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Abstract

Tissue stiffness has long been known to be a biomarker
of tissue pathology. Ultrasound elastography measures
tissue mechanical properties by monitoring the response
of tissue to acoustic energy. Different elastographic
techniques have been applied to many different tissues
and diseases. Depending on the pathology, patient-based
factors, and ultrasound operator-based factors, these
techniques vary in accuracy and reliability. In this re-
view, we discuss the physical principles of ultrasound
elastography, discuss differences between different
ultrasound elastographic techniques, and review the
advantages and disadvantages of these techniques in
clinical practice.
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Since time immemorial, physicians have gained insight
into tissue biology through diagnostic palpation, the
physical examination technique by which mechanical
tissue property changes are detected. Changes in tissue
mechanics typically accompany common disease pro-
cesses, including fibrosis, inflammation, and neovascu-
larization. These changes can be assessed with new
advanced ultrasound techniques, termed ultrasound
elastography.

Elastography Physics

Elastography is the set of techniques by which tissue
stiffness is estimated as a physical property termed the
Young’s modulus (E). The Young’s modulus is a pro-
portionality constant that relates applied force per unit

area or stress, and the resultant relative change in tissue
dimension, or strain. Ultrasound elastography methods
may be divided into two categories: quasi-static, or strain
based, and dynamic, or shear wave based.

The nature of the external mechanical stimulus de-
fines these methods. In strain-based elastography, force
is applied by the application of probe pressure or
through endogenous mechanical force (e.g., carotid pul-
sation). In shear wave-based elastography, a tissue shear
wave is induced by the imaging system. In both ap-
proaches, the response of tissue to these mechanical
stimuli is used to estimate tissue mechanical properties.
Strain imaging uses the direct relationship E = r=e
(Hooke’s Law) in which r represents externally applied
stress, and e represents strain [1, 2]. Young’s modulus is
usually not computed with clinical strain imaging sys-
tems, as the applied force on the tissue of interest is
usually not known. Shear wave imaging systems compute
Young’s modulus using the relationship E = 3qcs

2 in
which q represents tissue density, and cs represents shear
wave speed [1, 2]. Most vendors provide automatic cal-
culation systems convert kPa to m/s and m/s to kPa and
most ultrasound systems can display a table that indi-
cates stiffness values both in kPa and m/s.

Strain elastography (SE)

SE measures tissue stiffness by applying external tissue
pressure [3]. Tissue dimensions change due to the applied
pressure; this deformation is termed strain. Stiffer lesions
deform less, and have correspondingly lower strain and
higher Young’s modulus. The strain ratio can be com-
puted as the ratio between strain in a region of tissue and
strain in a reference region of tissue. Computation of the
strain ratio does not require knowledge of the applied
force. For this reason, strain ratio is commonly used in
clinical practice, and is mathematically equivalent to the
Young’s modulus ratio between two tissue regions,
assuming applied force is equivalent across these regions.
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Strain elastography can be further divided into two
groups by the method of tissue excitation (external
manual excitation or excitation with internal physiolog-
ical movement) [1]. Excitation with manual pressure
measures elasticity in superficial tissues. A disadvantage
of this excitation method is that manual stress is not
efficiently transmitted to deeper tissues. Excitation from
natural physiologic motion, such as cardiac pulsation
and respiration, is another mechanism of generating
tissue stress. Deep organs can be assessed with this
method [1]. A variety of strain elastography implemen-
tations are available on clinical ultrasound systems,
including ElaXtoTM, Real-time tissue elastographyTM,
ElastoScanTM, eSie TouchTM, and Elasticity Imaging by
the manufacturers Esaote, Hitachi, GE, Philips, Toshiba,
Ultrasonix, Mindray, Samsung, and Siemens [1, 2]. A
strain image example, in comparison with a conventional
ultrasound image, is indicated in Fig. 1. In Virtual
TouchTM Imaging (VTI), strain elastography is per-
formed with the help of an acoustic push pulse, elimi-
nating the need for an external/internal excitation
method [2].

In strain imaging, tissue displacement is calculated by
processing radiofrequency (RF) datasets obtained before
and after compression [4]. Translucent colored elas-
tograms (strain images) can be superimposed on B-mode
images to provide complementary anatomic information.
It is common to display the strain map as colored pixels

on a red/blue scale or gray scale [5]. Unfortunately,
intermanufacturer display scale variability is substantial,
limiting inter-vendor comparability of strain elastogra-
phy images.

Parameters commonly used in strain elastography
include:

� Strain ratio measures tissue deformation compared
between two regions of interest (ROI). Strain ra-
tio > 1, is an indicator of relatively low strain high
stiffness [2].

� Elasticity scores or grading systems are qualitative
systems that have been used in a wide spectrum of
disease processes, including breast imaging, to assess
lesions [5]. These systems typically classify elastogra-
phy patterns in a range between benign and malignant
[1, 5].

� Fat-to-lesion strain ratio is the strain ratio between fat
and a lesion [6].

� Elastography-to-B-mode size ratio is an index of the
maximum size of a lesion on elastogram to that on a
corresponding B-mode image [7].

Generally, in deep organs such as the liver and kid-
ney, tissue stress is obtained with the help of cardiac/
arterial or respiratory motion. In superficial organs like
the thyroid, tissue stress is obtained with the help of
manual compression. A strain image example of a lesion

Fig. 1. Palpable breast mass from a 24-year-old woman
proven to be a benign fibroadenoma. A conventional
B-mode image on the left, and a map of relative tissue
stiffness in the same region of interest on the right. On the

elastogram, bright areas depict tissue that is less stiff than
tissue in the dark areas. Images were acquired using a L9
probe on a Siemens S2000 US system with manual strain
(Courtesy of Dr. Richard Barr, MD, PhD).
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in comparison with a conventional ultrasound image is
presented in Fig. 1.

Shear wave elastography (SWE)

The compressive acoustic waves used for conventional
B-mode image generation travel at high speeds through
soft tissue (1450–1550 m/s). By contrast, mechanical
shear waves used for shear wave elastography travel
relatively slowly (1–10 m/s). Shear wave propagation
velocity depends on tissue stiffness [2, 4]. In commercially
available shear wave elastography systems, compressive
acoustic waves are used both to induce and track shear
waves. Acoustically induced shear waves travel perpen-
dicular to compressive waves; tissue motion induced by
these shear waves is monitored at multiple locations
along the ultrasound probe, permitting shear wave
velocity estimation [4]. Young’s modulus can be alge-
braically derived from the shear wave speed (SWS).

SWE can be used in many different tissues for a
variety of applications including hepatic lesion charac-
terization [8], renal lesion characterization [9], diffuse
liver and renal disease evaluation [10, 11], breast mass
diagnosis [12, 13], prostate cancer detection [14], thyroid
lesion characterization [15], and tendon imaging [16].

Transient elastography (TE)

A low-frequency (50 Hz) mechanical push is generated
by a mechanical actuator and a resulting shear wave is
generated and evaluated [17, 18]. With this technique,
parameters like anisotropy, viscosity or elastic non-lin-
earity can also be obtained [19]. Shear wave propagation
velocity is proportional to tissue stiffness, which in-
creases with fibrosis [20]. 1D transient elastography is
marketed under the trade name FibroScan�. TE mea-
sures tissue stiffness over a 1 cm diameter–4 cm length
region of tissue, which is 100 times larger than that
evaluated with liver biopsy. If the pulse is not transmitted
and recorded successfully, the software does not provide
a reading [21]. Stiffness values are presented in kPa.
Controlled Attenuation Parameter (CAP), is a technol-
ogy that quantifies hepatic steatosis by measuring the
energy loss as the sound wave passes through the med-
ium. Total attenuation at 3.5 MHz is expressed in dB/m
and steatosis is estimated using the same radiofrequency
data as elastography, in the same location that stiffness is
measured [22] (Fig. 2).

Point shear wave elastography (pSWE)

Focused ultrasound results in focal tissue displacement, a
process termed acoustic radiation force impulse (ARFI)
imaging. The resultant shear waves are tracked, yielding
a shear wave speed estimate that is an algebraic function
of tissue stiffness. Point SWE is available on the Siemens

Virtual TouchTM Quantification (VTQ/ARFI) system
and on the Philips ElastPQTM system [2]. An example of
pSWE application in a phantom is presented in Fig. 3.

2D shear wave elastography

In this technique, acoustic radiation force is used to
displace tissue at multiple points. The resultant shear
wave front is readily detectable with high frame rate
imaging, which is used to monitor propagation of the
shear waves in real time at multiple points in the image
[24]. A quantitative elasticity image (elastogram) is pre-

Fig. 2. Transient elastography acquisition on a phantom. A
Time Motion (TM) mode B Amplitude (A) mode. TM and A
modes are used to locate ideal liver part. C Shear wave
propagation image. y-axis is distance from skin, x-axis is time.
Slope of the dashed line is shear wave speed (Vs) [23]. Tissue
stiffness value is indicated in kPa. In the left panel, controlled
attenuation parameter (CAP) value, which quantifies steatosis
level, is indicated in dB/m.

Fig. 3. pSWE acquisition in a phantom. Green box is the
focus of ARFI excitation. Shear wave speed value is indicated
in left panel.
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sented as a colorized display map, with quantitative re-
sults available as shear wave propagation speed in m/s or
as the algebraically derived Young’s modulus in kPa [25].
Real-time tissue stiffness color maps added to the
B-mode image allows the operator to avoid confounding
anatomic structures such as blood vessels [26]. Maximum
elastogram sizes are 2–3 cm in side length with a linear
probe, and 9 9 4 cm with a convex probe [24]. This
technique is available on multiple ultrasound systems
including Virtual TouchTM Imaging Quantification
(VTIQ/ARFI) by Siemens, Shear Wave Elastography by
Philips, Shear WaveTM Elastography by SuperSonic
Imagine, 2D-SWE by GE Healthcare, and Acoustic
Structure QuantificationTM (ASQ) by Toshiba [2]. An
example of 2D-SWE in a phantom is presented in Fig. 4.

Clinical applications

Liver

Strain elastography

The liver fibrosis index (LFI) [27, 28] has been shown to
be an accurate technique to distinguish fibrosis stages
with AUROC (Area under receiver operating charac-
teristic) values of 0.82 for fibrosis stage F0–1 vs. F2–4
and 0.87 for fibrosis stage F0–3 vs. F4 [27]. Koizumi
et al. reported that a different strain parameter, termed
‘elastic ratio’ (the strain distribution value, intrahepatic
venous small vessels/value in the hepatic parenchyma),
was highly correlated with biopsy-proven fibrosis stage
(Spearman correlation 0.82) with AUROC values to
diagnose F ‡ 2 (0.89), F ‡ 3 (0.94), and F = 4 (0.95)
[29]. SE can also be used to evaluate liver masses, with
significant differences reported between benign and
malignant lesions [30].

Transient elastography

Transient elastography can be used in the diagnosis of
liver fibrosis due to multiple etiological factors including
chronic viral infection and excessive alcohol intake [31–
33]. In a meta-analysis including chronic liver disease
due to multiple etiological factors, TE showed summary
sensitivity and specificity values of 0.79 (95% CI
0.74–0.82) and 0.78 (95% CI 0.72–0.83) for F2 stage and
0.83 (95% CI 0.79–0.86) and 0.89 (95% CI 0.87–0.91)
for cirrhosis [34]. TE does not use B-mode anatomic
imaging to define the tissue from which stiffness infor-
mation is obtained. The operator uses A-Mode US to
define a measurement location away from vascular
structures [2]. Therefore, an operator is not able to se-
lect the same liver region for serial TE measurements
over time. Obtaining reliable acquisitions requires (1) at
least 10 valid measurements, (2) valid measure-
ments/total measurements ratio ‡ 60%, and (3)
interquartile range (IQR) less than 30% of median va-
lue. A short training period is typically required for TE
operators [2, 35]. TE has been shown to be reproducible
with inter-operator intraclass correlation coefficient
(ICC) of 0.98 and intra-operator ICC of 0.98 [36]. CAP
is an integrated technology which can be used simulta-
neously with liver fibrosis quantification in Fibroscan
system. An image example of transient elastography is
depicted in Fig. 5.

pSWE

pSWE can be used in HBV, HCV, hepatic toxicity,
alcoholic liver disease, and autoimmune hepatitis-related
liver fibrosis [37–39]. It can also be used as a screening
tool for early stage fibrosis detection [40], although evi-
dence of benefit in this setting is limited. pSWE has been
shown to be useful in detection of liver fibrosis. In a
recent meta-analysis of 23 studies, Hu et al. reported
AUROC values to distinguish liver fibrosis stages rang-
ing from 0.649 to 0.934 for F ‡ 2, 0.848 to 0.97 for F ‡ 3,
and 0.723 to 0.98 for F4 [41]. Using point SWE technique
on both the liver and spleen has greater discriminative
power than assessment of the liver alone [42]. Setting the
ROI away from the liver capsule is recommended, as this
choice results in more reliable shear wave speed values
[43]. pSWE is a reproducible and reliable liver stiffness
assessment technique, with ICC values of 0.89 (95% CI
0.85–0.92) for intra-observer and 0.85 (95% CI
0.76–0.90) for inter-observer agreement [44]. An image
example of pSWE is demonstrated in Fig. 5.

2D-SWE

2D-SWE is a useful and feasible technique for fibrosis
staging in both pediatric and adult patients [10, 45]. 2D-
SWE has good performance for fibrosis staging. For
example, for the diagnosis of fibrosis stage F ‡ 2,

Fig. 4. 2D-SWE acquisition in a phantom. Blue box denotes
elastographic field of view (FOV) and circle decodes region of
interest. Tissue stiffness in kPa is indicated at the bottom of
the image. The color scale can be adjusted by the user. Blue
areas are less stiff than red areas.
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AUROC of 0.862 has been reported, and for early cir-
rhosis diagnosis, AUROC of 0.926 has been reported
[46]. Using a cut-off value 7.29 kPa, this technique
reaches a sensitivity of 95.4% for fibrosis stage ‡ 2 [47].
Although the diagnostic ability of the techniques is
similar, shear wave speed values obtained from 2D-SWE
may show higher stiffness values [48]. An image example
of 2D-SWE is depicted in Fig. 5.

Kidney

Strain elastography

Chronic kidney disease (CKD) patients have been re-
ported to show higher strain index (ratio) values when
compared to healthy volunteers [49]. SE can also be used
to detect renal graft interstitial fibrosis, a manifestation
of organ rejection as a long-term complication of renal
transplantation. Early diagnosis of graft fibrosis may
play a useful role in treatment decisions concerning
immunosuppressive agents [50].

pSWE

Renal fibrosis and diabetic renal disease can be evalu-
ated with pSWE techniques. pSWE can detect renal
fibrosis with a sensitivity of 86.3% and specificity of
83.3% [51]. Yu et al. reported a correlation of 0.773
between urinary albumin-to-creatinine ratio (diabetic
kidney disease marker) and shear wave speed deter-
mined by VTQ, implying pSWE may serve as a marker
for diabetic kidney disease [52]. Renal pSWE has been
shown to be moderately reliable with intraclass corre-
lation coefficient (ICC) values of 0.71 in the right kid-
ney and 0.69 in the left kidney [53]. Age and gender can
influence the SWS measurements acquired from the
kidney [54, 55].

2D-SWE

2D-SWE can be used to diagnose chronic kidney disease.
CKD patients show higher stiffness values [9.4 kPa]

when compared with healthy volunteers [4.4 kPa] [11].
2D-SWE can also be used in the diagnosis of diabetic
kidney disease (DKD). Hassan et al. reported a signifi-
cant difference in cortical stiffness values of DKD pa-
tients and healthy subjects (23.7 kPa vs. 9.02).
Furthermore, significant differences between CKD
grades have been reported [56]. An image example of 2D-
SWE in renal tissue is demonstrated in Fig. 6.

Breast

Strain elastography

Several strain elastography features have been proposed,
including strain ratio, elasticity score (Tsukuba score),
and elastography-to-B-mode size ratio [57]. In a meta-
analysis with 25 studies focusing on elasticity score and
strain ratio, overall mean sensitivity and specificity val-
ues to diagnose malignant breast lesions were reported
as 0.834 (95% CI 0.814–0.853) and 0.842 (95% CI

Fig. 5. Liver elastography image examples: (1) 2D-SWE
acquisition of liver with Supersonic Aixplorer. Color-coded
elastogram with color scale on right top. SWE values are
indicated below the scale. (2) pSWE acquisition of liver with

Siemens ACUSON S3000. ARFI-induced technique mea-
sures SWS in the center area. (3) Transient Elastography
measurement example with Fibroscan.

Fig. 6. 2D-SWE image of kidney. Mean stiffness is 10.4 kPa
for this patient, likely reflecting elevated renal stiffness due to
CKD-related fibrosis [11].
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0.829–0.854), respectively, for elasticity score and 0.883
(95% CI 0.844–0.916) and 0.814 (95% CI 0.786–0.839)
respectively, for strain ratio [58]. Furthermore, tumor
grade may also be distinguished using an elasticity
imaging/B-mode ratio [59]. It has been shown that the
addition of strain elastography to a conventional
gray scale ultrasound-based classification sys-
tem—Breast Imaging Reporting and Data System (BI-
RADS)—yields an AUROC of 0.875 for cancer detec-
tion with the ability to characterize lesions < 2 cm [60].
Breast lesion size prediction has been reported to be
more accurate on elastographic images than conven-
tional gray scale images when compared with the refer-
ence standard of the surgical excision specimen [61].

pSWE

Li et al. reported the diagnostic performance of pSWE to
differentiate malignant and benign lesions in a meta-
analysis of 11 studies, finding an overall sensitivity of
0.84 (95% CI 0.81–0.87) and specificity of 0.94 (95% CI
0.91–0.94) [62]. 2D-SWE and pSWE had similar perfor-
mance to detect malignancy in breast tissue. In a differ-
ent meta-analysis of 9 studies comparing 2D-SWE and
pSWE, overall sensitivity and specificity values were re-
ported as 0.91 (95% CI 0.88–0.94) and 0.82 (95% CI
0.75–0.87) for 2D-SWE and 0.89 (95% CI 0.81–0.94) and
0.91 (95% CI 0.84–0.95) for pSWE, respectively [63].

2D-SWE

2D-SWE is useful for differentiating benign and malig-
nant breast lesions with reported AUROC values rang-
ing from 0.74 to 0.98 [64]. The addition of 2D-SWE to
conventional B-mode ultrasound can improve diagnostic
performance by reducing the need for follow-up exams of
patients with BI-RADS 3 breast lesions [61].

Prostate

Conventional screening and diagnostic methods for
prostate evaluation include Prostate-Specific antigen
(PSA) assessment, digital rectal exam (DRE), and tran-
srectal ultrasound (TRUS)-guided biopsy. However, the
limited capacity of these techniques to accurately localize
prostate cancer has led to the emergence of elastography
as a tumor localization technique [65]. Elastographic
techniques can be used to assess both benign prostatic
hyperplasia (BPH) and prostate cancer (PC).

Strain elastography

In strain elastography, images are obtained with slight
transrectal manual compression. An inflatable endorec-
tal balloon may be used to generate endorectal prostate
elastography images [61]. Although SE-guided prostate
biopsy shows higher sensitivity when compared to con-

ventional gray scale US-guided biopsy to detect prostate
cancer (60.8% vs. 15%, respectively), only relying on SE
results is not recommended [66]. Strain elastography has
been shown to have a sensitivity of 58.8% and specificity
of 43.3% to identify the prostate cancer index lesion (the
main lesion responsible for possible metastasis) [61, 67].
An image example of strain elastography for prostate
cancer diagnosis is shown in Fig. 7.

pSWE

In pSWE, malignancy shows higher SWS values than
BPH and normal prostate tissue(2.37, 1.98, and 1.34 m/s,
respectively) [68]. pSWE can be used to differentiate
BPH and malignancy with an AUROC value of 0.86.
SWS differences between the transition and peripheral
zones of the prostate are possible in both BPH and
cancer. When compared to DRE, pSWE shows higher
diagnostic accuracy to detect malignancy, with AUROC
value of 0.86 (vs. 0.67 for DRE) [68].

2D-SWE

2D-SWE has been shown to be useful for differentiating
benign and malignant lesions in the peripheral zone [69].
Using a cut-off stiffness value of 35 kPa to differentiate
benign and malignant lesions yields sensitivity and
specificity values of 96% and 85%, respectively [70]. 2D-
SWE is a reproducible technique with ICC value of 0.876
[71]. In a recent meta-analysis with 7 studies, Sang et al.
reported pooled sensitivity and specificity values of 0.844
(95% CI 0.69–0.92) and 0.86 (95% CI 0.79–0.908)
(AUROC value of 0.91) to differentiate malignant
prostate lesions [72]. A different research group, Woo
et al., reported similar results in their recent meta-anal-
ysis with 8 studies, pooled sensitivity value of 0.83 (95%
CI 0.66–0.92), and specificity value of 0.85 (95% CI
0.78–0.9) [73]. 2D-SWE can also be used to assess BPH.
Unlike most prostate malignancies, BPH develops from
the transition zone of the prostate. Stiffness values of the
transition zone can be measured via transrectal elastog-
raphy. 2D-SWE can diagnose BPH with an AUROC
value of 0.826 (95% CI 0.717–0.934) [74].

Thyroid

Strain elastography

Strain elastography requires external manual compres-
sion or physiological motion such as carotid pulsation
[75]. The reported sensitivity of different strain imaging
features for diagnosis of thyroid carcinoma ranges from
82% to 100%, with specificity ranging from 81.1% to
100% [76]. Although most studies indicate higher accu-
racy for thyroid cancer detection with strain elastogra-
phy than conventional gray scale US, there is presently
insufficient agreement among research groups regarding
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diagnostic criteria, and elastography is thought to be
insensitive to some malignant tumor types [61, 76–78].

pSWE

Malignant thyroid nodules show higher SWS values
when compared to benign nodules, either with pSWE or
2D-SWE [61]. pSWE can differentiate benign and

malignant thyroid nodules. In a meta-analysis with 16
studies, pSWE has been reported to have an overall
AUROC value of 0.91 [79]. In the assessment of diffuse
chronic thyroid disease, pSWE is also useful to differ-
entiate subjects with Graves’ disease and autoimmune
thyroiditis from healthy subjects [80]. However, this is
based on preliminary results and more studies are nee-
ded.

2D-SWE

2D-SWE is an effective technique to diagnose thyroid
malignancies with AUROC values of 0.73 in nod-
ules < 10 mm, 0.88 in nodules 11–30 mm, and 0.82 in
nodules > 30 mm [81]. 2D-SWE has also been shown to
potentially be able to differentiate benign and malignant
follicular thyroid nodules, a clinically relevant finding
that cannot be accomplished with FNA [15]. Figure 8
depicts 2D-SWE of normal thyroid tissue. Use of elas-
tographic methods in combination with B-mode ultra-
sound is recommended [82]. Addition of CEUS can also
increase diagnostic performance [83].

Pancreas

Either strain or shear wave elastography can be used in
the evaluation of the pancreas. Strain elastography is

Fig. 7. Transrectal strain image of prostate with distribution
of tissue deformation as a colorized map. Blue represents
relatively hard tissue and red represents relatively soft tissue.

Real-time display of applied compression measured
by a force sensor is depicted in the lower part of the
image.

Fig. 9. Summary and classification of elastography tech-
niques.
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performed by using an endoscopic ultrasound system, in
which aortic pulsation is used as the excitation meth-
od. Strain elastography with endoscopic ultrasound is
limited by invasiveness, inadequate quality of images
from the head and tail of the pancreas, and atheroscle-
rotic changes that can affect aortic pulse excitation.
Despite these limitations strain elastography has been
used in a number of research studies to assess malignancy
and pancreatic parenchymal disease [84].

Strain elastography

In a recent study of 149 patients, Rustemovic et al.
proposed a strain ratio cut-off value of 7.59 to distin-
guish malignancies[100% sensitivity, 95% specificity] [85].
However, previous studies reported different results,
which may be caused by the operator dependence of
endoscopic ultrasound [84]. In a large mixed study
population with 555 subjects that included healthy sub-
jects, patients with chronic pancreatitis and patients with
pancreatic cancer, Kim et al. reported mean strain ratio
values of 3.78, 8.21, and 21.8, respectively. Sensitivity
and specificity to distinguish malignancy were similar as
Rustemovic et al.’s results [95.6% and 96.3%, respec-
tively, cut-off 8.86] [86]. In their study with 191 patients
with chronic pancreatitis, Iglesias-Garcia et al. reported
sensitivity and specificity values of 91.2% and 91%, to
detect chronic pancreatitis [AUROC value of 0.949],
which are higher than Kim et al.’s values [87].

pSWE

pSWE can be used with cutaneous approach and it can
detect stiffness differences between a lesion and back-
ground pancreatic parenchyma [88]. D’Onofrio et al.
reported significant differences between SWS values ob-
tained in adenocarcinoma and normal pancreatic par-
enchyma [89]. Patients with chronic pancreatitis may
show higher stiffness values with pSWE when compared
to healthy controls [4.3 vs. 2.8 kPa] [90]. Current
knowledge of pancreatic elastography is limited to strain
elastography and pSWE. Studies comparing elastogra-
phy methods in the diagnosis of pancreatic masses and
parenchymal diseases are also limited [91].

Spleen

Portal hypertension and increased hepatic venous pres-
sure gradient (HVPG) are indicators of end-stage chronic
liver disease, with increased risk of variceal bleeding,
ascites variceal bleeding, ascites, and hepatic
encephalopathy which increase mortality rates [2].
Accurate and fast detection of portal hypertension an-
d esophageal varices, is critical to prevent complications,
in which elastography techniques may fulfill this need.
As mentioned above, strain elastography needs an exci-
tation/pressure method. The spleen is in a relatively deep
subcostal location, limiting utility of strain elastography
for splenic assessment [61].

Fig. 9. Summary and classification of elastography techniques.
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Transient elastography

Transient elastography probe can be performed in the
spleen in a similar manner to the liver. It is known that
TE can successfully detect stiffness of spleen in patients
with cirrhosis, which correlates with HVPG which can be
predictive for esophageal varices. Spleen stiffness value

3.3 m/s has been proposed as a cut-off value to rule out
esophageal varices; however, more studies are needed
[92]. In studies comparing TE application in liver and
spleen to diagnose portal hypertension, diagnostic per-
formance of liver TE in liver was reported to be higher
than splenic TE (AUROC’s 0.95 vs. 0.85, respectively)
[2]. Use of transient elastography in combination with

Fig. 11. Limitations of elastography techniques.

Fig. 10. Strong features of elastography techniques.
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conventional ultrasound may help operators to locate the
most reliable location [61].

pSWE

pSWE has also been studied in cirrhotic patients. To
diagnose clinically significant portal hypertension,
pSWE technique was reported to have an AUROC of
0.943 and to detect presence of esophageal var-
ices, pSWE technique was reported to have AUROC of
0.933 [93, 94]. Recently, research groups reported studies
with 2D-SWE to predict esophageal varices and portal
hypertension [95–97]. Elkrief et al. evaluated the per-
formance of TE and 2D-SWE to detect portal hyper-
tension by measuring liver stiffness and spleen stiffness,
and reported higher AUROC value for liver stiffness
measurements when compared to spleen stiffness(0.87 vs.
0.64). They also reported superior technical success rate
of 2D-SWE when compared to TE, in assessment of liver
and spleen stiffness [97]. Although proposed cut-off
values of elastography methods to detect portal hyper-
tension or esophageal varices through evaluation of
spleen stiffness are similar, more studies are needed to
verify these cut-off values.

In this brief review, we have discussed general prin-
ciples of different elastography technologies and clinical
applications of these methods. Summary and classifica-
tion of all elastographic techniques are indicated in
Fig. 9 [10, 11, 15, 16, 27, 31–33, 37–39, 49, 51, 57, 62, 64,
66, 68, 69, 76, 79, 89, 98]. Strong features and limitations
of these techniques are summarized in Figs. 10 and 11 [2,
36, 61, 92, 99–107].

Conclusion

Ultrasound elastography comprises a set of techniques
that non-invasively measure tissue stiffness. Use of these
techniques has blossomed with recognition that many
disease processes affect tissue stiffness, providing a new
imaging target for assessment of disease biology. In this
review, we have provided a brief introduction to the
physical concepts that underpin ultrasound elastogra-
phy, and have discussed several different commercially
available ultrasound elastography systems with evidence
of their efficacy in different biologic settings. With the
help of guidelines, meta-analysis reports, and studies
with large study populations, various cut-off values are
determined. However, there may be differences between
measurements with different ultrasound systems. Re-
searchers and clinicians should liaise with manufacturers
regarding their proposed cut-off values for specific elas-
tography applications.
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