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&p.1:Abstract. The iodine-123 labelled selective ligand N-(3-
iodoprop-2E-enyl)-2-β-carbomethoxy-3β-(4-methylphe-
nyl)nortropane ([123I]PE2I) was evaluated as a probe for
in vivo dopamine transporter imaging in the human
brain. Six healthy subjects were imaged with a high-res-
olution single-photon emission tomography scanner.
Striatal radioactivity peaked at 1 h after injection. The
background radioactivity was low. The volume of distri-
bution in the striatum was 94±24 ml/ml. The results
were compared with those of [123I]β-CIT imaging. There
was no significant uptake of [123I]PE2I in serotonin-rich
regions such as the midbrain, hypothalamus and anterior
gingulus, suggesting that in vivo binding is specific for
the dopamine transporter. One main polar metabolite of
[123I]PE2I was found in plasma, and the parent plasma
concentration decayed rapidly. Radiation exposure to the
study subject is 0.022±0.004 mSv/MBq (effective dose).
The preliminary results suggest that [123I]PE2I is a selec-
tive SPET ligand for imaging striatal dopamine trans-
porter density.

&kwd:Key words:Dopamine transporter – Human brain – Sin-
gle-photon emission tomography – Striatum
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Introduction

Cocaine derivatives such as 2-β-carbomethoxy-3β-(4-
iodophenyl)tropane (β-CIT) and its fluoroalkyl derivates
such as β-CIT-FE and β-CIT-FP have high affinity for

the dopamine transporter (DAT), and have been used for
brain imaging with positron emission tomography (PET)
[1] and with single-photon emission tomography (SPET)
[2, 3]. Although these radioligands are sensitive for DAT
imaging, they are not selective because of their affinity
for other monoamine transporters. A new selective ra-
dioligand for dopamine transporter imaging, N-(3-iodo-
prop-2E-enyl)-2-β-carbomethoxy-3β-(4-methylphenyl)
nortropane ([125I]PE2I), has been developed [4] and its
binding to human post-mortem brain has been investi-
gated [5]. It also showed high affinity for the DAT with a
Kd of 0.09 nM [6]. Its inhibitory constants towards DA,
5-HT and NE transporters are 17 nM, 500 nM and
>1000 nM, whereas those of β-CIT were 27 nM, 3 nM
and 80 nM, respectively [4–6]. PE2I has also been la-
belled with carbon-11 and demonstrated a selective
binding to the DAT in monkeys [7].

In the present communication we report our initial
findings of SPET imaging, plasma kinetics and radiation
dosimetry with iodine-123 labelled PE2I in the living
human brain. The results are compared with those of
[123I]β-CIT imaging.

Materials and methods

Study subjects. &p.2:Five healthy males and one female (23–37 years)
were studied. Informed consent was obtained and the nature of the
studies was fully explained. The study was approved by the Ethi-
cal Committee of Kuopio University Hospital. The subjects were
given 400 mg potassium perchlorate per os 1 h before the study
and 200 mg at 12 and at 24 h after injection of the tracer in order
to reduce 123I uptake in the thyroid and in the salivary gland.
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Chemistry. &p.2:The radiolabelling of PE2I as well as β-CIT was per-
formed by MAP Medical Technologies Oy (Tikkakoski, Finland).
Iododestannylation of the precursor, N-(3-tributylstannylprop-2E-
enyl)-2-β-carbomethoxy-3β-(4-methylphenyl)nortropane was per-
formed with carrier-free Na123I (CIS bio international, Gif-sur-
Yvette, France) in minute volume in the presence of chloramine-T
at pH 4.5. The product was purified with semipreparative high-
performance liquid chromatography (HPLC) on µBondapak C18
column (Waters, Milford, Mass., USA) with ethanol and 0.01M
phosphoric acid (85/65). The radioactivity peak which equals the
retention time of appropriate reference standard was collected.

The product was diluted with isotonic saline and phosphate
buffer until the concentration of ethanol was <15% and sterilized
by filtration through a 0.22-µm membrane. The radiochemical pu-
rity of products were checked before the injection with a HPLC
system.

Determination of labelled metabolites. &p.2:Venous blood samples
were collected at 2, 5, 10, 30, 60, 120, 160 and 220 min after in-
jection of the tracer. Plasma was separated and its radioactivity
was measured. A gradient HPLC method was used for the deter-
mination of labelled metabolites in plasma [8]. Briefly, a Waters
(Waters, Millford, Mass., USA) HPLC system with a radiomatic
150 TR radioisotope detector (Packard Instrument Company, Mer-
iden, Conn., USA) followed by a Waters 484 UV-detector at
254 nm was used with µBondapak C18 column. The gradient
HPLC programme used was a mixture of acetonitrile in phospho-
ric acid (0.01M) with acetonitrile from 25% to 60% in 6 min, a 2-
min hold at 60%, back to 25% in 1 min, and ending the run at
10 min.

SPET brain imaging. &p.2:The radioactivity of [123I]PE2I injected var-
ied from 140 to 215 MBq (radionuclide purity ≥99.8%). The dose
was administered into the antecubital vein in a dimly lit and quiet
room. Dynamic SPET scans were performed using a Siemens
MultiSPECT 3 gamma camera with fan-beam collimators (Sie-
mens Medical Systems, Inc., Hoffman Estates, Ill., USA). The en-
ergy window (15%) was centered around the photopeak of 123I.
During a 360° rotation (120° per camera head), 40 views/head
were acquired in a 128×128 matrix mode. The radius of rotation
was 13.8 cm. The raw data were reconstructed with the filtered
back-projection technique (Butterworth: order 8 and a cut-off fre-
quency 0.75 cm–1) and corrected using Chang’s attenuation meth-
od with a uniform attenuation coefficient of 0.10 cm–1. The imag-
ing resolution was 7–8 mm. Cross-calibration between the plasma
samples and the regional count densities was performed.

Whole-body imaging. &p.2:The study subjects were scanned at 2, 4 and
7 h after injection of the tracer with a dual-headed Siemens
E.CAM gamma camera with high-resolution collimators. A con-
stant scanning speed of 20 cm/min was used in a 1024×256 matrix
mode.

Data analysis. &p.2:Transaxial slices were visually surveyed and two
slices were conse-cutively summarized to the total slice thickness
of 5.6 mm. Regions of interest were drawn onto the cerebellum,
the white matter (= free + non-specific binding) and the striatum.
Average regional counts were used in calculations, and time-activ-
ity curves were corrected for radioactivity decay of 123I and print-
ed out (Fig. 1).

The volume of distribution of [123I]PE2I (VD in ml/ml) after
the bolus injection in the striatum was estimated as:

VD=area of ROI/plasma integral, (1)

where area of ROI is the integral of the striatal time-activity curve
and the plasma integral is the corresponding integral of the parent
plasma radioactivity.

A simple formula can be used to calculate the specific binding
of [123I]PE2I in the given region i:

Specific binding of the striatum=(ROI–WM)/ROI, (2)

where ROI=regional counts/voxel at the curve peak (TP) and
WM=white matter counts/voxel at Tp.

Regional radioactivities of the whole-body images were calcu-
lated over the following regions: brain, thyroid, lungs, liver,
spleen, intestine tract, urinary bladder and the rest of the body.
The square root of the anterior × posterior counts was used to cal-
culate percentage activities of the given region (%/ID) by relating
it to the square root of the whole body anterior × posterior counts
at 2 h.

[ 123I] β-CIT SPET. &p.2:Four of the male subjects were administrated of
185 MBq of [123I]β-CIT day after the [123I]PE2I study. The scan
was performed 24 h after injection with the same camera and
computer settings as those used for the [123I]PE2I study.

Results

Preparation of [123I]PE2I

The product was found to be sterile at all times. The in-
corporation of 123I to form [123I]PE2I was 90%–98%.
The overall yield was 70%–85% with a radiochemical
purity of >98%. The specific radioactivity was estimated
to be 8.7 TBq/µmol.

Metabolites in plasma

One main radioactive polar metabolite was found. Minor
amounts of other metabolites were also observed which
were more polar than 123IPE2I itself. The parent radioac-
tivity decayed rapidly. The percentage of unchanged

Fig. 1. Mean (n=6) regional time-activity curves of the [123I]PE2I
study in the striatum and cerebellum as well as their difference.
The curves were normalized to the counts/voxel/ID/body weight.
The error barsshow one standard deviation of the striatal time-ac-
tivity curve&/fig.c: 



123IPE2I was 13%±4% (mean ± standard deviation) and
7%±3% at 30 min and 120 min, respectively (Fig. 2).

SPET brain imaging

The highest specific uptake of [123I]PE2I in the striatum
was at 64–84 min after injection (Fig. 3). The biological
half-life of the striatal washout of tracer was 4.7±0.5 h.
The volume of distribution of [123I]PE2I was
94±24 ml/ml, which was significantly less than that of
[123I]β-CIT (170±27 ml/ml). The striatal specific binding
was 0.89±0.02 for [123I]PE2I and 0.92±0.01 for [123I]β-
CIT.

Whole-body imaging

The most intense uptake was found in the urinary blad-
der, the liver and the intestinal tract (Fig. 4). The majori-
ty of radioactivity clears through the urinary tract. Wash-
out time of the whole-body radioactivity was 9.5±0.6 h.
The brain uptake was 3.1±0.3%/ID at 1 h after injection.
The peak uptake in the striatum was slightly lower
(0.34±0.03%/ID) than that of [123I]β-CIT (0.40±0.03%/
ID; P<0.01).
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Fig. 2. A log/linear plot of the total plasma radioactivity and the
unchanged [123I]PE2I in plasma with time (n=6). The error bars
show one standard deviation. A three-exponential function was
fitted to the observed parent time-activity curve: y(t)=0.107e–0.737t

+ 0.033e–0.144t + 0.0034e–0.006t &/fig.c: 

a

b

Fig. 3. A comparative display of transaxial slices of a brain scan
in a healthy male 70 min after injection of 150 MBq of [123I]PE2I
(a) and 24 h after injection of 185 MBq of [123I]β-CIT (b). Note
that the background activity of [123I]PE2I (a) is higher than that of
[123I]β-CIT (b) due to the different binding kinetics. There is high
uptake in the scalp, suggesting that the parent radioligand dis-
solves to free iodine and metabolites&/fig.c: 

R ANTERIOR L L POSTERIOR R

Fig. 4. Whole-body scan taken 2 h after injection of [123I]PE2I
shows relatively high radioactivity in the liver and the urinary
bladder. There is no intense regional uptake in the lungs (seroto-
nin-rich region) as found in [123I]β-CIT scans&/fig.c: 
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The highest radiation exposure is for the urinary blad-
der wall (0.07 mGy/MBq) and the estimated effective
dose is 0.022±0.004 mSv/MBq (MIRDOSE 3, Oak
Ridge National Laboratories, Oak Ridge, Tenn., USA).
The effective dose was significantly less than that of
[123I]β-CIT (0.034±0.005 mSv/MBq).

Discussion

Previous animal studies have shown that DAT is mainly
localized to the striatum [5, 9] and to a lesser extent the
substantia nigra, but not other regions such as the mid-
brain, the hypothalamus and the anterior gingulus. The
results of the present study confirm that [123I]PE2I accu-
mulates in the striatum and that no other brain regions
show significant uptake, as found using other cocaine
analogues [1–3, 7] and [123I]IPT [10]. Moreover, β-CIT
and its analogues have radioactive metabolites which
may obstruct DAT quantitation [8]. [123I]PE2I trans-
forms rapidly to one main polar metabolite which is un-
likely to enter brain tissue prior to the suggested scan
time between 60 and 100 min.

There is increased interest in the development of
technetium-99m-based radioligands, so bypassing the
need for cyclotron-produced radionuclides for receptor
imaging. Kung et al. [11] recently reported the initial re-
sults of the use of [99mTc]TRODAT-1 for DAT imaging.
However, the relatively low brain uptake, the low stria-
tum-to-background ratio (<2 vs 9 with [123I]PE2I) and
the poor imaging quality do not favour use of the present
form of [99mTc]TRODAT-1 in clinical routine.

The volume of distribution of [123I]PE2I was smaller
than that of [123I]β-CIT, mainly due to their different
binding kinetics. However, the imaging and dosimetric
properties of [123I]PE2I favour its use in clinical prac-
tice. The striatum-to-background ratio is high and radia-
tion exposure to patients is low.

SPET studies on brain imaging of DAT density have
been performed using non-selective radioligands [2, 3,
10] which also have a relatively high accumulation in se-
rotonin-rich regions such as lungs [3]. These tissues are
an excellent sink for the first hours after injection, and
then afterwards a source. Numerical indices such as spe-
cific binding are difficult to compare among the individ-
ual study subjects due to lack of the proper input func-
tion.

In conclusion, [123I]PE2I appears to be a selective
SPET ligand with low non-specific binding for imaging
striatal DAT density. The scan time is optimal
(60–100 min p.i.) in daily routine.
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