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Abstract

Background: Computed tomography (CT) has been
increasingly used to quantify abdominal muscle and fat
in clinical research studies, and multiple studies have
shown importance of body composition in predicting
clinical outcome. The purpose of study is to compare
newly developed semi-automated software (BodyComp-
Slicer) to commercially available validated software
(Slice-O-Matic) for CT body composition analysis.
Methods: CT scans of abdomen at L3 level in 30 patients
were analyzed by two reviewers and using two softwares
(BodyCompSlicer and Slice-O-Matic). Body composition
analysis using BodyCompSlicer was semi-automated.
The program automatically segmented subcutaneous fat
(SF), skeletal muscle (SM), and visceral fat (VF) areas.
Reviewers manually corrected the segmentation using
computer–mouse interface as necessary. Body composi-
tion analysis using Slice-O-Matic was performed by
manually segmenting each area using computer-mouse
interface (brush tool). After segmentation, SM, SF, and
VF areas were calculated using CT attenuation thresh-
olds. Inter-observer and inter-software variability of
measurements were analyzed using intraclass correlation
coefficients (ICC) and coefficient of variation (COV).
Results: Inter-observer ICC and COV using Body-
CompSlicer were 0.997 and 1.5% for SM, 1.000 and
0.8% for SF, and 1.000 and 1.0% for VF, whereas those
using Slice-O-Matic were 0.993 and 2.5% for SM, 0.995
and 3.1% for SF, and 0.999 and 2.3% for VF. Inter-
software ICCs and COV were 0.995–0.995 and 2.0–2.1%

for SM, 0.991–0.994 and 3.4–3.9% for SF, and
0.998–0.998 and 2.8–3.3% for VF. Time to analyze 30
cases was 70–100 min and 150–180 min using Body-
CompSlicer and Slice-O-Matic, respectively.
Conclusion: BodyCompSlicer is comparable to Slice-O-
Matic for CT body composition analysis.
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Computed tomography (CT) has been increasingly used
to quantify abdominal muscle and fat in clinical research
studies, and multiple studies have shown importance of
body composition in predicting clinical outcome. Low
skeletal muscle mass, which, in its severe form, is de-
scribed as sarcopenia has been shown to be associated
with adverse oncologic, surgical, and overall survival
outcomes in multiple malignancies in the gastrointestinal
tract, genitourinary tract, breast, and skin [1–10] as well
as in non-malignant conditions [11]. Increased visceral
fat has been associated with numerous metabolic aber-
rations including insulin resistance, type 2 diabetes mel-
litus, hypertension, hyperlipidemia, and low-grade
inflammatory conditions such as non-alcoholic steato-
hepatitis and Barrett’s esophagus [12–16].

There are several commercially available software
packages that quantify abdominal fat using CT. How-
ever, to our knowledge, there are only a few programs
available that can quantify skeletal muscle in the abdo-
men using CT including the Slice-O-Matic [1, 17, 18] and
ImageJ-based software [19]. In particular, body compo-
sition measurement using Slice-O-Matic has been vali-Correspondence to: Naoki Takahashi; email: takahashi.naoki@-

mayo.edu

ª Springer Science+Business Media New York 2017

Published online: 7 April 2017Abdominal
Radiology

Abdom Radiol (2017) 42:2369–2375

DOI: 10.1007/s00261-017-1123-6

http://orcid.org/0000-0002-7946-6078
http://crossmark.crossref.org/dialog/?doi=10.1007/s00261-017-1123-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00261-017-1123-6&amp;domain=pdf


dated against DEXA scans as well as body impedance
absorptiometry, with excellent performance [18]. The
software applications segment the muscle and fat from
internal organs using human inputs from a mouse–
computer interface without use of automated segmenta-
tion. This approach overcomes the difficulty in separat-
ing muscle and visceral fat from internal organs (such as
bowel, liver, kidneys) by automated segmentation, but it
introduces the potential for low inter-reader reliability
and limits the scalability of the software.

We recently developed software entitled Body-
CompSlicer, which automatically segments a single-slice
CT image at the third lumbar (L3) level into subcuta-
neous fat, skeletal muscle, and visceral fat compart-
ments. The software is written in Matlab (Matlab 2015b,
MathWorks, Natick, MA) language. The software runs
multiple sequential morphological operations including
attenuation thresholding with prior knowledge of loca-
tion, size, and shape of different structures. While the
software automatically segments muscle and fat, the
boundaries can be manually fine-tuned with modification
of the automatically segmented boundaries using a
mouse–computer interface.

The purpose of the study is to compare the body
composition measurements analyzed using the Body-
CompSlicer and the commercially available and vali-
dated Slice-O-Matic program.

Materials and methods

Patient population

433 patients with renal cell carcinoma (RCC) or bladder
carcinoma (TCC) who underwent preoperative CT were
included in the study. These cases were selected from 592
patients (387 with RCC and 205 with TCC) who were
previously included in different studies [4, 20] by
excluding patients with chronologically most remote CT
studies (154 with RCC and 5 with TCC). 400 cases (200
cases each from RCC and TCC cohort) were used as a
calibration set, three cases as a training set (RCC co-
hort), and remaining 30 cases (most recent cases from
RCC cohort) as a validation set. The patients in the
validation set included 20 males and 10 females with a
mean age of 73 years (range 43–86). Mean weight,
height, and body mass index were 79 kg (range 42-118),
1.70 m (range 1.38–1.88), and 27.2 (range 17.9–34.5),
respectively.

CT Protocol and image analysis

CT scans of the abdomen were obtained as part of pre-
operative evaluation of renal cell carcinoma or bladder
carcinoma. Slice thickness ranged from 2.5 to 7.0 mm
with a median of 5 mm. One radiologist (MRM) selected
a CT image at the L3 level (transverse process) on a
workstation, and the image was saved in the Digital

Imaging and Communications in Medicine (DICOM)
format. The DICOM images were transferred to a per-
sonal computer for image analysis. Two reviewers (SPP,
MS) analyzed the CT images using BodyCompSlicer and
Slice-O-Matic (version 5.0; TomoVision, Quebec, Cana-
da) at separate time-points, blinded to the results of the
analysis by the alternate methodologies [18, 21, 22].

Each reviewer had extensive experience using one of
the two software packages analyzing over 400 cases (in-
cluding all cases in the calibration set), but had not used
the other software (reviewer 1 had used Slice-O-Matic,
reviewer 2 had used BodyCompSlicer). First, each re-
viewer received training from the other reviewer using
the training set cases (n = 3). The training session was
approximately 1 h long in total. During the training
session, each reviewer agreed upon the definition of the
boundaries of the compartments.

Next, calibration set cases (n = 400) were evaluated
using each software. Reviewer 1 used Slice-O-Matic and
reviewer 2 used BodyCompSlicer. The data were used to
calibrate the BodyCompSlicer to minimize the systematic
difference in the measurements between the two software
packages. Finally, CT images of 30 cases (validation set)
were evaluated by each reviewer first using Slice-O-Matic
and then using BodyCompSlicer. Each session evaluating
validation set was completed in one sitting. The time to
complete 30 cases was recorded for each session.

BodyCompSlicer protocol

Once the CT image was loaded into the software, the
software automatically calculated and placed three
boundary lines between external air and subcutaneous
fat (boundary 1), between subcutaneous fat and
abdominal wall/ paraspinal muscles (boundary 2), and
between abdominal wall/paraspinal muscles and visceral
fat (boundary 3) (Fig. 1A). The reviewers carefully in-
spected the boundaries, and manually corrected the
boundaries using the mouse–computer interface as nec-
essary (Fig. 1B). When the correction of all boundaries
was complete, the software calculated the skeletal muscle
area, subcutaneous fat area, and visceral fat area (cm2).
Skeletal muscle area was calculated as area containing
pixels between boundary 2 and 3, and having CT
attenuation value of -30 to 150 HU, but excluding the
spine. Subcutaneous fat area was calculated as area
containing pixels between the boundary 1 and 3, and
having CT attenuation value of -190 to -30 HU. For
the purpose of the study, fat in the skeletal muscle
compartment was considered as part of subcutaneous
fat. Visceral fat area was calculated as area containing
pixels within the boundary 3, and having CT attenuation
value of -150 to -30 HU, but excluding bowel content.
The software automatically created masks for bone and
colonic content; these masks were used to exclude bone
and colonic content from being included as muscle or fat
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(Table 1). Once segmentation of all patients is com-
pleted, body composition data are exported in a tabular
format (Fig. 2).

Slice-O-Matic Protocol

Once the CT image was loaded into the software, the
reviewer manually segmented subcutaneous fat area,
visceral fat area, and skeletal muscle area using a mouse-
operated paint brush tool method. Threshold for pixel
selection was first set to -190 to -30 HU for subcuta-
neous and intramuscular fat, -150 to -30 HU for vis-
ceral fat, and -29 to 150 HU for skeletal muscle. Using a

mouse-operated paint brush tool, the areas of interest
(fat or skeletal muscle) were selected. The software
automatically selected the pixels that meet the attenua-
tion threshold along the path of the paint brush tool. The
procedure was repeated until the structure of interest was
selected completely. If the segmented area extended be-
yond the structure of interest, manual correction using
mouse-operated eraser tool was performed. Once the
segmentation is complete, the software calculated the
skeletal muscle area, subcutaneous fat area, and visceral
fat area (cm2).

Analysis of calibration set data and fine tuning
of BodyCompSlicer

The skeletal muscle area, subcutaneous fat area, and
visceral fat area of the entire calibration set (n = 400)
from both software programs were compared to identify
systematic difference in the measurements. The Body-
CompSlicer draws boundary lines between two different
structures of interest (fat, muscle, or air). The pixels on
the boundary lines were included in the compartment
inside the line at the default setting. These settings were
adjusted for each boundary to minimize the systematic
difference in the measurements.

Analysis of validation set data

The body composition measurements for the validation
set were calculated using the method determined by the
analysis of calibration set. The inter-software and inter-
observer variability of skeletal muscle area, subcutaneous
fat area, and visceral fat area measurements were ana-
lyzed using intraclass correlation coefficients (ICC),
coefficient of variation, and Bland–Altman analysis. For
the Bland–Altman analysis, the mean difference and
mean percentage difference in measurements and 95%
limits of agreement (1.96 9 SD of mean difference) were
calculated. The difference between the two software
packages was defined as measurement using Slice-O-
Matic subtracted by measurement using Body-
CompSlicer. Statistical analysis was performed using
Matlab software.

Accuracy of automated segmentation

The Dice similarity indices, level of similarity between
the segmented areas and the reference, were calculated
for the areas inside the automatically calculated bound-
aries 1, 2, and 3 by BodyCompSlicer without manual
correction with the manually corrected boundaries as
Ref. [23]. The Dice similarity index of 1 indicates perfect
match of the segmented areas and the reference, whereas
0 indicates no overlap between the two. All data analyses
were performed by a single investigator (BC).

Fig. 1. Axial CT image of abdomen at third lumbar level. The
BodyCompSlicer automatically segmented CT image into
subcutaneous fat, skeletal muscle, and visceral fat compart-
ments, and the boundaries are displayed (lines are thickened
for ease of visualization) (A). The boundaries after manual
correction (arrows) (B).
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Results

Calibration set

The mean percentage difference in the measurements of
the skeletal muscle area, subcutaneous fat area, and
visceral fat area were -2.7%, 0.6%, and 3.3%, respec-
tively, between the two software packages at the default
settings. The BodyCompSlicer had a tendency to

underestimate the skeletal muscle area and overestimate
visceral fat. To minimize these biases, the boundary 2
was shifted by 1 pixel outward and the boundary 3 was
shifted by 1 pixel inward for the calculation of the body
composition. After the adjustment, the mean percentage
differences in the measurements of the skeletal muscle
area, subcutaneous fat area, and visceral fat area were
0.0%, 2.7%, and 0.9%, respectively.

Table 1. Boundaries, compartments, and main contents

Boundaries Compartments Main contents and
attenuation thresholds

External air—subcutaneous fat
Subcutaneous Subcutaneous fat

(-190 to -30 HU)
Dermis (>-30 HU)

Subcutaneous fat—abdominal
wall or paraspinal muscle

Muscle Abdominal wall and
paraspinal muscle
(-30 to 150 HU)

Intermuscular fat (-190 to -30 HU), spine, and
spinal canal (>150 HU and bone mask)

Abdominal wall or paraspinal
muscle—visceral fat

Visceral Visceral fat
(-150 to -30 HU)

Solid organs (>-30 HU) and hollow organs
(>30 HU or <-150 HU and colon mask)

# Intermuscular fat is included as subcutaneous fat

Fig. 2. Example of body composition report.
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Validation set

The mean skeletal muscle area, subcutaneous fat area,
and visceral fat area measurements for each reviewer and
software using the validation set are summarized in Ta-
ble 2. ICC, Bland–Altman analysis, and coefficient of
variation between the two software packages and two
reviewers are summarized in Table 3.

Inter-observer ICCs using the BodyCompSlicer was
0.997 for skeletal muscle area, 1.000 for subcutaneous fat
area, and 1.000 for visceral fat area. The coefficient of
variation of two reviewers using the BodyCompSlicer
was 1.5% for skeletal muscle area, 0.8% for subcutaneous
fat area, and 1.0% for visceral fat area. The 95% limit of
agreement of two reviewers using the BodyCompSlicer
was 6.2 cm2 and 4.1% for skeletal muscle area, 4.4 cm2

and 2.6% for subcutaneous fat area, and 4.3 cm2 and
6.2% for visceral fat area.

Inter-software ICCs were 0.995 for skeletal muscle
area, 0.991–0.994 for subcutaneous fat area, and 0.998
for visceral fat area. The coefficient of variation of two
software packages was 2.0%–2.1% for skeletal muscle
area, 3.4%–3.9% for subcutaneous fat area, and 2.8%–
3.3% for visceral fat area. The 95% limit of agreement of
two software packages was 8.1–8.6 cm2 and 6.8%–7.1%
for skeletal muscle area, 8.8–15.0 cm2 and 4.2%–6.7% for
subcutaneous fat area, and 11.8–14.2 cm2 and 8.7–15.0%
for visceral fat area. The systematic differences in the
area measurements between the two software packages

were negligible for skeletal muscle area and visceral fat
area. The mean subcutaneous fat area was 4.9–9.4 cm2

and 3.0%–5.2% higher using BodyCompSlicer compared
to Slice-O-Matic.

The time to analyze 30 cases was 100 min (3.3 min/-
case) and 70 min (2.3 min/case) using the Body-
CompSlicer for reviewer 1 and 2, respectively, and
150 min (5.0 min/case) and 180 min (6.0 min/case) using
the Slice-O-Matic for reviewer 1 and 2, respectively.

Accuracy of Automated Segmentation

Dice similarity indices for areas within boundary 1, 2,
and 3 were 1.000 [1.000–1.000], 0.990 [0.959–1.00], and
0.978 [0.801–0.997] (median, [5 percentile, 95 percentile]),
respectively.

Discussion

This present study showed that inter-observer agreement
using the BodyCompSlicer was very high and inter-
software agreement between the BodyCompSlicer and
Slice-O-Matic was comparable to the inter-observer
agreement of the Slice-O-Matic. These results suggest
that the accuracy and reproducibility of the Body-
CompSlicer is at least comparable to the Slice-O-Matic.

The previously reported inter-observer coefficient of
variation ranged from 2% to 5% for abdominal skeletal
muscle area and 0.4-2.5% for subcutaneous fat or vis-

Table 2. Body composition measurements (mean) in validation dataset

Skeletal muscle area Subcutaneous fat areaa Visceral fat area

Reviewer 1 Reviewer 2 Reviewer 1 Reviewer 2 Reviewer 1 Reviewer 2

BodyCompSlicer (cm2) 146.3 146.2 192.0 192.2 153.9 153.7
Slice-O-Matic (cm2) 145.8 147.2 187.1 182.8 155.9 154.9

a Intermuscular fat is included as subcutaneous fat

Table 3. Inter-observer and inter-software variability in validation dataset

Skeletal muscle
area

Subcutaneous fat
areaa

Visceral fat area

Inter-observer (BodyCompSlicer) ICC* 0.997 1.000 1.000
Coefficient of variation 1.5% 0.8% 1.0%
Limit of agreement (cm2/%) 6.2 4.1% 4.4 2.6% 4.3 6.2%
Mean difference (cm2/%) 0.0 0.1% -0.2 -0.1% 0.2 0.0%

Inter-observer (Slice-O-Matic) ICC 0.993 0.995 0.999
Coefficient of variation 2.5% 3.1% 2.3%
Limit of agreement (cm2/%) 9.9 8.3% 13.7 5.6% 10.1 11.2%
Mean difference (cm2/%) -1.4 -1.2% 4.3 2.2% 1.0 1.1%

Inter-software (Reviewer 1) ICC 0.995 0.994 0.998
Coefficient of variation 2.0% 3.4% 2.8%
Limit of agreement (cm2/%) 8.1 6.8% 15.0 6.7% 11.8 8.7%
Mean difference (cm2/%) -0.5 -0.9% -4.9 -3.0% 1.9 1.6%

Inter-software (Reviewer 2) ICC 0.995 0.991 0.998
Coefficient of variation 2.1% 3.9% 3.3%
Limit of agreement (cm2/%) 8.6 7.1% 8.8 4.2% 14.2 15.0%
Mean difference (cm2/%) 0.9 0.4% -9.4 -5.2% 1.2 0.5%
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ceral fat areas [24–26], and intra-observer coefficient of
variation was 0.3% (using same slice) or 1.3-1.6% (using
two consecutive slices) for abdominal skeletal muscle
area [1, 17, 18]. The inter-observer coefficient of varia-
tion in our study is comparable to the previous reports.

High inter-observer agreement does not guarantee the
accuracy of measurements. When automated segmenta-
tion is used without any manual correction, the inter-
observer coefficient of variation and limit of agreement
are theoretically zero (perfect agreement). Therefore, we
assessed the agreement between inter-software agreement
between BodyCompSlicer and the Slice-O-Matic. The
inter-software agreement was comparable to the inter-
observer agreement using Slice-O-Matic alone.

The BodyCompSlicer has integrated the automated
masking of bone and colonic contents. Part of the bone
may have soft tissue attenuation (-30 to 150HU), and
could be erroneously categorized as skeletal muscle
without masking. Similarly, spinal canal has soft tissue
attenuation and could be erroneously categorized as
skeletal muscle without masking. Intracolonic air may
have fat attenuation (-150 to -30HU) when mixed with
fluid. A previous study demonstrated that colonic air
resulted in overestimation of visceral fat area by 20%
when masking was not used [27].

In the calibration set, the skeletal muscle area was
underestimated by 2.8% using the default setting of the
BodyCompSlicer compared to Slice-O-Matic. This is
likely from the difference in segmentation methods. The
BodyCompSlicer draws smooth, curved, or straight
boundary lines based on CT attenuation and other fac-
tors. On the other hand, the segmentation by Slice-O-
Matic is strictly based on CT attenuation values. By
enlarging the skeletal muscle compartment by 1 pixel
both at inner and outer boundaries, the underestimation
of skeletal muscle was nearly completely corrected. The
inter-software mean percentage difference was 0.2% in
the calibration set after adjustment and -0.9% to 0.4% in
the validation set after the adjustment.

The major advantage of the BodyCompSlicer is the
use of automated segmentation and reduction in time to
evaluate cases. The time to analyze 30 cases was 70 and
100 min for experienced and inexperienced reviewer
using the BodyCompSlicer compared to 150 and 180 min
using the Slice-O-Matic. The automated segmentation is
not perfect, and the BodyCompSlicer almost always re-
quired some degree of manual correction. This is par-
ticularly true for the boundary between skeletal muscle
and visceral fat compartments (boundary 3). The pres-
ence of internal organs abutting the abdominal wall
muscle and complex contour of the paraspinal muscles
makes automated segmentation more difficult. The Dice
similarity index was lowest for the boundary 3 with a
median value of 0.978. The major disadvantage of the
BodyCompSlicer is that it cannot handle CT images at
different anatomical locations such as thigh. This is be-

cause the software automatically segments the different
compartments using prior knowledge of location, size,
and shape of different structures. In addition, MR ima-
ges cannot be analyzed.

In conclusion, the body composition measurements
obtained using the BodyCompSlicer are comparable to
those obtained using the Slice-O-Matic.
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