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&p.1:Abstract. In this paper a clustering technique is pro-
posed for attenuation correction (AC) in positron emis-
sion tomography (PET). The method is unsupervised
and adaptive with respect to counting statistics in the
transmission (TR) images. The technique allows the
classification of pre- or post-injection TR images into
main tissue components in terms of attenuation coeffi-
cients. The classified TR images are then forward pro-
jected to generate new TR sinograms to be used for AC
in the reconstruction of the corresponding emission
(EM) data. The technique has been tested on phantoms
and clinical data of brain, heart and whole-body PET
studies. The method allows: (a) reduction of noise prop-
agation from TR into EM images, (b) reduction of TR
scanning to a few minutes (3 min) with maintenance of
the quantitative accuracy (within 6%) of longer acquisi-
tion scans (15–20 min), (c) reduction of the radiation
dose to the patient, (d) performance of quantitative
whole-body studies.

&kwd:Key words: Attenuation correction – Clustering tech-
nique – Position emission tomography
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Introduction

Attenuation of annihilation photons in the patient’s body
is commonly compensated in positron emission tomog-
raphy (PET) by transmission (TR) measurements of at-
tenuation correction (AC) factors, using an external ra-
dioactive source. AC factors are calculated as the pixel
by pixel ratio of a blank scan, acquired before position-
ing the patient in the scanner field of view, and a TR
scan performed with the patient in position. AC is ob-

tained by multiplying the emission (EM) sinogram of the
radioactivity distribution and the resulting sinogram of
AC factors. A drawback recognised in the measured AC
technique is the propagation of the statistical noise, pres-
ent in the TR data, into the EM images, reducing PET
quantitative accuracy [1–3]. For this reason, TR scans
have to be acquired for a length of time sufficient to en-
able the collection of enough counts to limit the statisti-
cal noise in the TR data. Depending on the radioactivity
present in the external source and on the dimension and
composition of the body under investigation, TR scans
usually last for 15–30 min. On the other hand, an acqui-
sition time as short as possible would be desirable, given
that TR and EM scans have to be perfectly aligned to al-
low accurate AC and the patient has to be motionless
during the whole PET study. In particular, a short TR ac-
quisition time is mandatory when repeated PET scans at
multiple bed positions are acquired to cover an extended
part of the body as in whole-body studies, which are cur-
rently performed without AC.

Several methods have been proposed with the aim of
improving measured AC, reducing the time for the ac-
quisition of TR scans and of the PET study [4–22].
While measured AC based on post-injection TR acquisi-
tions, performed either simultaneously [4–7] or immedi-
ately after [8–14] the EM scan, is effective in avoiding
or reducing the problem of TR/EM misalignment, it
does not bring about an improvement in terms of the sta-
tistical noise in TR images. A promising approach con-
sists in performing TR measurements by a single-photon
instead of the coincidence acquisition technique, allow-
ing high statistics TR data to be collected within a short
acquisition time (a few minutes) [15]. Unfortunately, as
the use of single-photon sources causes high dead-time
problems and requires specially designed hardware, this
technique cannot be straightforwardly implemented on
every PET scanner. A different approach is to apply off-
line image processing methods to short TR scans, in or-
der to reduce statistical noise. Various techniques have
been proposed. In particular, Xu et al. [17] suggest the
use of an automatic thresholding method for the segmen-
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tation of short TR images into two classes: soft tissue
(including bones) and lungs (including patient couch).
Within the two thresholded regions the average value of
the attenuation coefficient is calculated and then as-
signed to each segmented region. Meikle et al. [20] have
proposed a modification of the aforementioned method:
three components (air, lung and soft tissue) are identified
in the TR data by fitting the histogram of the attenuation
values with gaussian functions and assigning each pixel
to a specific component by a maximum likelihood rule.
In the technique suggested by Tai et al. [21], the con-
tours of the lungs and of the external body are identified
on TR and EM images respectively. Two classes are re-
cognised accordingly (lungs and soft tissue) and the av-
erage attenuation coefficient is assigned to each seg-
mented region. A two step procedure has been proposed
by Xu et al. [22]: (a) an optimal thresholding technique
is applied for an initial classification of the TR images
into two classes, to which a fixed attenuation coefficient
is assigned (0.095 cm–1 for the soft tissue and
0.035 cm–1 for the lungs); (b) intermediate values of the
attenuation coefficients are then assigned by re-inserting
the original values with different weights for the two
segmented classes.

In this work, we propose a clustering method for the
classification of TR images into the main tissue compo-
nents with the aim of reducing noise in very short
TR scans. The main characteristics of this technique
with respect to the previous image processing methods
are:
1. It is unsupervised with respect to the number of clus-

ters and their centroid values (no a priori assumption
is made).

2. It is adaptive with respect to the statistical noise in the
TR images.

3. It is adaptive with respect to the body regions under
evaluation (head, body).

Clustering technique

Technique and its implementation

The clustering technique considered in this work has
been proposed for general image processing applications
by G. Beni and X. Liu as a new least biased fuzzy clus-
tering method [23].

The basic and only assumption of the method is that
“the centroids have no bias towards any of the data
points”. This assumption can be mathematically de-
scribed as:

(1)

where: i = index for the data point, N = number of data
points in the image, xi = data point and pi(xi, c) = cluster-
ing membership. Probability for the centroid c to cluster
the data point xi.

The clustering membership pi(xi, c) is normalised to 1
over all the data points in the image. pi(xi, c) can be ex-
pressed as:

(2)

where: D(xi, c) = distance function between xi and c, β =
scale parameter and j = index for the data point.

Considering Eqs. 1 and 2, one can obtain:

(3)

Equation 3 can be iteratively solved as:

(4)

where: n = iteration number.
The method is unsupervised, making no assumption

with regard to the number of clusters or their centroid
values. The technique uses an iterative procedure and
produces different classification results by using differ-
ent values for the scale parameter β. As stated by Beni
and Liu, “convergence to a same fixed point it is not
guaranteed by starting from an arbitrary location. How-
ever, by choosing the initial location to coincide with a
data point, the convergence is unambiguous for a given
resolution parameter β used”.

In this work the technique was implemented and
adapted for use in for the classification of PET TR data
in a clinical environment. Characteristics of this imple-
mentation with respect to the original one are as fol-
lows:

– the scale parameter β is calculated using an empiri-
cal formulation which relates the parameter β to the
count statistics in the TR data for each image section
(see section “Adaptive behaviour of the clustering tech-
nique”)

– all calculations are performed on a histogram base
and not on a cluster (pixel) base. Using the histogram
approach, Eq. 1 and Eq. 3 can be rewritten as:

(5)
and

(6)

where: k = index for the grey level, l = index for the grey
level, H = number of grey levels, h(k) = number of data
points with the grey level k, c = cluster centre and
p(k,c) = probability for the centroid c to cluster the data
point with grey level k.
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– search for the cluster centres is performed by solv-
ing Eq. 6 using a graphical method associated with the
iterative approach.

Using the graphical method the solutions of Eq. 6 are
found searching for symmetries in the grey level histo-
gram of the TR image with respect to each bin of the
histogram itself. Data partitioning is then obtained by re-
lating each cluster to a centroid, described as an actrac-
tor point for that cluster. Graphically the solutions of
Eq. 6 can be represented by the points at the intersection
between the straight line represented by y = c and the
curve described by the function at the right side of Eq. 6.
The actractor centroids are located in transitions from
negative to positive (moving from left to right) of the
difference between the straight line and the function,
while transitions from positive to negative represent re-
pulsive or separation points between classes (Fig. 1). For
all the transitions which include an actractor, in order to
define the centroid position, the iterative procedure is
started from the one of the two points closer to the tran-
sition. Convergence is accepted when the distance be-
tween the centroid position at two consecutive iterations
is less than 10–4. Critical points where the solution is not
clearly represented by the intersection between the
straight line and the function (e.g. tangent) are solved
using a “distance approach”: if the distance between the
line and the function is less than 10–4, then the point is
accepted as solution for Eq. 6.

Figure 1 graphically shows how each data point is as-
signed to a specific centroid (see arrows).

Data processing – from raw to classified TR sinograms

Classification of PET TR images and generation of clas-
sified TR sinograms is performed according to the fol-
lowing procedure:
1. Normalisation of blank and TR sinograms to account

for non-uniformity in detector response.

2. Filtering of blank and TR sinograms (row by row)
using a monodimensional gaussian function (full-
width at half maximum, FWHM =8 mm).

3. Calculation of the natural log of the pixel by pixel
ratio between blank and TR sinograms.

4. Reconstruction of TR images on 128×128 image ma-
trices using a filtered back-projection algorithm with
Hanning filter (cut-off: 0.5 cycles/pixel). The recon-
structed TR images represent in each pixel the linear
attenuation coefficient (µ) expressed in cm–1.

5. Removal of the head holder or bed in the recon-
structed TR images by reading (in the file header)
the absolute spatial position where the acquisition
was performed and then using a predefined mask re-
gion to set to zero all the pixels within the mask.

6. Removal of the background noise, typical of filtered
back-projection reconstruction algorithms, using a
“cleaning” algorithm, which scans each TR image
row by row and column by column along the x and y
directions from both sides from outside towards the
centre of the matrix. When the intensity of a pixel is
lower than a predefined threshold value (µ =
0.035 cm–1), it is set to zero. When a pixel with inten-
sity equal to or higher than the threshold is found, the
edge of the object is recognised and scanning for that
row or column is stopped. The choice of the threshold
value was based on the analysis of the background
level in very short TR scans (maximum background
value increases from ≈0.005 cm–1 to ≈0.030 cm–1 for
TR scanning times from 5 to 1 min respectively).

7. Generation of the histogram of “grey levels”. The at-
tenuation coefficient represented in each pixel of the
reconstructed TR image is multiplied by 103 and
then ordered in a histogram with a bin step of 1.

8. Classification of the TR images using the clustering
algorithm with a selected β value.

9. Filtering of the classified TR images by convolution
with a gaussian function (FWHM = 4 mm). Filtering
was applied to remove sharp transitions between dif-
ferent regions possibly occurring in the classified im-
ages and to degrade classified TR images to the ef-
fective system spatial resolution.

10. Re-insertion of the head holder (or bed) in the pro-
cessed TR images in the proper position. A high
count statistics TR image of the head holder (or bed),
acquired once, is used instead of the original as
noise-free reference data.

11. Forward projection and pixel by pixel exponentiation
of the resulting matrix. The resulting sinogram is a
classified TR sinogram of AC factors to be used for
AC of the corresponding EM data.

PET scanner

The PET tomograph used in this study was the GE-Ad-
vance scanner (General Electric Medical System, Mil-
waukee, Wis.). The system consists in 12096 bismuth
germanate (BGO) crystals organised in 18 rings. The
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Fig. 1. Classification technique: graphical representation of the
cluster identification&/fig.c:
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crystals have dimensions of 4.0 mm transaxially, 8.1 mm
axially and 30 mm radially. A detection unit (block) con-
sists of 6×6 crystals, coupled to two double photomulti-
pliers. The 18 crystal rings allows 35 two-dimensional
(2D) images to be obtained, spaced by 4.25 mm, cover-
ing an axial field of view of 15.2 cm. The system has
tungsten septa 1 mm thick and 12 cm long. The septa,
which define the image planes in 2D scanning mode, can
be automatically retracted to allow radiation detection in
three-dimensional (3D) scanning mode. TR data can be
recorded using a pair of germanium-68 pin sources,
which can be automatically positioned in the scanner
field of view and rotated around the longitudinal axis of
the scanner. At the time of this work the activity in the
two pin TR sources was ~6.8 mCi (251.6 MBq)/pin. For
each PET study a blank scan of 45 min was acquired.

Phantom studies: 
set up of the classification technique

Data acquisition

The anthropomorphic phantom Rando Anderson [24]
was used to evaluate the classification technique. TR
scans of 60, 30, 15, 5 and 3 min were acquired for the
chest and the head regions respectively.

Data analysis

TR data were processed and reconstructed according to
the clustering procedure described above, in the section
“Data processing – from raw to classified TR sino-
grams”. As in this case the analysis is performed only on
TR images, steps 10 and 11 were not applied. β values
of 3.0, 2.5, 2.0, 1.5, 1.0, 0.8, 0.6 and 0.4 were used for
the classification of TR images.

Classified TR images and high statistics 60-min un-
classified TR images (assumed as reference) were analy-
sed as follows: Irregular regions of interest (ROIs) were
drawn in the main anatomical regions of both chest (soft
tissue and lungs) and head (brain tissue and skull) TR
studies. Mean values of attenuation coefficients µ and
standard deviations (SD), representative of the image
noise, were calculated for each set of ROIs (soft tissue,
lungs, bone etc.).

Results

Two representative slices of the Rando phantom (at the
level of the chest and the abdomen) for the original and
the classified TR studies (using different β values) are
shown in Fig. 2. It can be observed that the use of “high”
β values (e.g. >1.0) results in classified images very sim-
ilar to the original ones; in particular for β = 2 the imag-
es are almost identical. This correspond to generate a

relatively high number of classes, meaning, in the spatial
domain, that “small” details and transitions between re-
gions with different µ can be preserved in the processed
TR images, although without complete removal of the
original noise. “Low” β values (e.g. <1.0) are more ef-
fective in removing noise, but with loss of “small” de-
tails in the classified images (in particular near the inter-
faces between liver and lungs) and generation of sharp
transitions between regions with different µ, correspond-
ing to a few well-defined main classes. Figure 3 shows,
as an example, the different behaviour of the algorithm
in terms of number of classes found during the classifi-
cation of a TR image using a “high” (1.5) and a “low”
(0.8) β value.

This qualitative visual assessment of the performance
of the clustering procedure is confirmed by the ROI
analysis. Mean µ values and SD calculated in the main
anatomical regions are reported in Tables 1 and 2 for the
chest and brain regions respectively. As a result of the
algorithm behaviour, mean µ values and SD for β = 2
also can be considered as representative for the original
TR images. In the chest region, differences within 2%,
in terms of mean µ value, were obtained in soft tissue
over all the classification configurations considered with
respect to the 60-min unprocessed TR images (reference
data). A maximum error of 4% was found in the lung
tissue for short acquisition scans (<5 min) and for a low
β value (0.4). In the head region, while the algorithm
performs well in the soft tissue, a problem is recognised
in its capability to differentiate the skull from the brain
tissue. Errors of up to 8.6% (β = 0.4) were found in this
case.

Adaptive behaviour of the clustering technique

The results described in the preceding section suggested
that the clustering technique should be modified in order
to:
– Improve the classification technique to make it adap-
tive with respect to the body region (two-step procedure
for the head)
– Improve the classification technique to make it adap-
tive with respect to count statistics in TR data.

Steps 1–7 and 9–11 of the procedure described in the
section “Data processing – from raw to classified TR
sinograms” in section 2.2 were unchanged, while step 8
was modified and split into two steps (8a and 8b), as de-
scribed below:

Step 8a.Before the application of the classification tech-
nique the maximum linear dimension (MLD) of the ob-
ject (in the x direction) is calculated in each TR image.
The MLD is used to differentiate the head from other
body regions.
– Head region: identification and classification.

The first head section is recognised where the MLD
is greater than 1 pixel and less than 60 pixels (pixel
size = 4.3 mm). Subsequent sections which verify the
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a

b

Fig. 2. aRando phantom (chest
region). Unprocessed (first col-
umn) and classified TR images
as a function of the acquisition
time (60, 30, 15, 5, 3 min – from
top to bottom) and β values used
for the classification (β = 2.0,
1.0, 0.8, 0.4 from the second
column, left to right). b Rando
phantom (abdomen region). Un-
processed (first column) and
classified TR images as a func-
tion of the acquisition time (60,
30, 15, 5, 3 min – from top to
bottom) and β values used for
the classification (β = 2.0, 1.0,
0.8, 0.4 from the second col-
umn, left to right) &/fig.c:

Fig. 3. Rando phantom (chest re-
gion). Original (broken line) and
classified (solid line) histograms ob-
tained using β = 0.8 (left), β = 1.5
(right) &/fig.c:
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same condition are included in the head region. No more
than 35 consecutive slices are accepted as the head re-
gion. Once the head region has been defined, a first raw
classification is performed using a β value of 0.4.

As a second step, the edge of the head and the sharp µ
transitions (e.g. the nose cavity) are recognised using a
window mask (7×7 pixels). Every time not all the pixels
in the window have the same µ, the µ value of the corre-
sponding central pixel in the unprocessed data is stored
in a new image. At the end, two subimages of the head
are generated (Fig. 4). A second classification is per-
formed on these two subimages using an optimised β
value as described in the next step (8b). The two classi-

fied subimages are then merged to yield a single final
classified image.
– Other body regions: identification and classification.
All the slices where the MLD is greater than 60 pixels.
As for the head, a first raw classification is performed
using a low β value of 0.4. A second classification is
then performed using an optimised β value as described
in the next step (8b).

Step 8b:β selection.An empirical formulation was im-
plemented to allow an adaptive behaviour of the algo-
rithm with respect to the count statistics in the TR data.
Following the first classification, all the pixels that have

Table 1.Rando phantom (chest region): Mean values and (SD) of the attenuation coefficients (cm–1×1000) as calculated for ROIs drawn
in the soft tissue and lung as a function of the acquisition time (Acq-T, min) and the β values used in the classification of the TR images.
Reference values were calculated from the unprocessed high statistics (60-min) TR images&/tbl.c:&tbl.b:

Acq-T β=3 β=2.5 β=2.0 β=1.5 β=1.0 β=0.8 β=0.6 β=0.4
(min)

Soft tissue

60 90.4 (2.3) 90.3 (1.9) 90.4 (1.0) 90.5 (0.4) 90.6 (0.1) 90.5 (0.1) 90.3 (0.0) 89.9 (0.0)
30 90.5 (2.9) 90.2 (2.5) 90.1 (1.7) 90.2 (0.5) 90.2 (0.2) 90.2 (0.1) 90.1 (0.0) 89.9 (0.0)
15 90.6 (3.9) 90.6 (3.7) 90.1 (2.7) 90.2 (1.2) 90.1 (0.2) 90.2 (0.1) 90.0 (0.0) 89.8 (0.0)
5 91.2 (6.5) 91.2 (6.4) 90.6 (6.0) 90.5 (5.2) 89.9 (1.2) 89.6 (0.5) 89.5 (0.2) 89.3 (0.1)
3 91.6 (8.6) 91.5 (8.5) 91.3 (8.3) 90.7 (7.0) 89.8 (2.6) 89.5 (1.3) 89.0 (0.7) 88.9 (0.6)

Lung

60 29.3 (2.3) 29.4 (2.0) 29.5 (1.4) 29.4 (0.5) 29.4 (0.1) 29.5 (0.0) 29.6 (0.0) 29.8 (0.0)
30 29.2 (3.0) 29.4 (2.7) 29.7 (1.9) 29.5 (1.2) 29.2 (0.2) 29.3 (0.0) 29.8 (0.0) 29.8 (0.0)
15 29.4 (3.8) 29.5 (3.6) 29.9 (2.9) 30.2 (1.2) 30.1 (0.3) 30.1 (0.0) 30.1 (0.0) 30.2 (0.0)
5 29.7 (6.2) 29.7 (6.0) 29.8 (5.9) 30.2 (4.8) 30.4 (2.2) 30.5 (0.9) 30.6 (0.3) 30.6 (0.0)
3 29.6 (7.9) 29.6 (7.6) 29.7 (7.5) 29.7 (7.1) 29.8 (4.8) 30.3 (3.2) 30.3 (2.0) 29.8 (0.0)

Reference value for soft tissue: 90.6 (2.6)
Reference value for lung: 29.4 (2.7)&/tbl.b:

Table 2. Rando phantom (head region): Mean values and (SD) of the attenuation coefficients (cm–1×1000) as calculated for ROIs drawn
in the skull and soft tissue as a function of the acquisition time (Acq-T, min) and the β values used in the classification of the TR images.
Reference values were calculated from the unprocessed high statistics (60-min) TR images&/tbl.c:&tbl.b:

Acq-T β=3 β=2.5 β=2.0 β=1.5 β=1.0 β=0.8 β=0.6 β=0.4
(min)

Skull

60 100.7 (4.2) 100.3 (4.0) 99.0 (3.9) 94.6 (1.8) 93.3 (0.3) 92.8 (0.2) 92.7 (0.0) 92.7 (0.0)
30 100.8 (4.5) 100.6 (4.5) 99.2 (4.1) 93.5 (1.4) 93.0 (0.3) 92.9 (0.2) 92.7 (0.1) 92.7 (0.0)
15 100.8 (5.5) 100.6 (5.4) 99.8 (5.0) 96.1 (2.8) 93.3 (0.3) 93.2 (0.2) 93.3 (0.1) 93.3 (0.0)
5 100.9 (6.2) 100.8 (6.1) 100.3 (5.8) 98.2 (3.7) 94.0 (1.2) 94.0 (0.3) 94.0 (0.0) 93.8 (0.0)
3 101.5 (7.9) 101.5 (7.9) 101.2 (7.6) 99.7 (6.4) 96.3 (1.6) 95.4 (0.5) 95.3 (0.2) 94.8 (0.0)

Soft tissue

60 91.6 (1.7) 91.7 (1.3) 91.8 (0.5) 91.9 (0.1) 92.0 (0.0) 92.1 (0.0) 92.2 (0.0) 92.2 (0.0)
30 91.6 (2.6) 91.8 (2.0) 92.2 (0.9) 92.2 (0.2) 92.3 (0.0) 92.4 (0.0) 92.4 (0.0) 92.3 (0.0)
15 91.7 (4.6) 91.8 (4.3) 92.2 (3.3) 92.2 (1.8) 92.5 (0.0) 92.7 (0.0) 92.7 (0.0) 92.8 (0.0)
5 92.0 (6.2) 91.7 (1.3) 92.3 (5.4) 92.7 (3.3) 93.0 (0.9) 92.9 (0.4) 92.9 (0.2) 93.0 (0.0)
3 92.8 (8.2) 92.8 (8.1) 92.8 (7.7) 92.9 (6.4) 93.9 (2.6) 94.1 (0.6) 94.5 (0.0) 94.2 (0.0)

Reference value for skull: 101.5 (4.4)
Reference value for soft tissue: 91.4 (2.2)&/tbl.b:



been classified as soft tissue are sampled from the origi-
nal data (before classification) and the resulting histo-
gram is fitted with a gaussian function. The SD of this
gaussian function is used to estimate the β value to be
used in the classification.

Considering Eq. 5, the term which mainly controls
the degree to which the choice of a centre c is affected
by the surrounding points is (k–c) exp(–β|k–c|), which
can be seen as a function f(i) = i exp(–β|i|).

The function f(i), which is odd, acts on the histogram
as a window which selects the histogram range beyond
which the contribution to the sum is practically negligi-
ble. Based on this, β is imposed so that f(i) goes to zero
after 2SD:

2SDexp(–β|2SD|)=ε, (7)

with ε=10–6.

In this way, the parameter β can be related to the SD
of the noise as follows:

(8)

Results using the adaptive procedure

Table 3 summarises the results (in terms of µ values and
SD) obtained using the two-step procedure for the head
region of the Rando phantom. A representative image
(original and classified) of the Rando phantom (head)
obtained using the two-step procedure is shown in
Fig. 5. The two-step procedure allows a more accurate
classification to be obtained, in particular for the skull,
where the maximum error is reduced to 5.2%.

The β values calculated for the Rando phantom data
using the adaptive procedure are reported in Table 4. It
can be observed that adaptive β values decrease account-
ing for count statistics in TR data. Using these β values,
as can be extrapolated from Table 1 for chest and Ta-
ble 3 for brain, classification errors are within maximum
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Fig. 4. Rando phantom (head region). Two unprocessed subimag-
es (skull and soft tissue) as resulting from the two-step procedure
used for the classification of the head&/fig.c:

Table 3. Rando phantom (head region): Mean values and (SD) of the attenuation coefficients (cm–1×1000) as calculated, using the two-
step procedure, for ROIs drawn in the skull and soft tissue as a function of the acquisition time (Acq-T, min), and the β values used in the
classification of the TR images using teh two-step procedure. Reference values were calculated from the unprocessed high statistics (60-
min) TR images&/tbl.c:&tbl.b:

Acq-T β=3 β=2.5 β=2.0 β=1.5 β=1.0 β=0.8 β=0.6 β=0.4
(min)

Skull

60 100.7 (4.2) 100.3 (3.9) 99.9 (3.5) 99.5 (2.9) 99.2 (2.0) 98.7 (1.3) 98.1 (1.0) 98.1 (1.0)
30 100.8 (4.5) 100.6 (4.3) 100.1 (4.1) 99.2 (3.6) 98.6 (2.5) 98.3 (2.1) 98.2 (1.8) 97.9 (1.5)
15 100.7 (5.5 100.7 (5.5) 100.5 (5.2) 99.6 (4.3) 97.9 (2.4) 98.1 (1.9) 97.9 (1.4) 97.6 (1.1)
5 100.9 (6.3) 100.3 (3.9) 100.7 (6.0) 99.7 (5.1) 98.3 (2.9) 97.9 (2.3) 97.8 (1.6) 97.6 (1.3)
3 101.5 (7.9) 101.5 (7.9) 101.4 (7.7) 100.8 (7.1) 98.6 (5.1) 96.8 (3.3) 96.6 (2.4) 96.5 (1.4)

Soft tissue

60 91.6 (1.7) 91.7 (1.3) 91.8 (0.5) 91.9 (0.1) 92.0 (0.0) 92.1 (0.0) 92.2 (0.0) 92.2 (0.0)
30 91.6 (2.6) 91.8 (2.0) 92.2 (0.9) 92.2 (0.2) 92.3 (0.0) 92.4 (0.0) 92.4 (0.0) 92.3 (0.0)
15 100.7 (5.5) 100.7 (5.5) 100.5 (5.2) 99.6 (4.3) 97.9 (2.4) 98.1 (1.9) 97.9 (1.4) 97.6 (1.1)
15 91.7 (4.6) 91.8 (4.3) 92.2 (3.3) 92.2 (1.8) 92.5 (0.0) 92.7 (0.0) 92.7 (0.0) 92.8 (0.0)
5 92.0 (6.2) 91.7 (1.3) 92.3 (5.4) 92.7 (3.3) 93.0 (0.9) 92.9 (0.4) 92.9 (0.2) 93.0 (0.0)
3 92.8 (8.2) 92.8 (8.1) 92.8 (7.7) 92.9 (6.4) 93.9 (2.6) 94.1 (0.6) 94.5 (0.0) 94.2 (0.0)

Reference value for skull: 101.5 (4.4)
Reference value for soft tissue: 91.4 (2.2)&/tbl.b:

β ε= − ln .2
1

2SD SDe j

Table 4. Rando phantom: mean β values calculated as a function
of the noise (SD) in the 35 TR images&/tbl.c:&tbl.b:

Acquisition β β
time (min) chest region head region

60 2.2 2.5
30 1.8 2.0
15 1.4 1.3
5 0.8 1.1
3 0.7 0.9

&/tbl.b:
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values found with the non-adaptive procedure and noise
(SD) is less than or comparable to noise in the reference
(60 min) unprocessed TR images.

Human studies

Data acquisition

In order to assess the efficacy of the clustering technique
in clinical applications, two brain, two heart and two
whole-body fluorine-18 fluorodeoxyglucose ([18F]FDG
PET studies were considered.

For the brain studies, the acquisition protocol was as
follows:
– Two subsequent TR scans (12 min and 3 min) were re-
corded. Summed together they produce a 15 min TR
scan as in the standard clinical protocol.
– 10-min EM scan, acquired 45 min after the tracer in-
jection (100 µCi/kg body weight).

For the heart studies, the acquisition protocol was as
in the brain studies but two TR scans, 17 min and 3 min
long, were recorded (summed to produce a 20-min scan
as in clinical protocols).

The two whole-body studies consisted of five and
seven adjacent EM scans respectively (5 min/bed posi-
tion, from the head to the feet) performed 1 h after tracer
administration. After the EM scans, a 3-min post-injec-
tion TR scan (PJ-TR) was performed for each of the five
and seven bed positions.

Data analysis

Brain and heart studies were corrected for attenuation
using:

a) Summed unclassified TR data (reference data)
b) “Short” (3-min) TR data classified according to the
optimised procedure described in the section “Adaptive
behaviour of the clustering technique”.

Whole-body studies were reconstructed without AC
and with AC using the classified PJ-TR data. EM data
were reconstructed using an EM-ML algorithm (20 iter-
ations) [25].

Circular ROIs (two pixels in diameter) were drawn on
the reconstructed EM images in areas of clinical rele-
vance (cortical and subcortical regions for brain, myo-
cardial wall for heart) over several image planes and av-
erage counts/pixel were calculated for each ROI. %Mean
difference (signed, %MDS and absolute, %MDA) be-
tween ROI values obtained in the EM images corrected
for attenuation using the unclassified reference (UR) and
classified 3-min (CL) TR data were calculated as:

(9)

(10)

Profiles through the TR images were drawn to compare
edges in the unprocessed and classified TR images and
to evaluate the effect of clustering on preserving the edg-
es.

Corrected and uncorrected whole-body studies were
qualitatively evaluated by visual inspection by an expert
physician.

Results

Brain studies. &p.1:Four representative TR and EM images of
a brain PET study are shown in Fig. 6a and b. %MDS

Fig. 5. Rando phantom (head re-
gion). Unprocessed (first col-
umn) and classified TR images
as a function of the acquisition
time (60, 30, 15, 5, 3 min – from
top to bottom) and β values used
for the classification (β = 2.0,
1.0, 0.8, 0.4 from the second
column, left to right). Classifica-
tion was performed using the
two-step procedure&/fig.c:

%MDs = −
∑
=

( )
,

UR CL
UR
i i

ii

NROIs

1
100

%MDA = −
∑
=

UR CL
UR
i i

ii

NROIs

1
100.



and %MDA were –1.2% and 2.5% for the first brain
study, and 3.1% and 3.5% for the second.

Heart studies. &p.1:Four representative TR and EM images of
two heart PET studies are shown in Fig. 7a and b.
%MDS and %MDA were –4.6 and 5.8% for the first
heart study, and –4.5% and 6.0% for the second. The

profiles drawn through an unprocessed and a classified
TR images are shown in Fig. 7c. As can be seen, the
metric and the edges of the original data are well pre-
served in the classified TR image.

Whole-body studies. &p.1:In Fig. 8 transaxial, coronal and
sagittal images of a whole-body study reconstructed
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a

b

Fig. 6. aFour representative un-
processed (15 min, top row,
3 min, bottom row) and classi-
fied (3 min, central row) TR im-
ages of a brain PET study. b
Four representative EM images
of a PET brain study. The EM
images were reconstructed using
for AC the unprocessed (15 min,
top row) and the classified
(3 min, bottom row) TR data&/fig.c:
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a

b

c

Fig. 7. aFour representative
unprocessed (20 min, top row,
3 min, bottom row) and classi-
fied (3 min, central row) TR
images of a heart PET study. b
Four representative EM images
of a PET heart study. The EM
images were reconstructed us-
ing for AC the unprocessed
(20 min, top row) and the clas-
sified (3 min, bottom row) TR
data. c Profiles drawn through
a representative TR image (un-
processed, left; classified,
right) of two heart studies&/fig.c:



without and with AC are shown. Uncorrected images
show an apparent reduction of the tracer uptake in the
deep part of the body due to photon attenuation. AC im-
ages show a better definition of the body anatomy
(lungs, mediastinum, liver, kidney), allowing easier loca-
tion of high metabolic activity. Metastatic lesions in the
spine are more clearly identified in the AC images. Dis-
tortions of the image in regions of particularly high up-
take are compensated by AC.

Discussion

In this paper a clustering technique for attenuation cor-
rection in PET is proposed. The method allows the clas-
sification of TR images into the main anatomical regions
of the body in terms of corresponding µ values.

A distinguishing feature of the method with respect to
other classification techniques proposed in the literature
is that the number of classes and their centroids are auto-
matically determined with no a priori assumption. The
method accounts for the count statistics in TR images by
automatically setting a scale parameter β. Furthermore
the method is adaptive with respect to the body regions
under classification (head, body).

In order to make the method fully automatic, two pa-
rameters were empirically determined and fixed: the
threshold for background removal and the maximum lin-
ear distance, MLD.
– A threshold value of 0.035 cm–1 was fixed for a gener-
al use of the technique: (a) to be conservative with re-
spect to background level in different noise conditions,
and (b) to be low with respect to attenuation coefficients

in the body (0.095 cm–1 in soft tissue and ≈0.125 cm–1

in the skull), thus not affecting recognition of body edg-
es. In the case of a specific acquisition protocol, fine
tuning of the threshold parameter can be done and the
new value easily implemented.
– The MLD parameter was fixed considering the appli-
cation of the classification technique to adult subjects. It
can be easily changed in the case of paediatric studies.

The method has been implemented in an efficient
way (graphical method and histogram approach) to
speed up the research of the cluster centres and the data
association, which represent the computational core of
the classification technique. The program was written in
C and runs on a SUN Sparc station 20. Computational
time for the classification technique is ≈1 min for 35 TR
images.

The classification technique was validated:
a) On TR data of an anthropomorphic phantom in terms
of attenuation coefficient and noise level. The method
proved to be accurate within 5% in classifying tissue
components in both the head and the thorax. In this
study, the accuracy of the technique was not assessed in
terms of absolute radioactivity concentration, to avoid
potential bias due to other physical effects (e.g. ran-
doms, scatter, partial volume effect).
b) On [18F]FDG clinical studies, by comparing EM im-
ages corrected for attenuation by classified and unpro-
cessed reference TR data. Differences were within 6%.

Limitations of the classification method were found
for very low β values, usually determined when the
count statistics of TR data is very poor. Few classes are
then recognised by the algorithm and “small” details and
smooth transitions between regions with different atten-
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Fig. 8. Sagittal, coronal and
transverse EM images of a
whole-body study reconstruct-
ed without AC (top) and with
AC (bottom) using the classi-
fied PJ-TR data&/fig.c:
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uation coefficients can be lost. In particular, this situa-
tion can occur at the end regions of the interfaces be-
tween liver and lungs. A comparison of the classified
with the original TR images can be useful to recognise
these local classification errors, which might produce
spatially correspondent errors in the reconstructed EM
images.

In conclusion, this work indicates that short TR scans
(down to 3 min for normal activity in the TR pin sourc-
es) can be accurately classified and used for improving
measured AC in PET. The method proposed is fast and
unsupervised, and is thus particularly feasible for appli-
cations in a PET clinical environment.
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