analysis and machine learning were conducted using 
Python (version 3.6.5, www.pytho​n.org). The radiomic 
features extracted included the following (18): first-order 
features, shape features, gray-level cooccurrence matrix 
(GLCM) features, gray-level run-length matrix (GLRLM) 
features, gray-level size-zone matrix (GLSZM) features, 
gray-level dependence matrix (GLDM) features, and gray-
tone difference matrix (NGTDM) features. All image calcu-
lations were performed for the PCP, CMP, and NP images 
separately. Features were named according to PyRadiomics 
[18] and the Imaging Biomarker Standardization Initiative 
(IBSI) [19], and a prefix (“pcp_,” “cmp_,” or “np_”) was 
added for the different scan phases.

CatBoost [20, 21], which is a state-of-the-art open-source 
gradient boosting decision tree library, was used to estab-
lish a machine learning model. Data related to patients were 
trained and tested using 5-fold cross-validation.

Statistical analysis

Performance results such as the true positive rate (TPR), 
specificity (SPC), positive predictive value (PPV), negative 
predictive value (NPV), accuracy (ACC), and area under the 
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receiver operating characteristic (ROC) curve (AUC) were 
calculated for each phase and three-phase CT images. Addi-
tionally, feature importance scores and feature interaction 
scores were computed. ROC curve analysis was performed 
using Python (version 3.6.5, package scikit-learn).

Results

Demographics

Ultimately, 231 patients with 232 pathologically proven 
ccRCC lesions (low-grade ccRCC: 103 grade I lesions 
and 86 grade II lesions; high-grade ccRCC: 38 grade III 
lesions and 5 grade IV lesions) (one patient had two lesions 
in the left kidney) were included in the machine learning 
cohort. The mean ages of the low- and high-grade groups 
were 54.95 ± 11.94 years old and 53.07 ± 12.59 years old, 

respectively. There was no significant difference between 
these two groups in terms of patient characteristics.

Texture features ranking

In total, 35, 36, 41, and 22 features were extracted and 
ranked from PCP, CMP, NP, and three-phase CT images, 
respectively. The rankings of the texture features based on 
images of each phase and three-phase CT images are shown 
in Fig. 2.

Performance of the machine learning model

The TPR, SPC, PPV, NPV, ACC, and AUC for 5-fold 
cross-validation are shown in Table 1. The machine learn-
ing model based on three-phase CT images achieved the 
best diagnostic performance, followed by the single-phase 
NP, PCP, and CMP models. The ROC curves of the models 
based on images of each phase and three-phase CT images 
for differentiating low- from high-grade ccRCC are shown 
in Fig. 3.

Contribution of the combined features

The top five feature interaction rankings in the machine 
learning model based on three phases are shown in Table 2.

Discussion

In this study, we established machine learning models based 
on single- or three-phase CT images to differentiate between 
low- and high-grade ccRCC. Our results showed that this 
machine learning model could significantly stratify patients 
with diverse risk assessments of ccRCC according to the 
Fuhrman grading system.

Currently, visual imaging interpretation based on mor-
phological findings is the routine paradigm for evaluating 
renal tumors. A prior study showed that high-grade ccRCC 
lesions are significantly larger and have more calcifications, 
necrosis, collecting system infiltration, and ill-defined tumor 
margins than low-grade ccRCC lesions [22]. However, the 
value of morphological evaluation is limited by various sub-
jective interpretations and the inability to provide quantita-
tive indicators. Although a few previous studies sought to 
determine whether quantitative imaging techniques could 
help to grade ccRCC and found that T1 values, ADC values 
and metrics of diffusion kurtosis (mean kurtosis, MK; radial 
kurtosis, Krad; and axial kurtosis, Kax) could be valuable 
[23–25], the performances of these quantitative indicators 
were varied, and their repeatability needs to be validated 
further.

Fig. 1   Oversampled 2D slices obtained by selecting multiple slices 
with an interval of 15 mm, starting 10 mm from the apex and ending 
10 mm from the bottom of the mass. Three slices were oversampled 
according to the above criteria
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Machine learning involves an algorithm and statistical 
model that can evaluate invisible tumor characteristics at the 
pixel level; machine learning algorithms have been used to 
grade neurogliomas and meningiomas with high accuracy 
[26–28]. Recently, a small study (n = 53) by Bektas CT et al. 
showed that a machine learning classifier could accurately 
differentiate low- from high-grade ccRCC [29]. Neverthe-
less, feature extraction based on only a single portal phase 
CT image significantly compromised the performance and 
reliability of the machine learning classifier because other 
studies showed that features based on CMP and NP images 
were also helpful in differentiating low- from high-grade 
ccRCC [30]. In addition, the portal phase is not the optimal 
enhanced phase for ccRCC evaluation, which may further 
diminish the reliability of the machine learning classifier in 
the study by Bektas CT et al. Moreover, the small population 

could have resulted in serious overfitting. Even though dedi-
cated algorithms, such as a naïve Bayes algorithm, were used 
to remedy this problem, the performance of the classifier 
was not sufficiently objective.

Our study used a set of three single-phase CT images 
to develop machine learning classifiers in a large cohort 
(n = 232). We found that the classifier based on three-phase 
CT images was superior to those based on single-phase CT 
images, with an increase in the AUC from 0.80 to 0.87, 
although the improvement was not substantial. Feature 
importance ranking also showed that the model including 
all three-phase CT images exhibited the best performance. 
This model also had a higher SPC, PPV, NPV, and ACC for 
distinguishing low- and high-grade ccRCC than the models 
based on other single-phase CT images. However, compared 
to the SPC, the TPR was relatively low for models based on 

Fig. 2   Feature importance scores for differentiating low- and high-grade ccRCC based on three-phase CT images

Table 1   Performance of 
machine learning classifiers 
based on single- and 
three-phase CT images for 
differentiating between low- and 
high-grade ccRCC​

Phases TPR (%) SPC (%) PPV (%) NPV (%) ACC (%) AUC​

NP 64 86 89 57 72 0.84
CMP 64 83 85 59 71 0.80
PCP 65 87 89 58 72 0.82
Three-phase 67 88 91 59 74 0.87
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each single-phase and three-phase CT images (from 64 to 
67%), which is similar to the findings of a previous study [6, 
31] and needs to be further improved.

Feature importance scores are common indicators that 
demonstrate how important a specific feature is for model 
performance, and a higher value indicates that the model 
performs better when this feature is included. However, fea-
tures contribute to a model not only solely by themselves 
but also by interacting with other useful features, and these 
interactions can be computed using the CatBoost decision 
tree library during the training process. Feature interaction 
scores indicate the contribution of a combination of features, 
and a higher interaction score of combined features repre-
sents a greater contribution to the model [32]. In our study, 
feature interaction ranking analysis showed that some fea-
tures, such as cmp_original_gldm_GrayLevelNonUniform-
ity, not only contributed to the model by themselves but also 

by interacting with other features in other phases. This inter-
nal relationship of a combination of features from different 
phase images has not been mentioned in previous studies. 
It should be noted that these features represent algorithms 
[19], and most are not obvious to the human eye. Therefore, 
it is very difficult to associate them with traditional radio-
logical findings on images, which is a common drawback in 
radiomics research.

The prognosis of patients with ccRCC is strongly associ-
ated with the Fuhrman nuclear grade [33, 34], and tumor 
grading prior to surgery can guide surgical planning and 
treatment strategies. Percutaneous biopsy is a commonly 
used technique to preoperatively determine the tumor grade. 
However, this invasive method can lead to serious complica-
tions, such as hemorrhage or infection, and cannot be used in 
follow-up cases. In addition, sampling bias is an unavoidable 
problem associated with percutaneous biopsy because only 
one region of the tumor can be analyzed [35], which may 
lead to underestimation of the actual tumor grade due to 
the heterogeneity of ccRCC [36]. According to our current 
study, machine learning-based CT texture analysis showed 
acceptable performance for noninvasively predicting the 
Fuhrman nuclear grade of ccRCC and could reduce the bias 
to a minimum level. Therefore, our study could have sig-
nificance in potentially sparing patients from invasive tech-
niques, such as percutaneous biopsy. In addition, positive 
tumor regions detected by this technique might also be good 
candidates for target biopsy. However, the actual benefit to 
patients still needs to be verified by clinical studies involving 
both machine learning-based CT texture and biopsy.

The intergroup imbalance between low- and high-grade 
ccRCC is an inevitable issue for machine learning-based 
analysis due to the relatively lower incidence of high-grade 
ccRCC. Thus, the performance of a model based on imbal-
anced data will be overestimated and unreliable, and the 
degree of overestimation and unreliability mainly depend on 
the component proportions of low- and high-grade ccRCC 
but not on the selected texture features. This is a preva-
lent and critical problem in previous studies [29, 30]. The 
characteristic texture features of ccRCC should be retained 
in most slices of the tumor. Hence, every single slice can 

Fig. 3   Receiver operating characteristic (ROC) curves of the machine 
learning models based on the three-phase, PCP, CMP, and NP CT 
images for discriminating between low- and high-grade ccRCC​

Table 2   Top five interaction scores of combined features

Feature 1 Feature 2 Interaction scores

cmp_original_gldm_GrayLevelNonUniformity np_original_glrlm_GrayLevelNonUniformityNormal… 3.05
cmp_original_glcm_SumEntropy pcp_original_glrlm_LongRunHighGrayLevelEmphasis 2.46
cmp_original_gldm_GrayLevelNonUniformity cmp_original_glszm_LargeAreaEmphasis 2.12
cmp_original_firstorder_Energy np_original_glrlm_GrayLevelNonUniformityNormal… 1.58
pcp_original_firstorder_TotalEnergy pcp_original_glcm_Id 1.01
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theoretically contribute to the machine learning classifier. 
In our study, every selected slice from high-grade ccRCC 
was considered as an individual sample to augment the high-
grade samples and minimize the bias.

There are several limitations to our study. First, 3D radi-
omics features, which are features extracted across whole 
image slides of the tumor, were not used in this study, and 
in theory, these features can provide additional informa-
tion. However, a prior study showed that 2D features actu-
ally exhibited better performance than 3D features [37]. 
Second, deep learning, which is a subset of the machine 
learning technique, has shown promising potential in medi-
cal imaging [38]. Unlike other machine learning methods, 
it is capable of discovering image features automatically 
without manually providing the features. Thus, this method 
may result in a more powerful model; however, we did not 
apply this technique in our study because, even though we 
had the largest cohort of patients among previous machine 
learning studies, a much larger sample size than we had was 
needed to obtain a stable deep learning model. Moreover, 
the features that deep learning detects are even more difficult 
to understand because they have no preexisting description 
or definition.

Conclusion

The results of our proof-of-concept study show that a CT-
based machine learning model can be valuable for differen-
tiating low- from high-grade ccRCC. However, further pro-
spective studies are needed to verify its value. In addition to 
diagnostic accuracy, further machine learning studies could 
also potentially address other important clinical factors such 
as the survival time or genotype (BAP1 and PBRM1), which 
have been shown to be independent prognostic factors for 
tumor recurrence.
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