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Abstract

Purpose: To study the impact of keV levels of virtual
monoenergetic images generated from rapid kVp-switch-
ing dual-energy CT (rsDECT) on CT texture analysis
(CTTA).
Methods: This study included 30 consecutive patients
(59.3 ± 12 years; range 34–77 years; 17M:13F) who
underwent portal venous phase abdominal CT on a
rsDECT scanner. Axial 5-mm monoenergetic images at 5
energy levels (40/50/60/70/80 keV) were created and
CTTA of liver was performed. CTTA comprised a
filtration-histogram technique with different spatial scale
filter (SSF) values (0–6). CTTA quantification at each
SSF value included histogram-based statistical parame-
ters such as mean intensity, standard deviation (SD),
entropy, mean of positive pixels (MPP), skewness, and
kurtosis. The values were compared using repeated
measures ANOVA.
Results: Among the different CTTA metrics, mean
intensity (at SSF > 0), skewness, and kurtosis did not
show variability whereas entropy, MPP, and SD varied
with different keV levels. There was no change in
skewness and kurtosis values for all 6 filters
(p > 0.05). Mean intensity showed no change for filters
2–6 (p > 0.05). Mean intensity at SSF = 0 i.e., mean
attenuations were 91.2 ± 2.9, 108.7 ± 3.6, 136.1 ± 4.7,
179.8 ± 6.9, and 250.5 ± 10.1 HU for 80, 70, 60, 50, and
40 keV images, respectively demonstrating significant
variability (decrease) with increasing keV levels
(p < 0.001). Entropy, MPP, and SD values showed a
statistically significant decrease with increasing keV of

monoenergetic images on all 6 filters (p < 0.001).
Conclusion: The energy levels of monoenergetic images
have variable impact on the different CTTA parameters,
with no significant change in skewness, kurtosis, and
filtered mean intensity whereas significant decrease in
mean attenuation, entropy, MPP, and SD values with
increasing energy levels.
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Tissue heterogeneity is an important histological feature
of malignant tumors [1]. One of the components of tissue
heterogeneity is vascular variation which contributes to
adverse tumor microenvironment and regional tumor
hypoxia. Vascular heterogeneity leads to aggressive tu-
mor biology facilitating increased risk of local invasion
and systemic metastasis, impaired delivery of systemic
chemotherapeutic agents, and cellular resistance to
chemotherapy [1]. Imaging surrogates of tissue hetero-
geneity (especially vascular) on cross-sectional radiolog-
ical techniques such as CT and MRI include variable
lesion attenuation/intensity and enhancement character-
istics. Texture analysis is a method of quantifying the
lesion heterogeneity on medical images (CT and MRI)
and is emerging as a potentially useful tool for assessing
prognosis and treatment response in cancer imaging [2,
3]. CT-based texture parameters obtained from tumors
have been shown to correlate with histological features,
and in comparison to histological analysis it is less
invasive and easier to perform [3]. CT texture analysis
(CTTA) has been shown to be useful in detection [4–9],
characterization [10–14], staging, and prognostication ofCorrespondence to: Avinash Kambadakone; email: akambadakone@
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various malignancies [15–22]. CTTA has been shown to
be a marker for tumor metabolism, angiogenesis, key
molecular marker expression, and patient survival in
lung and gastrointestinal cancers [15–23]. Texture anal-
ysis performed using CT and MRI has also emerged as a
tool for therapeutic response assessment. CTTA has been
reported to be predictive biomarker for response to tyr-
osine kinase inhibitors in metastatic renal cell cancer [24],
and chemotherapy in primary and metastatic colorectal
cancer [25–27], non-small cell lung cancer [28], esopha-
geal cancer [29], and soft tissue sarcoma [30]. MRI image
texture analysis has also been found to be a predictor of
chemotherapeutic response in breast cancer [31–34].

Dual-energy CT (DECT) allows simultaneous image
acquisition at two different energies which leads to gen-
eration of material/energy specific attenuation informa-
tion and a wide range of CT image datasets. Rapid kVp-
switching (rsDECT) is a type of source-based DECT in
which the single X-ray source rapidly switches between
low and high tube voltages to generate near-simultane-
ous dual-energy projections. Virtual monoenergetic
images are post-processed DECT images that provide
projected attenuation maps equivalent to an actual
acquisition at monochromatic X-ray beam of specific
photon energy (40–190 keV) [35, 36]. Generally, most of
the DECT protocols generate arterial phase monochro-
matic images at 50–60 keV and portal venous phase
images at 60–75 keV as they provide the most optimal
balance between improved SNR and image noise [37].
Monoenergetic images demonstrate variations in atten-
uation values (HU) based on the energy level of recon-
struction [38]. Similarly, corresponding pixels from
various monoenergetic and material decomposition
images differ in attenuation depending on the material
composition. As texture analysis is based on mathemat-
ical description of pixel gray-level intensity information,
DECT post-processing might have an impact on image
texture analysis. Increasing use of DECT for routine
clinical and research purposes means that CTTA would
be increasingly applied on post-processed DECT data-
sets and understanding their interplay is imperative for
precise interpretation of research findings and stan-
dardization of imaging protocols. The impact of various
energy levels of monoenergetic images on CTTA has not
been studied before. Therefore, we undertook this re-
search with the purpose of studying the impact of the
energy level (keV) of reconstructed virtual monoenergetic
images generated from rapid kVp-switching dual-energy
CT on CTTA parameters.

Materials and methods

Patient population

This study was IRB approved and HIPAA compliant.
The retrospective study included 30 consecutive patients
(age 59.3 ± 12 years; range 34–77 years; 17M:13F, BMI

28.5 ± 7) who underwent portal venous phase abdomi-
nal CT for oncologic work-up. The patients included in
the cohort did not have documented liver disease such as
hepatitis, cirrhosis, or hepatic steatosis in the medical
record. Careful evaluation of the CT scans in these pa-
tients revealed no evidence of focal liver lesions such as
metastases/cysts. The hepatic parenchymal enhancement
in these patients was homogeneous without evidence of
diffuse liver disease such as hepatic steatosis or cirrhosis.
A liver–spleen attenuation difference of - 25 HU on the
portal venous phase exam was taken as the criteria for
hepatic steatosis. The liver function tests were within
normal limits. All the patients included in the study were
treatment naı̈ve without evidence of systemic or locore-
gional therapies such as ablation or transarterial
chemoembolization.

Imaging technique

All the patients included in the study had undergone a
portal venous phase abdominal CT exam on a single
source rapid kVp-switching DECT scanner (GE Dis-
covery CT 750 HD scanner, GE Healthcare, Milwaukee,
WI, USA) in the DE mode (See Table 1 for CT proto-
col). Portal venous phase images were obtained 70 s
following intravenous administration of 80–90 mL of
iodinated contrast material (Isovue, 370 mgI/mL, Bracco
Diagnostics, Princeton, NJ, USA) at an injection rate of
3 mL/s. The DECT image datasets were transferred from
PACS to a dedicated post-processing workstation for
creation of the monoenergetic images. Axial virtual
monoenergetic images of 5-mm thickness were recon-
structed on advantage 4.6 workstation at 5 different
energy levels (40, 50, 60, 70, and 80 keV). From the post-
processed monoenergetic image datasets, one single axial
image at the level of porta hepatis was selected for CTTA
analysis. A total of 150 axial CT images (30 DECT

Table 1. Scan parameters

Parameters ssDECT

Tube potential (kVp) 80 kV/140 kV
GSI parameters for patients

under 150 lbs
GSI 23
CTDI 11.32
mA (fixed) 375
Rotation time 0.7 s
Pitch 1.375
Collimation 64 9 0.625
Speed 55 mm/s

GSI parameters for patients
151–250 lbs

GSI 3
CTDI 13.33
mA (fixed) 630
Rotation time 1 s
Pitch 0.984
Collimation 64 9 0.625
Speed 39.37 mm/s

Slice thickness/interval 5 mm/5 mm
Iterative reconstruction ASIR (50%)
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scans 9 5 different keV levels) constituted the final da-
taset for CTTA analysis.

CT texture analysis

The selected DICOM images were saved and uploaded to
commercially available research software TexRAD
(TexRAD Ltd www.texrad.com part of Feedback Plc,
Cambridge, UK) for image texture/heterogeneity
assessment. This software has been extensively reported
and validated for various oncologic applications [2, 15–
17, 19, 23, 39, 40]. CTTA of the different monoenergetic
image datasets were performed by placing regions of
interest (ROIs) on the liver at corresponding locations on
monoenergetic images of different keV levels. Large
rectangular ROIs (3–5 cm2) were placed at the homo-
geneously enhancing liver parenchyma at the sub-cap-
sular location devoid of vessels.

CTTA algorithm for liver employs a thresholding
procedure that excludes any pixels corresponding to
areas of fat, air, and bright vessels with attenuation
values outside the range of 0–300 HU. CTTA comprised
a filtration-histogram technique where the filtration step/
technique produced a series of derived images extracting
and enhancing objects/features of varying intensities and
sizes corresponding to different spatial scale filter (SSF)
values corresponding to fine (SSF = 2, features of 2 mm
in radius), medium (SSF = 3, 4, 5, features of 3, 4 or
5 mm), and coarse (SSF = 6, features of 6 mm in ra-
dius) texture scales. Fine texture may represent
parenchymal/tissue features; while medium/coarse tex-
ture may reflect larger vascular components, both rep-
resenting different but biologically important
information. As the CT scanner pixel resolution tends to
be sub-mm voxel so any features less than twice the pixel
resolution will most likely be reflecting photon noise
hence SSF values less than 2 mm were not considered.
Filtration was followed by heterogeneity quantification
using mean intensity (average brightness), SD (standard
deviation; width of the distribution), mean value of
positive pixels (MPP; the average value of all the pixels
with positive value; represents location of distribution),
entropy (a measure of irregularity or complexity),
skewness (a measure of asymmetry of the histogram),
and kurtosis (a measure of peakedness or pointedness or
sharpness of the distribution). In addition, these his-
togram parameters were also quantified from the con-
ventional CT image without filtration (i.e., SSF = 0).
CTTA parameters included mean, standard deviation
(SD), entropy, mean of positive pixels (MPP), skewness,
and kurtosis at 6 different SSF values (0, 2, 3, 4, 5, and
6). A recent article [40] highlights filtration-histogram-
based CTTA and describes how various texture param-
eters reflect different components of visual image
(heterogeneity) features such as number of objects/fea-
tures, size of objects/features, and variation in intensity

of these objects/features in relation to the background of
the tissue within the ROI (Fig. 1).

Statistical analysis

Statistical analyses were carried out using the MedCalc
software version 17.6 (Ostend Belgium). The mean
attenuation values (HU which is mean intensity values at
SSF = 0) and textural parameters (mean intensity, SD,
entropy, MPP, skewness, and kurtosis at different SSF
values) from the different monoenergetic images were
compared using repeated measures using ANOVA. For
all comparisons, p < 0.05 was considered to indicate a
statistically significant difference.

Results

CT attenuation and monoenergetic image keV
level

The mean attenuation of the liver parenchyma showed
an increasing trend with decreasing keV level of the
monoenergetic images. The mean attenuation was
91.2 ± 2.9, 108.7 ± 3.6, 136.1 ± 4.7, 179.8 ± 6.9, and
250.5 ± 10.1 HU for 80, 70, 60, 50, and 40 keV images,
respectively (p < 0.001).

CTTA variables and monoenergetic image keV
level

Among the different CTTA parameters measured at
different monoenergetic levels, kurtosis, skewness, and
filtered mean intensity showed least variability (more
robust parameters) compared to entropy, SD, and MPP.
There was no significant change in the kurtosis values
along the energy levels of the monoenergetic images for
most comparisons across all 6 filters (p > 0.1) (Table 2).
The filtered mean intensity showed no significant change
with varying energy levels of monoenergetic images for
all filters (p > 0.05) (Table 3). There was no significant
change in the skewness values at different keV levels for
unfiltered images (SSF = 0) and for fine (SSF = 2) and
coarse (SSF = 6) filters (Table 4). The skewness values
showed a significant decreasing trend with increasing
keV values at medium size filters (SSF = 3, 4, & 5)
(Table 4). But there was no significant difference for
most subset comparisons on post hoc analysis (Table 4).
The entropy, MPP, and SD values showed a statistically
significant decrease with increasing keV of monoener-
getic images on all 6 filters (p < 0.001; for all parame-
ters), except for few individual subset comparisons on
post hoc analysis (Tables 5, 6, 7).

Discussion

CT texture analysis which uses mathematical descriptors
to describe the distribution of pixel intensity values
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within a ROI and therefore provide a marker for tumor
biology has attracted a lot of recent interest in oncology
research. In addition to its established applications of
lung nodule characterization and detection of colonic
polyps, its role as a biomarker for assessment and pre-
diction of treatment response to various therapies is

emerging [4–14, 24–29, 31–34]. Rising use of CTTA in
oncological imaging has been paralleled by the increasing
performance of DECT in routine clinical and research
practice across multiple centers. As the spectrum of the
DECT datasets, particularly monoenergetic images are
being investigated for their role in improving imaging

Fig. 1. Illustration showing
CTTA process. Large
rectangular ROIs (arrow)
were placed at the
homogeneously enhancing
liver parenchyma devoid of
vessels. CTTA comprised a
filtration-histogram
technique where the
filtration step/technique
produced a series of derived
images extracting and
enhancing objects/features
of varying intensities and
sizes corresponding to
different spatial scale filter
(SSF) values including 0, 2,
3, 4, 5, and 6. The CTTA
parameters of image were
derived for each value of
SSF.
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diagnosis, it is crucial to understand their interplay with
CTTA analysis.

Post-processed DECT images have been shown to
affect attenuation measurements depending on the
material composition [35, 36]. We found that certain
CTTA parameters demonstrate less variability (more
robust) compared to others at different energy levels of

monoenergetic images. There was no significant change
in the kurtosis, skewness (showed no change at unfiltered
images and with fine and coarse filters), and filtered
mean intensity values along the different monoenergetic
energy levels. Gaussian filter has a smoothening effect on
the images and is probably mitigating the effects of dual-
energy post-processing and hence the differences in

Table 2. Kurtosis values with different filters (SSF) at different keV

SSF Kurtosis (mean ± SD) Post-ANOVA

40 keV 50 keV 60 keV 70 keV 80 keV p value

0 0.49 ± 0.17 1.61 ± 1.3 0.18 ± 0.04 0.24 ± 0.08 - 0.002 ± 0.02 0.1082 Significant difference between 60 &
80 keV and between 70 &
80 keV. Rest of the comparisons
were not different.

2 0.18 ± 0.10 0.15 ± 0.11 0.22 ± 0.14 0.34 ± 0.16 - 0.09 ± 0.06 0.1231 No significant difference on subset
comparisons.

3 0.09 ± 0.15 0.14 ± 0.15 0.22 ± 0.20 0.19 ± 0.16 - 0.22 ± 0.07 0.1393 No significant difference on subset
comparisons.

4 0.01 ± 0.13 0.003 ± 0.13 0.07 ± 0.16 0.03 ± 0.13 - 0.32 ± 0.09 0.1027 No significant difference on subset
comparisons.

5 - 0.24 ± 0.11 - 0.16 ± 0.12 - 0.20 ± 0.16 - 0.17 ± 0.14 - 0.35 ± 0.13 0.5449 No significant difference on subset
comparisons.

6 - 0.50 ± 0.10 - 0.49 ± 0.09 - 0.36 ± 0.15 - 0.44 ± 0.12 - 0.57 ± 0.16 0.7961 No significant difference on subset
comparisons.

Table 3. Mean intensity values with different filters (SSF) at different keV

SSF Parameter ‘‘Mean’’ (mean ± SD) Post-ANOVA

40 keV 50 keV 60 keV 70 keV 80 keV p value

0 (attenuation) 250.5 ± 10.1 179.8 ± 6.9 136.1 ± 4.7 108.7 ± 3.6 91.2 ± 2.9 < 0.0001 All subset comparisons were
significantly different.

2 0.73 ± 0.78 0.64 ± 0.32 - 0.05 ± 0.31 0.25 ± 0.16 - 0.008 ± 0.18 0.298 No significant difference on
subset comparisons.

3 1.56 ± 1.02 0.99 ± 0.45 0.21 ± 0.55 0.02 ± 0.28 0.03 ± 0.34 0.0856 No significant difference on
subset comparisons.

4 0.52 ± 1.3 0.43 ± 1.02 0.95 ± 0.69 - 0.18 ± 0.68 0.17 ± 0.58 0.6157 No significant difference on
subset comparisons.

5 1 ± 1.9 - 0.02 ± 1.3 1.4 ± 0.98 0.37 ± 1.06 0.77 ± 0.89 0.9883 No significant difference on
subset comparisons.

6 1.02 ± 2.62 0.3 ± 1.8 2.21 ± 1.39 1.32 ± 1.38 1.16 ± 1.12 0.8071 No significant difference on
subset comparisons.

Table 4. Skewness values with different filters (SSF) at different keV

SSF Skewness (mean ± SD) Post-ANOVA

40 keV 50 keV 60 keV 70 keV 80 keV p value

0 0.008 ± 0.06 - 0.06 ± 0.13 0.1 ± 0.02 0.1 ± 0.03 0.03 ± 0.02 0.2018 No significant difference on subset
comparisons.

2 0.11 ± 0.04 0.10 ± 0.04 0.14 ± 0.05 0.14 ± 0.05 0.04 ± 0.03 0.4362 No significant difference on subset
comparisons.

3 0.22 ± 0.07 0.19 ± 0.06 0.18 ± 0.07 0.22 ± 0.07 - 0.007 ± 0.04 < 0.05 Only 40 & 80 keV were signifi-
cantly different.

4 0.28 ± 0.08 0.25 ± 0.08 0.19 ± 0.08 0.20 ± 0.08 - 0.01 ± 0.05 < 0.05 Only 40 & 80 keV were signifi-
cantly different.

5 0.21 ± 0.09 0.26 ± 0.09 0.22 ± 0.08 0.16 ± 0.09 - 0.04 ± 0.08 < 0.05 No significant difference on subset
comparisons.

6 0.017 ± 0.1 0.08 ± 0.09 0.06 ± 0.1 0.02 ± 0.1 - 0.06 ± 0.11 0.4969 No significant difference on subset
comparisons.
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Table 6. MPP values with different filters (SSF) at different keV

SSF MPP (mean ± SD) Post-ANOVA

40 keV 50 keV 60 keV 70 keV 80 keV p value

0 250.5 ± 10.1 179.8 ± 6.9 136.1 ± 4.7 108.7 ± 3.6 91.2 ± 2.9 < 0.0001 All subset comparisons were significantly
different.

2 57.2 ± 2.4 40.3 ± 1.7 31.4 ± 1.5 22.6 ± 1.07 22.1 ± 1.005 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

3 41.6 ± 2.2 29.03 ± 1.3 23.8 ± 1.3 17.09 ± 0.89 15.9 ± 0.78 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

4 33.2 ± 2.8 22.8 ± 1.2 19.4 ± 1.2 13.5 ± 0.75 12.1 ± 0.73 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

5 29.04 ± 2.8 19.09 ± 1.5 16.09 ± 1.5 11.4 ± 0.96 10.4 ± 0.95 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

6 24.02 ± 2.8 15.2 ± 2.8 13.4 ± 1.7 9.7 ± 1.2 8.6 ± 1.1 < 0.0001 No difference between 50 & 60 keV and
between 70 & 80 keV. Rest of the subset
comparisons were significantly different.

Table 5. Entropy values with different filters (SSF) at different keV

SSF Entropy (mean ± SD) Post-ANOVA

40 keV 50 keV 60 keV 70 keV 80 keV p value

0 4.6 ± 0.05 4.3 ± 0.04 4.03 ± 0.05 3.7 ± 0.05 3.6 ± 0.04 < 0.0001 All subset comparisons were significantly
different.

2 5.3 ± 0.05 5.08 ± 0.04 4.8 ± 0.04 4.5 ± 0.04 4.5 ± 0.04 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

3 4.9 ± 0.06 4.7 ± 0.04 4.5 ± 0.05 4.2 ± 0.05 4.2 ± 0.05 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

4 4.5 ± 0.1 4.4 ± 0.06 4.2 ± 0.06 3.9 ± 0.05 3.8 ± 0.06 < 0.0001 No difference between 40 & 50 keV, be-
tween 40 & 60 keV and between 70 &
80 keV. Rest of the subset comparisons
were significantly different.

5 4.5 ± 0.07 4.1 ± 0.07 3.9 ± 0.1 3.7 ± 0.07 3.5 ± 0.09 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

6 4.1 ± 0.11 3.8 ± 0.1 3.5 ± 0.14 3.3 ± 0.12 3.1 ± 0.15 < 0.0001 No difference between 60 & 70 keV and
between 70 & 80 keV. Rest of the subset
comparisons were significantly different.

Table 7. SD values with different filters (SSF) at different keV

SSF SD (mean ± SD) Post-ANOVA

40 keV 50 keV 60 keV 70 keV 80 keV p value

0 29.1 ± 1.4 20.4 ± 0.9 15.07 ± 0.8 11.2 ± 0.5 10.3 ± 0.4 < 0.0001 All subset comparisons were significantly
different.

2 71.03 ± 3.2 50.1 ± 2.2 38.8 ± 1.8 28.3 ± 1.3 27.4 ± 1.2 < 0.0001 No difference between 50 & 60 keV and
between 70 & 80 keV. Rest of the subset
comparisons were significantly different.

3 50.3 ± 2.7 35.2 ± 1.7 29.2 ± 1.6 20.7 ± 1.1 19.5 ± 0.9 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

4 38.5 ± 3.1 27.05 ± 1.6 23.1 ± 1.5 16.3 ± 0.9 14.9 ± 0.9 < 0.0001 All subset comparisons were significantly
different.

5 33.5 ± 2.6 22.2 ± 1.6 18.2 ± 1.6 13.2 ± 0.8 11.8 ± 1.1 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.

6 26.5 ± 2.5 17.3 ± 1.6 13.8 ± 1.5 10.1 ± 0.9 9.05 ± 1.1 < 0.0001 No difference between 70 & 80 keV. Rest
of the subset comparisons were signifi-
cantly different.
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attenuation/mean on unfiltered images is not reproduced
on filtered images. Skewness represents the measure of
asymmetry of texture histogram and this value could be
positive or negative. A negative skew indicates a longer
tail on the left side of the histogram, while a positive
skew designates that the tail on the right side is longer
than the left side. A zero value specifies uniform distri-
bution of values on either side of the mean. The dual-
energy post-processing did not have any impact on
skewness in a homogenously enhancing liver par-
enchyma. It probably can be explained by the fact that
although the change in keV results in change in pixel
intensity but this change is proportionate in all pixels and
does not change their distribution around the mean
(Fig. 2). Kurtosis is a measure of the peakedness of the
histogram and this value could be positive or negative. A
positive kurtosis indicates a histogram that is more
peaked than a Gaussian (normal) distribution, while a
negative kurtosis indicates a histogram that is flatter. The
relative stability of kurtosis can also probably be ex-
plained by the proportionate impact on all pixels that did
not change the distribution of pixel intensities around the
mean (Fig. 2). The entropy, MPP, SD values across all
filter levels and skewness (medium filter scale) showed a
statistically significant decrease with increasing keV of
monoenergetic images.

The findings of our study have two key implications.
First, all the results of the prior studies on CTTA with
polychromatic CT should be applied with care to the
future studies on DECT monoenergetic images. Texture
parameters are quantitative entities and certain param-
eters are less prone to variations due to DECT image
specifications rather than actual pathological process.
Second and more importantly, there has been an increase
in the utilization of CTTA for the response assessment in
various malignancies [24–30] with a simultaneous in-
crease in the performance of DECT for oncological
applications [41–45]. Thus, it is important to be aware of
the impact of DECT post-processing on image texture to
ensure the comparability of imaging studies acquired at
different time points. Our study has demonstrated that
some of the texture parameters such as kurtosis, filtered
mean intensity values, and skewness values of unfiltered
images and filtered images with fine and coarse filters do
not change with changing keV and hence might be more
reliable and robust compared to other quantifiers be-
tween different keV datasets. The quantifiers that
demonstrate variability between different keV could
benefit from some additional normalization techniques
e.g., texture ratios at two filter (SSF) values [46–48] that
have been shown to exhibit least variability with CT
acquisition parameters—tube currents and tube voltages
and predict patient survival in metastatic colorectal
cancer study. Other normalization techniques could in-
clude dividing tissue texture of interest by muscle/water
texture. These approaches could make the quantifiers

Fig. 2. Illustration showing the histogram plots of 40–80 keV
images with fine filter (SSF 2). There is difference in standard
deviation (as demonstrated by the range on x-axis); however,
there is no difference in the shape/peakedness of the curve
(kurtosis) and skewness.
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more reliable and robust and therefore applicable to
DECT monoenergetic images. The implication of our
study for clinical use and patient care translates to
identification of CTTA parameters (e.g., kurtosis,
skewness, and filtered mean) which are less variant (more
robust) to variations in energy levels of monoenergetic
images making them suitable for use in DECT applica-
tions.

Our study has few limitations. First, our sample size
was small. Second, the measurements were performed on
normal liver parenchyma and no measurements were
made on actual focal lesions [46–48]. However, since our
intent was to identify variations in CTTA with
monoenergetic images, we relied on using normal par-
enchyma of solid organ to negate the effect of various
pathologies on CTTA parameters. The impact of energy
levels of monoenergetic images on CTTA could be ad-
dressed on large cohort future studies. Additionally, fu-
ture projects could focus on identifying ideal
monoenergetic image energy levels to optimize the
extraction of useful biological information, similar to
keV optimization studies for different imaging applica-
tions [49, 50].

Conclusion

The energy levels of monoenergetic DECT images have a
variable impact on the different CTTA parameters; cer-
tain CTTA parameters may be reliably compared be-
tween the images of different keV values such as
skewness, kurtosis, and filtered mean intensity whereas
mean attenuation, entropy, MPP, and SD values de-
crease significantly with increasing energy levels of
monoenergetic images. The energy levels of monoener-
getic images must be standardized and/or appropriate
normalization approaches to quantification (for certain
metrics) should be undertaken to ensure greater com-
parability of different image datasets for CTTA in
oncological patients. Knowledge of these relationships
can assist the understanding of results obtained from
clinical CTTA studies in oncological patients undergoing
DECT.

Compliance with ethical standards

Disclosure Balaji Ganeshan: director, part-time employee, and
shareholder of Feedback Plc (Cambridge, England, UK), company that
develops and markets the TexRAD texture analysis algorithm described
in this manuscript. Dushyant Sahani: GE healthcare research grant,
royalties from Elsevier.

Funding This study was not funded.

Ethical approval This article does not contain any studies with human
participants performed by any of the authors.

Conflict of Interest Balaji Ganeshan is director, part-time employee,
and shareholder of Feedback Plc (Cambridge, England, UK), company
that develops and markets the TexRAD texture analysis algorithm
described in this manuscript. Dushyant Sahani has GE healthcare re-

search grant, royalties from Elsevier, other authors declare that they
have no conflict of interest.

References

1. Gerlinger M, Rowan AJ, Horswell S, et al. (2012) Intratumor
heterogeneity and branched evolution revealed by multiregion
sequencing. N Engl J Med 366(10):883

2. Davnall F, Yip CSP, Ljungqvist G, et al. (2012) Assessment of
tumor heterogeneity: an emerging imaging tool for clinical practice?
Insights Imaging. 3(6):573–589

3. Ganeshan B, Miles KA (2013) Quantifying tumour heterogeneity
with CT. Cancer Imaging Off Publ Int Cancer Imaging Soc.
26(13):140–149

4. Armato SG, Li F, Giger ML, et al. (2002) Lung cancer: perfor-
mance of automated lung nodule detection applied to cancers
missed in a CT screening program. Radiology. 225(3):685–692

5. Armato SG, Giger ML, MacMahon H (2001) Automated detection
of lung nodules in CT scans: preliminary results. Med Phys.
28(8):1552–1561

6. Giger ML, Bae KT, MacMahon H (1994) Computerized detection
of pulmonary nodules in computed tomography images. Invest
Radiol. 29(4):459–465

7. Halligan S, Mallett S, Altman DG, et al. (2011) Incremental benefit
of computer-aided detection when used as a second and concurrent
reader of CT colonographic data: multiobserver study. Radiology.
258(2):469–476

8. Lawrence EM, Pickhardt PJ, Kim DH, Robbins JB (2010)
Colorectal polyps: stand-alone performance of computer-aided
detection in a large asymptomatic screening population. Radiology.
256(3):791–798

9. Li J, Van Uitert R, Yao J, et al. (2008) Wavelet method for CT
colonography computer-aided polyp detection. Med Phys.
35(8):3527–3538

10. Gletsos M, Mougiakakou SG, Matsopoulos GK, et al. (2003) A
computer-aided diagnostic system to characterize CT focal liver
lesions: design and optimization of a neural network classifier.
IEEE Trans Inf Technol Biomed Publ IEEE Eng Med Biol Soc.
7(3):153–162

11. Huang Y-L, Chen J-H, Shen W-C (2006) Diagnosis of hepatic tu-
mors with texture analysis in nonenhanced computed tomography
images. Acad Radiol. 13(6):713–720

12. Kido S, Kuriyama K, Higashiyama M, Kasugai T, Kuroda C
(2002) Fractal analysis of small peripheral pulmonary nodules in
thin-section CT: evaluation of the lung-nodule interfaces. J Comput
Assist Tomogr. 26(4):573–578

13. Klein HM, Klose KC, Eisele T, et al. (1993) The diagnosis of focal
liver lesions by the texture analysis of dynamic computed tomo-
grams. ROFO Fortschr Geb Rontgenstr Nuklearmed. 159(1):10–15

14. Way TW, Sahiner B, Chan H-P, et al. (2009) Computer-aided
diagnosis of pulmonary nodules on CT scans: improvement of
classification performance with nodule surface features. Med Phys.
36(7):3086–3098

15. Ganeshan B, Skogen K, Pressney I, Coutroubis D, Miles K (2012)
Tumour heterogeneity in oesophageal cancer assessed by CT tex-
ture analysis: preliminary evidence of an association with tumour
metabolism, stage, and survival. Clin Radiol. 67(2):157–164

16. Ganeshan B, Abaleke S, Young RCD, Chatwin CR, Miles KA
(2010) Texture analysis of non-small cell lung cancer on unen-
hanced computed tomography: initial evidence for a relationship
with tumour glucose metabolism and stage. Cancer Imaging Off
Publ Int Cancer Imaging Soc. 6(10):137–143

17. Ganeshan B, Panayiotou E, Burnand K, Dizdarevic S, Miles K
(2012) Tumour heterogeneity in non-small cell lung carcinoma as-
sessed by CT texture analysis: a potential marker of survival. Eur
Radiol. 22(4):796–802

18. Haider MA, Vosough A, Khalvati F, et al. (2017) CT texture
analysis: a potential tool for prediction of survival in patients with
metastatic clear cell carcinoma treated with sunitinib. Cancer
Imaging. 17:4

19. Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013)
Assessment of primary colorectal cancer heterogeneity by using
whole-tumor texture analysis: contrast-enhanced CT texture as a
biomarker of 5-year survival. Radiology. 266(1):177–184

2700 V. Baliyan et al.: DECT virtual monoenergetic imaging: impact on CT texture analysis



20. Ozkan E, West A, Dedelow JA, et al. (2015) CT gray-level texture
analysis as a quantitative imaging biomarker of epidermal growth
factor receptor mutation status in adenocarcinoma of the lung. Am
J Roentgenol. 205(5):1016–1025

21. Shac Y, Liu L, Wang F, et al. (2008) Quantitative evaluation of
CT-MRI images of various tumors with expansive or infiltrative
growth pattern. Zhonghua Yi Xue Za Zhi. 88(21):1503–1506

22. Win T, Miles KA, Janes SM, et al. (2013) Tumor heterogeneity and
permeability as measured on the CT component of PET/CT predict
survival in patients with non-small cell lung cancer. Clin Cancer
Res Off J Am Assoc Cancer Res. 19(13):3591–3599

23. Hayano K, Tian F, Kambadakone AR, et al. (2015) Texture
analysis of non-contrast enhanced CT for assessing angiogenesis
and survival of soft tissue sarcoma. J Comput Assist Tomogr.
39(4):607–612

24. Goh V, Ganeshan B, Nathan P, et al. (2011) Assessment of re-
sponse to tyrosine kinase inhibitors in metastatic renal cell cancer:
CT texture as a predictive biomarker. Radiology. 261(1):165–171

25. Ahn SJ, Kim JH, Park SJ, Han JK (2016) Prediction of the ther-
apeutic response after FOLFOX and FOLFIRI treatment for pa-
tients with liver metastasis from colorectal cancer using
computerized CT texture analysis. Eur J Radiol. 85(10):1867–1874

26. De Cecco CN, Ganeshan B, Ciolina M, et al. (2015) Texture
analysis as imaging biomarker of tumoral response to neoadjuvant
chemoradiotherapy in rectal cancer patients studied with 3-T
magnetic resonance. Invest Radiol. 50(4):239–245

27. Rao S-X, Lambregts DM, Schnerr RS, et al. (2016) CT texture
analysis in colorectal liver metastases: A better way than size and
volume measurements to assess response to chemotherapy? United
Eur Gastroenterol J. 4(2):257–263

28. Ravanelli M, Farina D, Morassi M, et al. (2013) Texture analysis of
advanced non-small cell lung cancer (NSCLC) on contrast-en-
hanced computed tomography: prediction of the response to the
first-line chemotherapy. Eur Radiol. 23(12):3450–3455

29. Yip SSF, Coroller TP, Sanford NN, et al. (2016) Use of registration-
based contour propagation in texture analysis for esophageal cancer
pathologic response prediction. Phys Med Biol. 61(2):906–922

30. Tian F, Hayano K, Kambadakone AR, Sahani DV (2015) Re-
sponse assessment to neoadjuvant therapy in soft tissue sarcomas:
using CT texture analysis in comparison to tumor size, density, and
perfusion. Abdom Imaging. 40(6):1705–1712

31. Wu J, Gong G, Cui Y, Li R (2016) Intratumor partitioning and
texture analysis of dynamic contrast-enhanced (DCE)-MRI iden-
tifies relevant tumor subregions to predict pathological response of
breast cancer to neoadjuvant chemotherapy. J Magn Reson
Imaging JMRI. 44(5):1107–1115

32. Teruel JR, Heldahl MG, Goa PE, et al. (2014) Dynamic contrast-
enhanced MRI texture analysis for pretreatment prediction of
clinical and pathological response to neoadjuvant chemotherapy in
patients with locally advanced breast cancer. NMR Biomed.
27(8):887–896

33. Michoux N, Van den Broeck S, Lacoste L, et al. (2015) Texture
analysis on MR images helps predicting non-response to NAC in
breast cancer. BMC Cancer. 5(15):574

34. Ahmed A, Gibbs P, Pickles M, Turnbull L (2013) Texture analysis
in assessment and prediction of chemotherapy response in breast
cancer. J Magn Reson Imaging JMRI. 38(1):89–101

35. Parakh A, Baliyan V, Sahani DV (2017) Dual-energy CT in focal
and diffuse liver disease. Curr Radiol Rep. 5(8):35

36. Parakh A, Patino M, Sahani DV. Spectral CT/dual-energy CT. In
Springer Berlin Heidelberg; 2017 [cited 2017 Apr 3]. p. 1–21.
(Medical Radiology). http://link.springer.com.ezp-prod1.hul.
harvard.edu/chapter/10.1007/174_2017_28

37. Patel BN, Alexander L, Allen B, et al. (2017) Dual-energy CT
workflow: multi-institutional consensus on standardization of ab-
dominopelvic MDCT protocols. Abdom Radiol. 42(3):676–687

38. Mileto A, Barina A, Marin D, et al. (2015) Virtual monochromatic
images from dual-energy multidetector CT: variance in CT num-
bers from the same lesion between single-source projection-based
and dual-source image-based implementations. Radiology.
279(1):269–277

39. Ganeshan B, Goh V, Mandeville HC, et al. (2013) Non-small cell
lung cancer: histopathologic correlates for texture parameters at
CT. Radiology. 266(1):326–336

40. Miles KA, Ganeshan B, Hayball MP (2013) CT texture analysis
using the filtration-histogram method: what do the measurements
mean? Cancer Imaging Off Publ Int Cancer Imaging Soc.
13(3):400–406

41. Hsu CC-T, Kwan GNC, Singh D, Pratap J, Watkins TW. Princi-
ples and clinical application of dual-energy computed tomography
in the evaluation of cerebrovascular disease. J Clin Imaging Sci
[Internet]. 2016 Jun 29 [cited 2017 Jun 14];6. : http://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4964665/

42. Kaza RK, Ananthakrishnan L, Kambadakone A, Platt JF (2017)
Update of dual-energy CT applications in the genitourinary tract.
Am J Roentgenol. 208(6):1185–1192

43. Roele ED, Timmer VCML, Vaassen LAA, van Kroonenburgh
AMJL, Postma AA. Dual-energy CT in head and neck imaging.
Curr Radiol Rep [Internet]. 2017 [cited 2017 Jun 14];5(5). http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC5371622/

44. Liguori C, Frauenfelder G, Massaroni C, et al. (2015) Emerging
clinical applications of computed tomography. Med Devices Auckl
NZ. 5(8):265–278

45. De Cecco CN, Boll DT, Bolus DN, et al. (2017) White paper of the
society of computed body tomography and magnetic resonance on
dual-energy CT, part 4: abdominal and pelvic applications.
J Comput Assist Tomogr. 41(1):8–14

46. Ganeshan B, Miles KA, Young RCD, Chatwin CR (2007) In
search of biologic correlates for liver texture on portal-phase CT.
Acad Radiol. 14(9):1058–1068

47. Ganeshan B, Miles KA, Young RCD, Chatwin CR (2009) Texture
analysis in non-contrast enhanced CT: impact of malignancy on
texture in apparently disease-free areas of the liver. Eur J Radiol.
70(1):101–110

48. Miles KA, Ganeshan B, Griffiths MR, Young RCD, Chatwin CR
(2009) Colorectal cancer: texture analysis of portal phase hepatic
CT images as a potential marker of survival. Radiology.
250(2):444–452

49. Agrawal MD, Pinho DF, Kulkarni NM, et al. (2014) Oncologic
applications of dual-energy CT in the abdomen. RadioGraphics.
34(3):589–612

50. Yu L, Leng S, McCollough CH (2012) Dual-energy CT-based
monochromatic imaging. AJR Am J Roentgenol. 199(5 Suppl):S9–
S15

V. Baliyan et al.: DECT virtual monoenergetic imaging: impact on CT texture analysis 2701

http://springerlink.bibliotecabuap.elogim.com.ezp-prod1.hul.harvard.edu/chapter/10.1007/174_2017_28
http://springerlink.bibliotecabuap.elogim.com.ezp-prod1.hul.harvard.edu/chapter/10.1007/174_2017_28
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964665/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4964665/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371622/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5371622/

	Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis
	Abstract
	Purpose
	Methods
	Results
	Conclusion

	Materials and methods
	Patient population
	Imaging technique
	CT texture analysis
	Statistical analysis

	Results
	CT attenuation and monoenergetic image keV level
	CTTA variables and monoenergetic image keV level

	Discussion
	Conclusion
	References




