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Abstract

Purpose: To assess preoperative short-course radiother-
apy (SCR) tumor response in locally advanced rectal
cancer (LARC) by means of Standardized Index of
Shape (SIS) by dynamic contrast-enhanced magnetic
resonance imaging (DCE-MRI), apparent diffusion
coefficient (ADC), intravoxel incoherent motion (IVIM)
and diffusion kurtosis imaging (DKI) parameters derived
from diffusion-weighted MRI (DW-MRI).
Materials and methods: Thirty-four patients with LARC
who underwentMRI scans before and after SCR followed
by delayed surgery, retrospectively, were enrolled. SIS,

ADC, IVIM parameters [tissue diffusion (Dt), pseudo-
diffusion (Dp), perfusion fraction (fp)] and DKI parame-
ters [mean diffusivity (MD), mean of diffusional kurtosis
(MK)] were calculated for each patient. IVIM parameters
were estimated using two methods, namely conventional
biexponential fitting (CBFM) and variable projection
(VARPRO). After surgery, the pathological TNM and
tumor regression grade (TRG) were estimated. For each
parameter, percentage changes between before and after
SCR were evaluated. Furthermore, an artificial neural
network was trained for outcome prediction. Nonpara-
metric sample tests and receiver operating characteristic
curve (ROC) analysis were performed.
Results: Fifteen patients were classified as responders
(TRG £ 2) and 19 as not responders (TRG > 3). Seven
patients had TRG 1 (pathological complete response,Correspondence to: Roberta Fusco; email: r.fusco@istitutotumori.na.it
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pCR). Mean and standard deviation values of pre-treat-
ment CBFM Dp and mean value of VARPRO Dp pre-
treatment showed statistically significant differences to
predict pCR. (p value atMann–Whitney testwas 0.05, 0.03
and 0.008, respectively.) Exclusively SIS percentage
change showed significant differences between responder
and non-responder patients after SCR (p value<< 0.001)
and to assess pCR after SCR (p value<< 0.001). The best
results to predict pCR were obtained by VARPRO Fp
mean value pre-treatment with area under ROC of 0.84, a
sensitivity of 96.4%, a specificity of 71.4%, a positive
predictive value (PPV) of 92.9%, a negative predictive
value (NPV) of 83.3% and an accuracy of 91.2%. The best
results to assess after treatment complete pathological
response were obtained by SIS with an area under ROC of
0.89, a sensitivity of 85.7%, a specificity of 92.6%, a PPV of
75.0%, a NPV of 96.1% and an accuracy of 91.2%.
Moreover, the best results to differentiate after treatment
responders vs. non-responders were obtained by SIS with
an area under ROC of 0.94, a sensitivity of 93.3%, a
specificity of 84.2%, a PPV of 82.4%, a NPV of 94.1% and
an accuracy of 88.2%. Promising initial results were
obtained using a decision tree tested with all ADC, IVIM
and DKI extracted parameter: we reached high accuracy
to assess pathological complete response after SCR in
LARC (an accuracy of 85.3% to assess pathological
complete response after SCR using VARPRO Dp mean
value post-treatment, ADC standard deviation value pre-
treatment, MD standard deviation value post-treatment).
Conclusion: SIS is a hopeful DCE-MRI angiogenic
biomarker to assess preoperative treatment response after
SCR with delayed surgery. Furthermore, an important
prognostic role was obtained by VARPRO Fp mean value
pre-treatment and by a decision tree composed by diffu-
sion parameters derived by DWI and DKI to assess
pathological complete response.

Key words: LARC—Short-course
radiotherapy—Response assessment—Standardized
Index of Shape—IVIM-derived parameters—DKI-
derived parameters

Abbreviations

AUC Area under ROC curve

CTV Clinical target volume

CT Computed tomography

CBFM Conventional biexponential fitting

DCE-MRI Dynamic contrast-enhanced magnetic reso-

nance imaging

DWI Diffusion-weighted imaging

DKI Diffusion kurtosis imaging

Dt Tissue diffusion

Dp Pseudo-diffusion

fp Perfusion fraction

IMRT Intensity-modulated radiation therapy

IVIM Intravoxel incoherent motion

LARC Locally advanced rectal cancer

MD Mean diffusivity

MK Mean of diffusional kurtosis

MLC Multileaf collimators

MSD Maximum signal difference

NPV Negative predictive value

pCR pathological complete response

pCRT Preoperative chemo-radiation therapy

PPV Positive predictive value

ROC RECEIVER operating characteristic

ROI Regions of interest

SCR Short-course radiotherapy

SCRDS Short-course radiotherapy with delayed

surgery

SIS Standardized Index of Shape

TRG Tumor regression grade

WOS Washout slope

VARPRO Variable projection

VOI Volume of interest

Total mesorectal excision combined with preoperative
radiation therapy and chemotherapy (pCRT) is the cur-
rent standard for locally advanced rectal cancer (LARC)
[1–3]. Long-course CRT has been extensively applied,
and encouraging results derive from this approach in
terms of local control with a high percentage of tumor
regression up to a significant rate of complete response
[1–3]. However, short-course radiotherapy (SCR) is
known to be a valuable therapeutic option in patients
with LARC. A recent meta-analysis [4] reported that
SCR with immediate surgery is as effective as long CRT
with deferred surgery in terms of overall and disease-free
survival rates, local and distant control and toxicity.
Also, short-course radiotherapy with delayed surgery
(SCRDS) (after 4–8 weeks), optional therapy described
for patients with locally advanced tumors who are not fit
for CRT, leads to similar results in terms of negative
margin resection percentage and satisfactory results
about the downstaging and pathological response rate
compared to traditional pCRT [5–13].

The use of new imaging modalities to make individual
assessments of therapy response could be of great clinical
value to adjust subsequent strategies tailored for each
patient. Such strategies range from a tailored surgical
approach, to administering an adjuvant regimen, or even
to a wait-and-see policy without surgery for patients with
high surgical risks [14, 15].

3684 R. Fusco et al.: Diffusion and perfusion MR parameters



A positive tumor response does not necessarily re-
quire a significant tumor size reduction in morphological
MRI [16]; there is difficulty to differentiate necrosis, fi-
brotic tissue and viable residual tumor tissue within
treated areas [16, 17]. Several studies focused their
attention on the potential added benefit of functional
quantitative parameters derived by MR image [17–20].
Dynamic contrast-enhanced MRI (DCE-MRI) has
demonstrated promise to detect residual tumor after pre-
surgery CRT [17–21]. Previous studies have investigated
functional parameters derived from DCE-MRI data in
rectal cancer [18–21] such as the Standardized Index of
Shape proposed by Petrillo et al. [18] as a simple semi-
quantitative parameter capable to differentiate patho-
logical significant and complete response after CRT in
LARC and after SCRDS [22]. Moreover, in various
oncology fields, researchers have recommended the use
of diffusion-weighted imaging (DWI) to assess treatment
response [23–30]. DWI provides functional information
on the tissues’ microstructure by means of the evaluation
of water proton mobility differences [23, 24]. Water dif-
fusion characteristics depend on cell density, vascularity,
viscosity of the extracellular fluid and cell membrane
integrity. By quantifying these properties by means of the
individual apparent diffusion coefficient (ADC) using a
monoexponential model to analyze DWI data, it can be
used as an imaging biomarker to reflect biologic tumor
changes and to monitor and predict treatment response
[25, 26]. Moreover, using a biexponential model to ana-
lyze DWI data, information on both diffusion and per-
fusion tissue properties derived from intravoxel
incoherent motion method (IVIM) can be obtained: the
pure tissue coefficient (Dt) that describes water macro-
scopic motion in the cellular interstitial space, the pseu-
do-diffusion coefficient (Dp) that describes blood
microscopic motion in the vessels, and the perfusion
fraction (fp) that describes the proportion of the two
different motions [27–30].

Also, the conventional DWI model is based on the
assumption that water diffusion within a voxel has a
single component and follows a Gaussian behavior
where water molecules diffuse without any restriction
[31]. However, due to the presence of microstructures
(i.e., two tissue types or components within one voxel,
and organelles and cell membranes), random motion or
diffusion of thermally agitated water molecules within
biologic tissues exhibits non-Gaussian behavior [32].
Jensen and co-workers in 2005 proposed a non-Gaussian
diffusion model called diffusion kurtosis imaging (DKI)
[32]. This model includes the kurtosis coefficient (K), that
measures the deviation of tissue diffusion from a Gaus-
sian model, and the diffusion coefficient (D) with the
correction of non-Gaussian bias.

Aim of this study is to determine the diagnostic per-
formance of MR imaging for the assessment of tumor
response after SCRDS in patients with LARC using

Standardized Index of Shape (SIS) obtained by DCE-
MRI, using ADC-, IVIM- and DKI-derived parameters
obtained by DW-MRI. A multivariate analysis of all
functional MR-derived parameters extracted by DCE-
and DW-MRI using a neural network was also evalu-
ated.

Materials and methods

Patient selection

Thirty-four patients with a median age of 67 years (range
48–83 years) who refused or were considered unfit for
chemo-radiation and planned for neoadjuvant short-
course radiotherapy were evaluated in this retrospective
study, from May 2011 to December 2016.

Patient characteristics are described in Table 1.
All patients had a biopsy-proven rectal adenocarci-

noma. Endorectal ultrasonography, MRI of pelvis and
computed tomography (CT) scan of chest, abdomen
and pelvis were used as staging examinations. Patients
who had T2 with local lymph node involvement, T3
rectal cancer with or without local lymph node
involvement and patient with T4 were included. Exclu-
sion criteria were: inability to give informed consent,
previous rectal surgery and contraindications to MRI or
to MR contrast media administration (see Fig. 1). Pa-
tients were included in the study in accordance with the
approved guidelines of ethical committee of National
Cancer Institute of Naples and gave their written in-
formed consent.

Radiotherapy

All patients underwent dose-planning CT in prone
position. After an online CT virtual simulation, CT da-
tasets were transferred to a dedicated treatment planning
system through a DICOM network, and an individual-
ized clinical target volume (CTV) was done, including the
gross tumor volume with margins (2–3 cm depending
upon tumor position, defined by MRI imaging), the
mesorectum and regional lymph nodes depending upon
tumor location. We contoured the small bowel, the fe-
moral heads and the bladder as critical organs on all CT
slices of every patient, and we evaluated the relative
dose–volume histogram on the treatment planning con-
sole. Three-dimensional plans for 3D or intensity-mod-
ulated radiation therapy (IMRT) radiotherapy were
generated for a dual-energy, 6–20 MV X-ray linear
accelerator (Clinac 2100, Varian Medical Systems, Palo
Alto, CA) or for a 6–15 MV X-ray linear accelerator
(Elekta Agility, Elekta Instrument AB Stockholm,
Stockholm, Sweden), both equipped with multileaf col-
limators (MLC). Patients were scheduled using a 3-field
or IMRT treatment arrangement to include the planning
target volume within the 95% isodose, and a dose of 25
Gy in 5 fractions over 1 week was prescribed to the
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ICRU 62 intersection point. Surgery was performed
5(±1) weeks on average after the end of radiotherapy.

MRI data acquisitions

Each patient underwent MR studies before and after
SCR: baseline, on average 23.8 days (9 days of standard
deviation) before starting radiotherapy, and delayed, on
average 61.0 days (11 days of standard deviation) after
the end of SCR.

DCE-MRI was performed with a 1.5T scanner
(MAGNETOM Symphony, Siemens Healthcare, Erlan-
gen, Germany) and phased-array body coil. Pre-contrast
coronal T1-weighted 2D turbo spin-echo (TSE) images,
sagittal and axial T2w 2D TSE images were acquired.
Axial DW images were obtained with a single-shot spin-
echo diffusion-weighted echo-planar pulse sequence (SE-
DW-EPI) at b values of 0, 50, 100, 150, 300, 600, 800 s/

mm2. Axial dynamic contrast-enhanced T1-weighted
FLASH 3D gradient-echo images were obtained: one
sequence before and ten sequences after intraveneous
injection of 0.1 mmol/kg of a positive, gadolinium-based
paramagnetic contrast agent (Gd-DOTA, Dotarem,
Guerbet, Roissy-CdG-Cedex, France) at 2 mL/s of flow
rate, followed by a 10-mL saline flush at the same rate.
Sagittal, axial and coronal post-contrast T1-weighted 2D
TSE images with and without fat saturation were also
acquired. Table 2 reports MR sequence parameters. In
order to reduce respiratory artefacts, each patient re-
ceived bowel preparation and antispasmodic medication.

MRI image data analysis

Image assessment was performed in a single reading
session for each patient by consensus of two gastroin-
testinal radiologists with 25 years and 10 years of expe-

Table 1. Patient characteristics and histopathological findings

Characteristics All patients n = 34 (%) TRG 1–2 n = 15 TRG 3–4 n = 19 p*

Gender > 0.05
Male/female 26(76.5)8(23.5) 10/5 16/3
Median age (range) 67(48–83) 69(48–78) 68(48–76)

Gunderson risk > 0.05
Intermediate: T3N0, T2N1 8(23.5) 3 5
Moderately high: T2N2, T3N1, T4N0 17(50.0) 7 10
High: T3N2 9(26.5) 5 4

Distance from the anal verge > 0.05
£ 5 cm 14(41.2) 6 8
> 5 cm 20(58.8) 9 11

Circumferential resection margin > 0.05
> 2 mm 15(44.1) 6 9
£ 2 mm 13(38.2) 6 7
£ 1 mm 5(14.7) 2 3
Not measurable 1(2.9) 0 1

Fig. 1. Flowchart showing how patients were included in the study.
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rience in reading pelvic MR images. For the image
analysis, the radiologists blinded to the examinations and
clinical results.

To take into account tumor heterogeneity, the radi-
ologists, based on pre-contrast T1-weighted images using
the T2-weighted images as a guide [33], manually defined
regions of interests (ROIs) along the contours of the
tumor to obtain a DCE-MRI volume of interest (VOI)
for each study, covering the whole lesion with exclusion
of peripheral fat, artefacts and blood vessels. Also, for
DW-MRI the radiologists, based on diffusion-weighted
imaging with the highest b value, manually defined ROIs
along the contours of the tumor to obtain a DW-MRI
VOI for each study.

For each MR descriptor, the mean and the standard
deviation values on the VOI were registered.

Percentage change between pre- and post-treatment
was calculated as DX = (Xpre - Xpost)/Xpre. (X is the
generic shape descriptor.)

No image registration was applied to our data ac-
quired. We took care to exclude from the analysis the
slices where motion artefacts were visible. Moreover, a
volumetric analysis for each parameter was performed,
thus minimizing errors due to voxel misalignments.

DCE-MRI features

In order to perform SIS analysis, an OsiriX plugin has
been developed by the authors [34]. Considering the
segmented VOI, the maximum signal difference (MSD)
and washout slope (WOS) were calculated as reported in
[35]. Then for SIS analysis were evaluated the percentage
change in MSD [DMSD = (MSD1 - MSD2)/MSD19

100], of WOS [DWOS = (WOS1 - WOS2)/WOS19 100]
and their combination as described previously [18].
Standardized Index of Shape was given by the following
linear combination: 0.7780*DMSD + 0.6157*DWOS.

DWI features

For each voxel, 9 features were extracted from DWI data
using the monoexponential model, the diffusion kurtosis
imaging model, the intravoxel incoherent motion using

conventional biexponential fitting method and variable
projection algorithm.

DWI signal decay is most commonly analyzed using
the monoexponential model [23, 24]:

ADC ¼
ln S0

Sb

� �

b
ð1Þ

where S
b is the MRI signal intensity with diffusion

weighting b, S0 is the non-diffusion-weighted signal
intensity, and ADC is the apparent diffusion coefficient.

For a voxel with a large vascular fraction, the MRI
data decay can deviate from a monoexponential form, in
particular showing a fast decay in the range of low
b values generated by the IVIM effect [23, 24]. Thus, in
addition to the monoexponential model, a conventional
biexponential model using Levenberg–Marquardt fitting
method was used to estimate the IVIM-related parame-
ters of pseudo-diffusivity (Dp indicated also with D*),
perfusion fraction (fp indicated also with f) and tissue
diffusivity (Dt):

Sb

So
¼ fp � exp �b �Dp

� �
þ 1� fp
� �

� exp �b �Dtð Þ ð2Þ

Moreover, diffusion kurtosis imaging was included in
the analysis in order to obtain the final fitted images
[mean of diffusion coefficient (MD) and mean of diffu-
sional kurtosis (MK)].

Multi-b DW images were obtained by voxel-wise fit-
ting using the diffusion kurtosis signal decay Eq. (3) by a
two-variable linear least-squares algorithm as used in
previous study [32]:

SðbÞ ¼ S0 exp �b �Dþ 1

6
b2 �D2 � K

� �
ð3Þ

In this equation, D is a corrected diffusion coefficient
and K is the excess diffusion kurtosis coefficient. K de-
scribes the degree that molecular motion deviates from
the perfect Gaussian distribution. When K is equal to 0,

Table 2. Pulse sequence parameters on MR studies

Sequence Orientation TR/TE/FA (ms/ms/deg.) FOV (mm 9 mm) Pixel spacing ST/gap (mm/mm)

T1w 2D TSE Coronal 499/13/150 450 9 450 0.87 9 0.87 3/0
T2w 2D TSE Sagittal 4820/98/150 250 9 250 0.78 9 078 3/0
T2w 2D TSE Axial 3970/98/150 250 9 250 0.78 9 0.78 3/0
SE-DW-EPI Axial 2700/83 270 9 230 1.70 9 1.70 4/0
T1w FLASH 3D Axial 9.8/4.76/25 330 9 247 0.59 9 0.59 3/0
T1w FLASH 3D Axial 9.8/4.76/25 330 9 247 0.59 9 0.59 3/0
T1w 2D TSE Sagittal 538/13/150 250 9 250 0.48 9 0.48 3/0
T1w 2D TSE Coronal 538/13/150 250 9 250 0.48 9 0.48 3/0
T1w 2D TSE Axial 450/12/150 270 9 236 0.52 9 0.52 3/0

TR, repetition time; TE, echo time; FOV, field of view; FA, flip angle; ST, slice thickness; TF, turbo factor; AT, acquisition time

R. Fusco et al.: Diffusion and perfusion MR parameters 3687



Eq. (3) evolves into a conventional monoexponential
Eq. (1):

The difference between D and ADC is that D is a
corrected form of ADC for use in non-Gaussian cir-
cumstances.

The parameters of conventional DWI (ADC), IVIM
(fp, Dt, Dp) using CBFM and DKI (MK and MD) were
obtained from the multi-b DWI data with all measured
b values using the prototype post-processing software
Body Diffusion Toolbox (Siemens Healthcare, Erlangen,
Germany).

Moreover, for each voxel on DW, data diffusion and
perfusion information were also obtained modeling DW-
data using the IVIM model and using VARPRO algo-
rithm for parameters estimation [36].

Rearranging Eq. (2) the SðbÞ=S0:� e�bDt is the pro-
duct of f and a nonlinear function of Dt and Dp:

f Dp;Dt; b
� �

¼ SðbÞ=S0:� e�bDt ¼ f e�bDp � e�bDt
� �

ð3Þ

Letting f Dp;Dt; b
� �

the cost functional becomes:

SðbÞ=S0:� e�bDt ¼ y� fðDp;Dt; bÞ f
�� ��

2
ð4Þ

Therefore, a separable nonlinear least square algo-
rithm known as variable projection (VARPRO) can be
used to calculate the diffusion parameters. If we knew the
estimate of the nonlinear parameters Dp and Dt, the
estimate of the linear parameter f could be obtained by
solving a linear least square problem:

f ¼ e�bDt þ yþ f ðDp;Dt; bÞþ ð5Þ
where fðDp;Dt; bÞþ is the Moore–Penrose generalized
inverse of fðDp;Dt; bÞ . Therefore, a new cost functional

can be constructed:

SðbÞ=S0:� e�bDt ¼ y� f ðDp;Dt; bÞ fðDp;Dt; bÞþy
�� ��

ð5Þ

An exhaustive description of the algorithm is beyond
the scope of the present paper, and the interested reader
is referred to [37]. This analysis was performed using
MATLAB R2007a (The MathWorks Inc., Natick, MA).

Per each MR descriptor, the mean and the standard
deviation values were registered.

Evaluation of pathologic response

The pathologic response assessment was performed
according to previously published recommendations [38,
39]. Briefly, surgical specimens containing the tumor
were evaluated and scored according to tumor regression
grade (TRG), as proposed by Mandard et al. [39], by an

expert pathologist who was not aware of MRI findings.
Patients with a TRG 1 or 2 score were considered as
responders, whereas the remaining patients (TRG 3, 4 or
5) were classified as non-responders. Patients with TRG
1 were considered with pathological complete response,
while patients with TRG 2–5 were considered with
incomplete pathological response [18].

Statistical analysis

Mann–Whitney nonparametric test was performed to as-
sess statistically significant differences between responder
versus non-responder patients and between pathological
complete responders versus incomplete responders. Re-
ceiver operating characteristic (ROC) curves were also
used to evaluate the diagnostic performance for each
parameter. Area under ROC curve (AUC) was calculated,
and optimal thresholds were obtained maximizing the
Youden index. Sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV) and accu-
racy were performed considering optimal cutoff values.

Moreover, three different neural networks were
trained and used as classifiers to test the performance of
a multivariate analysis of all MR-derived parameters.
We used a supervised linear classifier (linear discriminant
analysis), a supervised linear support vector machine and
a supervised decision tree classifier. For each training set,
a leave-one-out cross-validation was performed, and the
best findings were registered. An exhaustive description
of each classifier is beyond the scope of the present paper,
and the interested reader is referred to [40–43].

Statistical analysis was performed using the mean and
standard deviation values pre-treatment to assess the
capability to predict pathological response before ther-
apy, while the mean and standard deviation values post-
treatment and the percentage changes were investigated
to assess the SCRDS response in the preoperative phase
to guide the surgery versus more conservative treatments.
For each comparisons, the gold standard is the tumor
regression grade obtained on surgical specimens con-
taining the tumor.

A p value < 0.05 was considered significant for all
tests. All analyses were performed using Statistics Tool-
box of MATLAB R2007a (The MathWorks Inc., Nat-
ick, MA).

Results

All patients in our series had rectal adenocarcinomas.
Three patients were pathologically classified as T0, 6 as
T1, 20 as T2 and 5 as T3. There were 7 patients with a
TRG 1, 8 with a TRG 2, 11 with a TRG 3, 8 with a TRG
4 and none with a TRG 5. Therefore, 15 patients were
classified as responders and 19 as not responders by
TRG. Seven patients had pathological complete re-
sponse.
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Considering the high number of parameters investi-
gated, we reported exclusively the findings for parame-
ters that resulted statistically significant.

Mean and standard deviation values of pre-treatment
CBFM Dp and mean value of VARPRO Dp pre-treat-
ment showed statistically significant differences to pre-
dict pathological complete response. (p value at Mann–
Whitney test was 0.05, 0.03 and 0.008, respectively.)

Instead, Mann–Whitney test showed statistically sig-
nificant differences exclusively for SIS percentage change
between responder and non-responder patients (p value
<< 0.001) and between pathological complete respon-
ders and incomplete responders after SCRDS (p value
<< 0.001).

The best results to predict pathological complete re-
sponse were obtained by CBFM Dp mean value pre-
treatment, VARPRO Fp mean value pre-treatment and
for VARPRO Dp mean value pre-treatment (Fig. 2a–c)
with area under ROC of 0.71, 0.68 and 0.84 (Table 3),
respectively.

The best results to predict responders were obtained
by CBFM Fp mean value pre-treatment, CBM Dp stan-
dard deviation value pre-treatment and for VARPRO Dp

mean value pre-treatment (Fig. 2d–f) with area under
ROC of 0.63, 0.63 and 0.65 (Table 3), respectively.

The best results to detect after treatment complete
pathological response were obtained by SIS, the per-
centage change in MK standard deviation and by per-
centage change in VARPRO Dp mean value (Fig. 3a–c)
with area under ROC of 0.89, 0.70 and 0.72 (Table 4),
respectively.

The best results to differentiate responders vs. non-
responders after treatment were obtained by SIS, the
percentage change in MK standard deviation and per-
centage change in VARPRO Dp mean value (Fig. 3d–f)

with area under ROC of 0.94, 0.60 and 0.65 (Table 4),
respectively.

Table 5 reports the diagnostic performance of tested
classifiers to predict pathological response before treat-
ment and to assess pathological response after treatment.
The best results (bold values) were obtained by a
supervised decision tree with an accuracy of 88.2% to
predict pathological complete response using VARPRO
Dp pre-treatment mean value, ADC standard deviation
value pre-treatment (Fig. 4a and b). However, these re-
sults showed a worse accuracy compared at the use of
CBFM Dp mean pre-treatment, VARPRO Fp mean pre-
treatment VARPRO Dp mean pre-treatment mean value
alone. Instead, to predict responder patients the best
results (bold values) were obtained by a supervised
decision tree with an accuracy of 64.7% using CBFM
IVIM Fp pre-treatment mean and standard deviation
value, MK standard deviation value pre-treatment, ADC
standard deviation value pre-treatment (Fig. 4c and d).
However, these results showed a worse accuracy com-
pared at the use of CBFM Fp mean pre-treatment CBFM
Dp std pre-VARPRO Dp mean pre-treatment.

The best results (bold values) to assess pathological
complete response after SCRDS were obtained by a
supervised decision tree with an accuracy of 85.3% using
VARPRO Dp mean value post-treatment, ADC standard
deviation value pre-treatment, MD standard deviation
value post-treatment (Fig. 5a and b). Instead, low accu-
racy (55.9%) was reached in the assessment of responder
patients after SCRDS considering the best results (bold
values) by a supervised decision tree using VARPRO Dp

mean value post-treatment, VARPRO Dmean value pre-
and post-treatment (Fig. 5c and d).

We reported representative MR images for a
responder patient (TRG = 2). Figure 6 shows SIS
analysis, DSIS = 24.79%. Figure 7 shows ADC- and

Table 3. Diagnostic performance of the best MR-derived parameters to predict pathological complete response and responder patients of the SCRDS

CBFM Dp mean pre-treatment VARPRO Fp mean pre-treatment VARPRO Dp mean pre-treatment

To predict pathological complete response
Cutoff 0.0145 0.6607 0.0039
Sensitivity 0.8889 0.5714 0.9630
Specificity 0.5714 1.0000 0.7143
PPV 0.8889 1.0000 0.9286
NPV 0.5714 0.9000 0.8333
Accuracy 0.8235 0.9118 0.9118

CBFM Fp mean pre-treatment CBFM Dp std pre-treatment VARPRO Dp mean pre-treatment

To predict responder patients
Cutoff 0.2428 0.0003 0.0070
Sensitivity 0.7333 0.6842 0.7895
Specificity 0.6842 0.6667 0.5333
PPV 0.6471 0.7222 0.6818
NPV 0.7647 0.6250 0.6667
Accuracy 0.7059 0.6765 0.6765

CBFM, conventional biexponential fitting model; VARPRO, variable projection; PPV, negative predictive value; NPV, negative predictive value;
std, standard deviation
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IVIM-derived parameter maps pre-treatment (a, c, e, g)
and post-treatment (b, d, f, h): DADC = - 87.25%, DD
= - 99.36%, DDp= 8.42%, Dfp= 38.67%. Figure 8
shows DKI-derived parameters maps pre-treatment (a, c)
and post-treatment (b, d): DMD = - 45.79%,
DMK = 55.29%.

Figure 9 shows an image representative of the corre-
lation of tumor on MR T2-weighted images with
pathology specimen.

Discussion

Recently, there has been growing interest in functional
imaging modalities to increase diagnostic accuracy for
therapy response assessment. These imaging modalities
reflect the microstructural and metabolic proprieties of
the tumor, allowing the assessment of treatment-induced
changes before morphological changes are visible. DCE-
MRI and DWI have emerged as powerful tools to predict
and to assess neoadjuvant therapy response for rectal
cancer. In fact, DCE- and DW-MR imaging after pre-
operative CRT was shown to be more valuable than
morphologic MR imaging to recognize pathological
significant and complete response and to discriminate
viable residual tumor.

The objective of this study was to determine the
diagnostic performance of DCE and DW imaging for the
assessment of tumor response after SCRDS in patients
with LARC comparing Standardized Index of Shape
(SIS) obtained by DCE-MRI and using ADC-, in-
travoxel incoherent motion- and DKI-derived parame-
ters obtained from DW-MRI and their combinations. To
the best of our knowledge, there are no studies in the
literature focused on a comparison of DCE-MRI-,
IVIM- and DKI-derived parameters and their combi-
nation to predict and to assess therapy response in locally
advanced rectal cancer after SCRDS.
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Table 4. Diagnostic performance of the best MR-derived parameters to
assess pathological complete response and to detect responder patients
after SCRDS

SIS DMK std VARPRO DDp mean

To detect pathological complete response
Cutoff 69.9571 60.5039 - 574.6957
Sensitivity 0.8571 0.5714 0.8889
Specificity 0.9259 0.9259 0.5714
PPV 0.7500 0.6667 0.8889
NPV 0.9615 0.8929 0.5714
Accuracy 0.9118 0.8529 0.8235

To detect responder patients
Cutoff - 7.7694 60.5039 - 574.6957
Sensitivity 0.9333 0.3333 0.8947
Specificity 0.8421 0.9474 0.3333
PPV 0.8235 0.8333 0.6296
NPV 0.9412 0.6429 0.7143
Accuracy 0.8824 0.6765 0.6471

CBFM, conventional biexponential fitting model; VARPRO, variable
projection; PPV, negative predictive value; NPV, negative predictive
value; std, standard deviation
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There are many studies that evaluate the single
modality, DCE or DWI, in preoperative long CRT
assessment [18–21, 44–46]. In our previous studies [18],
we demonstrated the ability of DCE-MRI using the
Standardized Index of Shape to discriminate significant
responders and pathological complete tumor response
after preoperative CRT in LARC with a good accuracy
also when compared to FDG-PET examinations [47].
Several studies demonstrated the role of diffusion-
weighted imaging in LARC for early and late assessment
of therapy response [44–46], and several studies evalu-
ated the use of IVIM to elaborate DW-data in different
kind of tumors [27–30, 48]. Choi et al. [44] demonstrated
that ADC values have significant difference between
pathological complete response and non-pathological
complete response groups, demonstrating the utility of
the ADC value as a quantitative objective biomarker
in rectal cancer. Moreover, there are some studies with
the aim to assess tumor response after SCR using me-
tabolic change evaluations by FDG-PET with contrast-
ing results [49–52]. In another study [19], we assessed
SIS- and IVIM-derived parameters in LARC after
SCRDS demonstrating that SIS obtained the best
parameter to discriminate responders by non-responders
(sensitivity 94%, specificity 84%, accuracy 89%, cutoff
value = - 7.8%) and the best diagnostic performance
also to discriminate pCR (sensitivity 86%, specificity
89%, accuracy 89%, cutoff value = 68.2%) and that no
accuracy increase was obtained combining linearly each
possible parameters couple or combining all functional
MR-derived parameters compared to SIS alone.

Only few researches have evaluated the role of DKI
for assessing treatment response of neoadjuvant
chemoradiotherapy in LARC [53, 54]. Yu et al. [53]
evaluated the feasibility and value of DKI in assessing
treatment response to neoadjuvant CRT in LARC. In
their study, histogram analysis of imaging indices (MD,
MK, ADC) was performed and evaluated on 41 patients.
The results by Yu et al. [53] suggested that the percentage
change in MD provides high diagnostic performance for
assessing treatment response. For pre-CRT parameters,
histogram indices medians and 10th percentiles of pre-
MD correlated statistically with TRG scores, providing a
good performance for evaluating treatment to neoadju-
vant CRT. Hu et al. assessed the value of DKI in eval-
uating pathological complete response to neoadjuvant
CRT compared to conventional DWI [54] using a proper
DKI scan protocol with b values of 0, 700, 1400 and
2000. They enrolled 56 patients with LARC that under-
went MRI before and after CRT. They showed that
among 56 rectal lesions (pCR, n = 14; non-pCR,
n = 42), the MK pre- and MK post-values were much
lower for pCR patients than for non-pCR patients. The
ADC post and ADC percentage change was significantly
higher for pCR patients than for non-pCR. The MK
post showed relatively high sensitivity and high speci-
ficity in comparison with other parameters. Our findings
showed that mean and standard deviation values pre-
treatment of CBFM Dp and mean value of VARPRO Dp

pre-treatment showed statistically significant differences
between pathological complete responders and incom-
plete responders (p value at Mann–Whitney test was

Fig. 6. Figure shows SIS analysis for a responder patients: TRG 2 and DSIS = 24.79%.
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Fig. 7. Figure shows ADC- and IVIM-derived parameters maps pre-treatment (A, C, E, G) and post-treatment (B, D, F, H) for a
responder patients (TRG 2): ADC (A) and (B), D (C) and (D), Dp (E) and (F), fp (G) and (H).
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0.05, 0.03 and 0.008, respectively), while exclusively SIS
percentage change showed significant differences be-
tween responder and non-responder patients after
SCRDS (p value << 0.001) and to assess pathological
complete response after SCRDS (p value << 0.001).

The best results to predict pathological complete re-
sponse were obtained by VARPRO Fp mean value pre-
treatment with area under ROC of 0.84, a sensitivity of
96.4%, a specificity of 71.4%, a positive predictive value
of 92.9%, a negative predictive value of 83.3% and an
accuracy of 91.2%. The best results to assess post-treat-
ment complete pathological response were obtained by
SIS with an area under ROC of 0.89, a sensitivity of
85.7%, a specificity of 92.6%, a positive predictive value
of 75.0%, a negative predictive value of 96.1% and an
accuracy of 91.2%. Moreover, the best results to differ-
entiate post-treatment responders by non-responders

were obtained by SIS with an area under ROC of 0.94, a
sensitivity of 93.3%, a specificity of 84.2%, a positive
predictive value of 82.4%, a negative predictive value of
94.1% and an accuracy of 88.2%.

These results take the conclusion that DWI-derived
parameters including pseudo-diffusion coefficient and
perfusion fraction have a great potential to predict
therapy response and then patient outcome before
treatment in LARC, while SIS is the best parameter to
assess pathological response after treatment to guide
surgery.

Promising results were obtained using a decision tree
tested with all ADC-, IVIM- and DKI-derived parame-
ters. A high accuracy was reached for the assessment of
pathological complete response after SCRDS in LARC.
The best results were obtained with a supervised decision
tree with an accuracy of 85.3% to assess pathological

Fig. 8. Figure shows DKI-derived parameters maps pre-treatment (A), (C) and post-treatment (B), (D) for a responder patients
(TRG 2): MD (A) and (B), MK (C) and (D).
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complete response after SCRDS using VARPRO Dp

mean value post-treatment, ADC standard deviation
value pre-treatment, MD standard deviation value post-
treatment. However, SIS alone showed a major accuracy.
In any case, these results could be interesting when
contrast agent administration was contraindicate and
DCE-MRI cannot performed.

Some potential limitations deserve a special consid-
eration: two radiologists evaluated the MR images by
consensus and in a single session per patient so that the
intraobserver variability was not assessed. The calcula-
tion of DKI parameters may be suboptimal for the use of
an acquisition protocol with 800 m/s2 as a maximum
b value. A more extensive patient panel would probably
strengthen the power of this study in SCR therapy
assessment. A reproducibility analysis of MR-derived
parameters was not performed; however, the use of mean
values for each DCE and DW parameters extracted by
volume of interest allows to obtain more robust mea-
sures.

Conclusions

In conclusion, perfusion fraction derived by IVIM model
using a more sophisticated fitting approach compared to
convention biexponential fitting using Levenberg–Mar-

quardt had high accuracy to predict positive therapy
response after SCR. On the other side, SIS is an
encouraging DCE-MRI angiogenic biomarker to assess
preoperative treatment response after SCR with delayed
surgery, and it permits to discriminate pathological
complete response allowing direct surgery for tailored
and conservative treatment. Furthermore, an important
prognostic role was obtained by perfusion fraction mean
value pre-treatment and by a decision tree composed by
VARPRO Dp mean value post-treatment, ADC standard
deviation value pre-treatment, MD standard deviation
value post-treatment in order to assess pathological
complete response.
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