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Abstract
Background To date, the benefit of image guidance during robot-assisted surgery (IGS) is an object of debate. The current 
study aims to address the quality of the contemporary body of literature concerning IGS in robotic surgery throughout dif-
ferent surgical specialties.
Methods A systematic review of all English-language articles on IGS, from January 2013 to March 2023, was conducted 
using PubMed, Cochrane library’s Central, EMBASE, MEDLINE, and Scopus databases. Comparative studies that tested 
performance of IGS vs control were included for the quantitative synthesis, which addressed outcomes analyzed in at least 
three studies: operative time, length of stay, blood loss, surgical margins, complications, number of nodal retrievals, meta-
static nodes, ischemia time, and renal function loss. Bias-corrected ratio of means (ROM) and bias-corrected odds ratio 
(OR) compared continuous and dichotomous variables, respectively. Subgroup analyses according to guidance type (i.e., 
3D virtual reality vs ultrasound vs near-infrared fluoresce) were performed.
Results Twenty-nine studies, based on 11 surgical procedures of three specialties (general surgery, gynecology, urology), 
were included in the quantitative synthesis. IGS was associated with 12% reduction in length of stay (ROM 0.88; p = 0.03) 
and 13% reduction in blood loss (ROM 0.87; p = 0.03) but did not affect operative time (ROM 1.00; p = 0.9), or complica-
tions (OR 0.93; p = 0.4). IGS was associated with an estimated 44% increase in mean number of removed nodes (ROM 
1.44; p < 0.001), and a significantly higher rate of metastatic nodal disease (OR 1.82; p < 0.001), as well as a significantly 
lower rate of positive surgical margins (OR 0.62; p < 0.001). In nephron sparing surgery, IGS significantly decreased renal 
function loss (ROM 0.37; p = 0.002).
Conclusions Robot-assisted surgery benefits from image guidance, especially in terms of pathologic outcomes, namely 
higher detection of metastatic nodes and lower surgical margins. Moreover, IGS enhances renal function preservation and 
lowers surgical blood loss.

Keywords Augmented reality · Fluorescence · Intraoperative guidance · Robotic surgery · Tracers · Ultrasound · Virtual 
reality · 3D models

Introduction

Currently, robot-assisted systems allow the performance of 
the majority of complex surgeries, traditionally conducted 
with either an open or a laparoscopic approach. Surgical 

experience is maximally enhanced by utmost movement pre-
cision, excellent ergonomics, and minimal patient cosmetic 
consequences [1, 2].

To date, multiple robotic systems have emerged as inno-
vative solutions in the field of minimally invasive surgery 
and numerous technical refinements have been progressively 
implemented to the daily robotic practice [2]. Among the 
latter, intraoperative image guidance emerges as need-
ful support during robotic procedures as, for instance, in 
the distinction of malignant vs benign tissues, and in the 
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identification of specific anatomic structures (e.g., blood or 
lymphatic vessels, lymph nodes, or glands) [3–6]. Image 
guidance includes a heterogeneous variety of tools, among 
which near-infrared fluoresce (NIRF) [7], intraoperative 
ultrasound (IOUS) [8], and augmented reality (AR) [9, 10] 
represent some of the most widespread.

Fluorophore-based NIRF (e.g., indocyanine green [ICG]-
NIRF) provides deep photon penetration (near infrared 
region, between 650 and 900 nm), thus magnifying opti-
cal contrast. NIRF tracers are not visible using white light 
and their use does not obscure the routine surgical field. 
Therefore, dedicated NIRF cameras allow to instantaneously 
switch from white light vision to NIRF vision upon request 
of the operator, and vice versa [11].

When the proper understanding of anatomy is a matter 
of crucial relevance, either, for example, concerning the 
relationship of a tumor with the surrounding healthy paren-
chyma, or the stream of arteries and veins, IOUS and AR 
provide further assistance. These types of image guidance 
increase the meticulousness of surgical gestures, mainly 
enhancing precision in tumor resection, as well as vascu-
lar isolation and clamping. These are all aspects involved 
in improving patient surgical outcomes, as intraoperative 
adverse events, surgical margins, ischemia time, and overall 
procedural time, among others [12].

The current literature regarding image-guided surgery 
(IGS) is flourishing [13–15]. However, the real impact of 
such heterogeneous technologies applied to different surgical 
fields on everyday practice has never been deeply addressed. 
In consequence, the real additional benefit of IGS during 
robot-assisted procedures remains an object of debate, and 
the magnitude of such benefit may be different according to 
the various surgical fields where IGS is used.

The objective of the current study consists in assessing 
the quality of the contemporary body of literature concern-
ing IGS in robotic surgery throughout different surgical 
specialties. Additionally, the current study aims to provide 
meta-analytic data concerning the actual surgical benefits of 
the adoption of IGS during robotic procedures.

Materials and methods

Study identification and evaluation

A systematic review of the literature was conducted using 
the PubMed, Cochrane Central Register of Controlled Trials 
(CENTRAL), EMBASE, MEDLINE, and Scopus databases. 
We searched from inception of the databases up to March 1, 
2023. All the references for key reviews on IGS were also 
screened. Keywords used for the research were as follows: 
“((robotic surgery OR robot-assisted) AND (image-guided 
surgery OR radio-guided surgery OR molecular imaging 

OR molecular trac* OR hybrid trac* OR bimodal trac* OR 
fluorescence imaging OR magnetic particles OR ultrasound 
guidance OR augmented reality OR virtual reality OR 3D) 
AND (staging accuracy OR diagnosis OR metastases OR 
complications OR oncological outcomes OR functional out-
comes OR recurrence OR survival OR mortality).” This sys-
tematic review is reported in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-analyses 
Protocols (PRISMA-P) guidelines [16] and is registered 
within the international prospective registry of systematic 
reviews (PROSPERO, CRD42023480670).

Initial screening, eligibility criteria, and risk of bias 
assessment

After identifying all eligible studies, eleven independent 
reviewers screened all titles and abstracts (or full text, for 
further clarification) for inclusion in the study. Literature 
reviews, editorials, comments, and studies that did not 
answer the review question were excluded at the eligibility 
evaluation (Fig. 1). Also, studies including small sample 
size (less than ten patients) were excluded. Lastly, only com-
parative studies that tested performance of an intraoperative 
guidance vs control were included for the final quantitative 
synthesis, yielding a final cohort of 29 assessable studies. 
Disagreements regarding eligibility were resolved by dis-
cussion with third parties (EM, PD) until consensus was 
reached.

Methodological quality of the included studies was 
graded using modified Risk Of Bias in Non-Randomized 
Studies-of Intervention (ROBINS-I) checklist [17]. Three 
investigators (AM, FC, ST) independently assessed the risk 
of bias for all studies. In case of disagreements, a discus-
sion with an additional experienced investigator (EM) was 
carried out.

Intervention and comparison arms

For meta-analytic evaluation, the intraoperative surgical 
guidance was considered the experimental arm. The group 
which received standard surgery represented the comparison 
arm (Table 1). Of the 29 assessable studies, 18 used ICG-
NIRF [18–35], nine used 3D/VR guidance [36–44], and two 
used US guidance [45, 46].

• ICG-NIRF

Freshly prepared ICG is diluted to 2.5 mg/ml with a 
maximum dosage of 2 mg/kg [21]. After the administra-
tion of the dye, the light can be switched to NIRF. The 
pass of ICG can be observed in the surgical field of inter-
est (i.e., kidney [18–21], lymph nodes [23–27], ureteral 
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anastomosis[22], uterus [28], thyroid [29, 30, 32], stom-
ach [33–35], rectal sphincter [31]) after approximately 2 
min. An exact discrimination between vascularized and 
de-vascularized areas can be achieved.

ICG can also be used for Sentinel Node Biopsy pro-
cedure. In this case, free-ICG (5 mg in 2 mL of sterile 
water) or combined with 99mTc-nanocolloid (0.5 mg of 
albumin, 0.25 mg of ICG, and 240 MBq of 99mTc in 2 
mL of saline) can be injected in the organ of interested 
(i.e., prostate [47]) and used for sentinel node biopsy via 
lymphatic mapping.

• 3D/VR guidance

The three-dimensional virtual model of the anatomy of 
interest (i.e., kidney [36, 38–40, 42], prostate [41–43]) is 
originated from computed tomography or magnetic reso-
nance images, using a specific software among those nowa-
days available on the market. Typically, a rendered colored 
virtual-segmented 3D model can be rotated in all dimen-
sions, and each extracted volume (e.g., tumor, pyelo-caliceal 
system, renal cortex, seminal vesicles) can be made opaque, 
translucent, or hidden, separately.

• US

A drop-in US probe inserted by the table assistant and 
maneuvered by the console surgeon allows real-time visuali-
zation of the surgical target (e.g., renal tumor, edge between 

healthy parenchyma and tumor [45], vascular structures, ure-
ter, perineal pelvic floor [46]).

Outcomes definition

For pooled meta-analysis, we evaluated outcomes that were 
assessed in at least three studies. Specifically, the follow-
ing outcomes were assessed among studies of all specialties 
considered: operative time, length of stay (LOS), estimated 
blood loss (EBL), surgical margins, postoperative complica-
tion rate, overall number of nodal retrievals, number of posi-
tive nodes identified, ischemia time, and estimated reduction 
of glomerular function (eGFR). Additional single-studies 
outcomes were described within qualitative synthesis and 
reported in Table 1.

Data synthesis and statistical analysis

Data not suitable for meta-analytic evaluation was presented 
in a narrative fashion (qualitative analysis). Reported results 
for continuous outcomes were pooled using bias-corrected 
ratio of means (ROM) according to previous established 
methodology [48, 49]. Thus, the bias-corrected odds ratio 
(OR) were used to compare dichotomous variables, respec-
tively. All results were reported with 95% confidence inter-
vals. Pre-planned subgroups analyses were performed in 
studies after stratification according to the type of intraop-
erative guidance (3D/VR vs UltraSound vs NIRF-ICG vs 
Hybrid Nanocolloid vs Carbon nanoparticles).

Fig. 1  PRISMA flow diagram
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Heterogeneity between studies was measured using the 
I2 statistic [50] and the between-study variance (t2) from 
the random-effect analyses. I2 values > 50% indicate large 
inconsistency. Unless otherwise indicated, all models have 
allowed for different effect sizes (random effects). In case 
of large heterogeneity, random effect models (using the 
DerSimonian and Laird approach [51]) were prioritized. 
For the assessment of small study effects and publication 
bias, values of the ROM or OR were plotted against their 
standard error in a contour-enhanced funnel plot. The lat-
ter bias represents the error in connection with whether a 
study is published or not depending on the characteristics 
and result of individual studies [52]. This error is caused 
because statistically significant study results generally have 
a higher likelihood of being published. Furthermore, Egg-
ers asymmetry test [53] was used to explore statistically 
the presence of publication bias. Statistical significance for 
all analysis was defined as two-sided p < 0.05. Statistical 
analysis was performed with the R software (version 3.6.3; 
http:// www.r- proje ct. org/) [54].

Results

Study selection flowchart

Figure 1 shows the flow of studies through the screening 
process. Overall, 13,626 papers were blindly screened by 
eleven reviewers (AD, AL, AM, EP, FA, FB, FC, ML, MLP, 
RD, ST), with 3247 of these records included for further 
evaluation based on pre-defined eligibility criteria. Of these, 
330 studies were considered eligible for final inclusion in 
qualitative analysis. At this point, final evaluation for the 
inclusion in the quantitative synthesis was carried out by 
three reviewers (EM, GF, PD). At the end of the process, 29 
manuscripts were included for the quantitative meta-analysis 
(Table 1).

Study quality and risk of bias

The Supplementary Material Appendix 1a-b summarizes the 
quality criteria assessed for each study using the ROBINS-I 
tool. The overall methodological quality of the studies was 
moderate, with most of the studies having moderate or low 
risk of bias.

Evidence synthesis

Table 1 summarizes general and design characteristics of 
the selected studies. Primary analysis included 29 papers 
for quantitative synthesis. The final screened manu-
scripts reported outcomes based on 11 different surgical 
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procedures across the included surgical specialties (gen-
eral surgery, gynecology and urology). Overall, 18 stud-
ies used NIRF with ICG [18–35]. Nine studies used 3D/
VR guidance [36–44], while two implemented US guid-
ance [45, 46]. According to the outcomes, 24, 16, and 18 
studies assessed operative time [18–22, 25–28, 30–37, 
39–41, 43–46], LOS [18, 20, 22, 26, 28, 30, 32–34, 36, 
37, 39, 41, 44–46], and EBL [18–22, 26, 28, 30, 33, 
35–37, 39–41, 44–46], respectively. Additionally, eight, 
seven, and nine assessed total number of nodes retrieved 
[23–27, 32, 33, 35], number of positive nodes [24–27, 32, 
33, 35], and rate of surgical margins [9, 24, 25, 38, 39, 
41, 42, 44, 45], respectively. Lastly, eight and five tested 
the impact of IGS on ischemia time [18, 20, 21, 36–39, 
45] and eGFR reduction [18–20, 39, 45]. These last con-
cerned nephron-sparing surgery.

In quantitative synthesis testing for operative time, a 
pooled meta-analysis on 3987 patients was conducted 
(Fig. 2a), using random-effects models. Overall, intraop-
erative guidance did not impact operative time (ROM 1.00, 
95% CI 0.94; 1.06; p = 0.9). Funnel plot and Eggers’ lin-
ear regression estimates (bias 1.36, p = 0.3) both showed 
absence for potential publications bias (Supplementary 
Material Appendix 2). In subgroup analyses according to 
the guidance used, intraoperative guidance was not associ-
ated with different operative time in any of the evaluated 
groups (Fig. 2b).

In quantitative synthesis testing for LOS, a pooled meta-
analysis on 1261 patients was conducted. Overall, at ROM 
analysis, use of intraoperative guidance was associated with 
12% reduction in LOS compared to standard surgery (ROM 
0.88, 95% CI 0.77; 0.99; p = 0.03) (Fig. 3a). Funnel plot 
and Eggers’ linear regression estimates (bias − 1.60, p = 0.4) 
recorded absence for potential publications bias (Supple-
mentary Material Appendix 3). When testing type of guid-
ance, LOS reduction was significant only in those studies 
implementing NIRF-ICG (ROM 0.87, 95% CI 0.80; 0.95; 
p = 0.02) (Fig. 3b).

In quantitative synthesis testing for EBL, a pooled meta-
analysis on 1496 patients was conducted. Overall, patients 
treated with intraoperative guided-surgery had lower EBL 
compared to standard surgery (ROM 0.87, 95% CI 0.77; 
0.99, p = 0.03) (Fig. 4a). Funnel plot and Eggers’ linear 
regression estimates (bias − 1.31, p = 0.4) demonstrated 
absence of potential publications bias (Supplementary Mate-
rial Appendix 4). However, in subgroup analyses, none of 
the evaluated guidance approach was singularly associated 
with reduced EBL (Fig. 4b).

In quantitative synthesis testing for number of nodes 
retrieved, a pooled meta-analysis on 2854 patients was con-
ducted. Overall, patients treated with intraoperative guided-
surgery had an estimated 44% increase in mean number of 

removed nodes at surgery compared to standard surgery 
(ROM 1.44, 95% CI 1.18; 1.77, p < 0.001) (Fig. 5a). Fun-
nel plot and Eggers’ linear regression estimates (bias − 7.14, 
p = 0.03) demonstrated presence of potential publications 
bias (Supplementary Material Appendix 5). Subgroups anal-
yses showed that most of the studies included used NIRF-
ICG with only one study evaluating the role of hybrid nano-
colloid (99mTc-ICG) (Fig. 5b).

In the quantitative synthesis testing for the rate of meta-
static nodal involvement, a pooled meta-analysis on 2920 
patients was conducted. Overall, patients who underwent 
IGS had significantly higher rate of pN1 disease identified 
(OR 1.82, 95% CI 1.49; 2.21; p < 0.001 using a common 
effect model), as confirmed in subgroup analyses accord-
ing to tracer type (Fig. 6a, b). Funnel plot and Eggers’ lin-
ear regression estimates (bias − 1.10, p = 0.9) demonstrated 
absence of potential publications bias (Supplementary Mate-
rial Appendix 6).

In the quantitative synthesis testing for the rate of 
positive surgical margins, a pooled meta-analysis on 
1488 patients was conducted. Overall, patients who 
underwent IGS had significantly lower rate of surgical 
margins at final pathology compared to standard surgery 
(OR 0.62, 95% CI 0.46; 0.85; p < 0.001 using a common 
effect model) (Fig. 7a, b). Funnel plot and Eggers’ linear 
regression estimates (bias − 0.5, p = 0.1) demonstrated 
absence of potential publications bias (Supplementary 
Material Appendix 7).

In the quantitative synthesis testing for the rate of post-
operative complications, a pooled meta-analysis on 4432 
patients was conducted. Overall, no differences in rate of 
postoperative complications were recorded between IGS 
and standard surgery (OR 0.93, 95% CI 0.79; 1.10; p = 0.4 
using a common effect model) (Fig. 8a). Funnel plot and 
Eggers’ linear regression estimates (bias − 0.25, p = 0.3) 
demonstrated absence of potential publications bias (Sup-
plementary Material Appendix 8). The results were consist-
ent even after stratification according to type of guidance 
used (Fig. 8b).

In quantitative synthesis testing for ischemia time dur-
ing nephron sparing surgery, a pooled meta-analysis on 
745 patients was conducted (Fig. 9a), using random-effects 
models. Overall, intraoperative guidance did not impact 
on ischemia time (ROM 0.89, 95% CI 0.76; 1.04; p = 0.5). 
Funnel plot and Eggers’ linear regression estimates (bias 
4.13, p = 0.4) both showed absence for potential publica-
tions bias (Supplementary Material Appendix 9). In sub-
group analyses according to tracer used, intraoperative 
guidance was not associated with different ischemia time 
in the evaluated group including multiple studies (Fig. 9b).

In quantitative synthesis testing for eGFR reduction after 
nephron sparing surgery, a pooled meta-analysis on 479 



3070 European Journal of Nuclear Medicine and Molecular Imaging (2024) 51:3061–3078

patients was conducted (Fig. 10a), using random-effects 
models. Overall, intraoperative guidance was associated 
with lower magnitude of eGFR reduction (ROM 0.37, 95% 
CI 0.22; 0.62; p = 0.002). Funnel plot and Eggers’ linear 
regression estimates (bias − 3.92, p = 0.09) both showed 
absence for potential publications bias (Supplementary 
Material Appendix 10). Subgroup analyses confirmed the 
efficacy of IGS on eGFR reduction regardless the type of 
guidance used (Fig. 10b).

Discussion

Imaging is increasingly employed as a tool to enhance the 
precision of surgical procedures. This comprehensive sys-
tematic review and meta-analysis synthesized published 
evidence on IGS across various surgical specialties and 
11 distinct surgical procedures. Despite the inclusion of 
different IGS modalities, our findings indicate that the uti-
lization of IGS led to significant improvements in several 

Study

Random effects model
Heterogeneity: I

2
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2
 = 0.0195, p < 0.01
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Fig. 2  Quantitative synthesis concerning operative time, a regardless of tracer type; b according to tracer type
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Fig. 3  Quantitative synthesis concerning length of stay, a regardless of tracer type; b according to tracer type
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perioperative outcomes compared to standard surgery. 
Notably, these improvements were observed in LOS, EBL, 
positive surgical margins rate, number of nodes retrieved, 
rate of pN1, and renal function deterioration (in the case 

of partial nephrectomy). Conversely, no statistically 
significant difference was found for operative time and 
perioperative complications. Irrefutable reasons for such 
observations are currently not available. Nonetheless, from 

Study

Random effects model
Heterogeneity: I2 = 88% [83%; 92%], 2 = 0.0566, p < 0.01

El Achi et al.
Sun et al.
Michiels et al.
Ahmadi et al.
Cheng et al.
Tian et al.
Mattevi et al.
Borofsky et al.
Tian et al.
Shirk et al.
Lan et al.
Ouyang et al.
Yuan et al.
Porpiglia et al.
Porpiglia et al.
Lanchon et al.
Shirk et al.
Kobayashi et al.
Harke et al.

Total

683

68
38

157
47
16
27
15
27
34
30
14
34
10
20
20
25
44
42
15

Mean

53.0
144.0
175.0
425.0
20.0
37.5

225.0
207.0
40.0

135.0
76.0
13.0
82.0

240.0
240.0
105.0
146.0
115.0
300.0

SD

41.0
88.0
76.0

227.0
12.0
15.0
45.0

106.0
18.0
23.0
97.0
3.5

18.0
51.0
51.0
57.0

140.0
51.0

170.4

IGS
Total

813

14
20

157
132
22
32
42
34
32
30
65
47
16
20
20
25
48
42
15

Mean

219.0
257.0
300.0
710.0
30.0
47.0

275.0
249.0
47.0

150.0
78.0
13.0
80.0

230.0
230.0
95.0

124.0
90.0

228.0

SD

657.0
59.0

121.0
416.0

9.0
14.0

100.0
224.0
14.0
23.0
79.0
4.5

17.0
54.0
54.0
75.0
90.0
48.0

165.0

Standard

0.1 0.5 1 2 10

Ratio of Means

Favours IGS Favours Standard

ROM

0.87

0.24
0.56
0.58
0.60
0.67
0.80
0.82
0.83
0.85
0.90
0.97
1.00
1.02
1.04
1.04
1.11
1.18
1.28
1.32

95% CI

[0.77; 0.99]

[0.05; 1.18]
[0.45; 0.70]
[0.53; 0.64]
[0.50; 0.72]
[0.48; 0.92]
[0.66; 0.96]
[0.70; 0.95]
[0.58; 1.19]
[0.71; 1.02]
[0.83; 0.98]
[0.48; 1.99]
[0.87; 1.14]
[0.86; 1.22]
[0.91; 1.20]
[0.91; 1.20]
[0.76; 1.61]
[0.83; 1.67]
[1.04; 1.58]
[0.83; 2.10]

Weight

100.0%

0.6%
5.8%
6.8%
6.1%
4.8%
6.1%
6.4%
4.4%
6.1%
6.8%
2.1%
6.5%
6.2%
6.5%
6.5%
4.3%
4.5%
5.9%
3.5%

a b
Study

Random effects model
Heterogeneity: I2 = 88% [83%; 92%], 2 = 0.0566, p < 0.01
Test for subgroup differences: 3

2 = 13.45, df = 3 (p < 0.01)

Tracer_Guidance = ICG                

Tracer_Guidance = US                 

Tracer_Guidance = 3D                 

Tracer_Guidance = Carbon Nanoparticle

Random effects model

Random effects model

Heterogeneity: I2 = 72% [48%; 85%], 2 = 0.0344, p < 0.01

Heterogeneity: I2 = 94% [90%; 96%], 2 = 0.0811, p < 0.01

El Achi et al.
Ahmadi et al.
Tian et al.
Mattevi et al.
Borofsky et al.
Lan et al.
Ouyang et al.
Yuan et al.
Lanchon et al.
Harke et al.

Sun et al.

Michiels et al.
Cheng et al.
Shirk et al.
Porpiglia et al.
Porpiglia et al.
Shirk et al.
Kobayashi et al.

Tian et al.

Total

683

282

329

68
47
27
15
27
14
34
10
25
15

38

157
16
30
20
20
44
42

34

Mean

53.0
425.0
37.5

225.0
207.0
76.0
13.0
82.0

105.0
300.0

144.0

175.0
20.0

135.0
240.0
240.0
146.0
115.0

40.0

SD

41.0
227.0
15.0
45.0

106.0
97.0
3.5

18.0
57.0

170.4

88.0

76.0
12.0
23.0
51.0
51.0

140.0
51.0

18.0

IGS
Total

813

422

339

14
132
32
42
34
65
47
16
25
15

20

157
22
30
20
20
48
42

32

Mean

219.0
710.0
47.0

275.0
249.0
78.0
13.0
80.0
95.0

228.0

257.0

300.0
30.0

150.0
230.0
230.0
124.0
90.0

47.0

SD

657.0
416.0
14.0

100.0
224.0
79.0
4.5

17.0
75.0

165.0

59.0

121.0
9.0

23.0
54.0
54.0
90.0
48.0

14.0

Standard

0.1 0.5 1 2 10

Ratio of Means

Favours IGS Favours Standard

ROM

0.87

0.88

0.92

0.24
0.60
0.80
0.82
0.83
0.97
1.00
1.02
1.11
1.32

0.56

0.58
0.67
0.90
1.04
1.04
1.18
1.28

0.85

95% CI

[0.77; 0.99]

[0.75; 1.02]

[0.73; 1.15]

[0.05; 1.18]
[0.50; 0.72]
[0.66; 0.96]
[0.70; 0.95]
[0.58; 1.19]
[0.48; 1.99]
[0.87; 1.14]
[0.86; 1.22]
[0.76; 1.61]
[0.83; 2.10]

[0.45; 0.70]

[0.53; 0.64]
[0.48; 0.92]
[0.83; 0.98]
[0.91; 1.20]
[0.91; 1.20]
[0.83; 1.67]
[1.04; 1.58]

[0.71; 1.02]

Weight

100.0%

46.3%

41.8%

0.6%
6.1%
6.1%
6.4%
4.4%
2.1%
6.5%
6.2%
4.3%
3.5%

5.8%

6.8%
4.8%
6.8%
6.5%
6.5%
4.5%
5.9%

6.1%

Fig. 4  Quantitative synthesis concerning estimated blood loss, a regardless of tracer type; b according to tracer type
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a surgical standpoint, it is reasonable to hypothesize that 
the usage of intraoperative guidance might increase the 
accuracy of a procedure to an extent where the more accu-
rate visualization of the targets, the greater distinction of 
healthy and malignant tissues, and the more reliable iden-
tification of noble structures (e.g., blood vessels, nerves, 
organs) translate in better overall patient outcomes. There-
fore, a clearer view of the surgical field may restrain the 
blood loss, which can foster the postoperative recovery and 
decrease the hospitalization time. Similarly, it may provide 
better oncologic and functional outcomes. For instance, 
IGS-based selective or super-selective arterial clamping 
during partial nephrectomy may favorably impact postop-
erative renal function preservation [18].

These results warrant careful consideration for several 
reasons. First, the widespread adoption of IGS in recent 
years underscores its clinical potential [55]. Ensuring the 
complete removal of tumors without positive margins and 
preserving healthy tissue is crucial for enhancing patient 
survival and improving functional outcomes. Therefore, 
incorporating intraoperative guidance may be essential 
for surgeons. However, it is undoubtable that the current 
level of evidence in favor of IGS is limited, and this work 
provides some proofs of that. It is of note that out of more 
than 13,000 studies, only three compared a specific IGS 
vs control, in a randomized controlled fashion [31, 44, 
49]. Specifically, these studies only concerned the field of 
urology, with overall 304 patients being recruited, either 
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submitted to partial nephrectomy for kidney cancer or 
prostatectomy for prostate cancer. Additionally, in all three 
cases, the outcomes of interest were potential surrogates 
of cancer-control (e.g., surgical margins, positive lymph 
nodes), with no mention to overall or cancer-specific 
survival [31, 44, 49]. Hence, these data are still imma-
ture, not easily generalizable, and invariably incapable of 
demonstrating any certain advantages of IGS implemented 
to robotic surgery. However, despite the aforementioned 
limitations, to the best of our knowledge we are the first 
to undertake the mission to provide the first contemporary 
systematic review that evaluate the quality of the avail-
able literature on IGS in robotic surgery and to assess the 
potential surgical benefit of the adoption of IGS during 
robotic procedures across different surgical specialties.

While intraoperative ultrasound is the most commonly 
used, other imaging techniques such as X-ray, CT, MRI, 
or nuclear imaging are primarily utilized for surgical 
planning but are not able to provide real-time intraopera-
tive guidance [56]. Indeed, regarding nuclear imaging, 
novel drop-in gamma probes can intraoperatively assist 
the surgeon. However, these lack from image, which may 
be provided by additional intraoperative tools (e.g., fluo-
rescence) [57, 58]. Therefore, emerging techniques like 

NIRF with ICG and 3D/VR guidance are gaining traction 
in various settings.

Fluorescence imaging relies on a camera capturing light 
emitted by a fluorescent dye visible when excited with an 
appropriate light source [56]. These imaging tools can be 
integrated into laparoscopic or robotic instruments. Various 
fluorescent contrast agents, typically emitting in the near-infra-
red region (between 650 and 900 nm), can penetrate several 
millimeters into tissue [59]. For instance, ICG and methylene 
blue are two FDA-approved near-infrared fluorophores widely 
used in numerous surgical applications [60]. In other settings, 
5-aminolevulinic acid hexyl ester is employed for malignant 
gliomas, and non-fluorescent dyes like hexyl ester are widely 
used for bladder cancer visualization [61, 62]. Over recent 
years, more specific fluorescent agents have been increasingly 
used, in particular the use of multimodality imaging [63]. For 
instance, 99mTc-nanocolloid associated with ICG is a novel 
contrast agent implemented across various clinical fields [63, 
64]. Another approach involves activatable fluorescent trac-
ers that become visible upon enzymatic cleavage [56]. Other 
groups are currently evaluating antibodies or fragments labeled 
with NIRF tracers in preclinical settings, targeting alternative 
biomarkers for IGS applications [65–69]. Some of these novel 
molecular biomarkers have been tested in clinical setting into 
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Fig. 9  Quantitative synthesis concerning ischemia time during nephron sparing surgery, a regardless of tracer type; b according to tracer type
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phase I or II studies [70–75]; on the other hand, RCTs have 
been planned to test the efficacy on oncological outcomes of 
integrating molecular targets with intraoperative fluorescence 
guidance [76]. Similar developments involve small molecules 
or peptides [60, 77].

Unfortunately, lack of proper structured pipeline for 
implementing these novel techniques is one the main lim-
iting factor for bridging the gap between the pre-clinical 
discovery of a novel biomarker or imaging modality and 
their formal evaluation into clinical practice, thus pre-
venting a timely application after the initial pre-clinical 
conception. Moreover, other key factors are the techni-
cal requirements for surgical manufacturers to adapt and 
integrate their systems with novel technologies. In this 
direction, there is an impelling need for a constructive 
dialogue between researchers and industries with the goal 
of defining common areas of research and optimizing 
resources allocation.

Additionally, despite these advancements, the issue of 
cost–benefit needs to be taken into consideration. The 
costs associated with novel imaging modalities can be 
substantial without clear clinical benefits [78]. Unfortu-
nately, accurate discussions on the topic cannot be easily 
done, based on the paucity of formal cost-analyses [79] 
and since capital costs, including intraoperative guidance 
tools, vary widely according to institutional and amortiza-
tion practices [80]. For instance, as previously reported, 
the cost of adding NIRF to a robotic system is approxima-
tively $100,000 [81], with a per vial cost of ICG ranging 
$80–100 [80, 81]. Therefore, whether the added cost of 
such technologies is justified may depend on the insti-
tution, on the surgeon, and on the expected quality of 
outcomes without using IGS, as previous authors have 
already stated [81].

Beyond the challenge of creating new tracers, identifying new 
potential targets poses a significant hurdle. The ideal biomarker 
should exhibit high expression in tumors and lower expression 
in healthy tissue, preferably being extracellular for being targeted 
by non-penetrating molecules but able to be internalized for a 
lasting signal. The biomarker should also demonstrate specificity 
across different types and subtypes of cancers.

Unfortunately, the available data did not permit a spe-
cific analysis of individual operations or IGS modalities. 
The results are generalized to IGS as an innovative surgi-
cal approach, integrating state-of-the-art surgery with novel 
imaging modalities, rather than specifying which imaging 
modality improves perioperative outcomes in specific surger-
ies. Thus, each IGS should be evaluated independently before 
clinical implementation. Moreover, the vast majority of the 
included comparative studies relied on retrospective data. 
Therefore, the reported results must be interpreted within 
the boundaries of such limitation, since selection biases 
could be operational, and heterogeneity in key factors (e.g., 

inclusion criteria, template of lymph node dissection, surgi-
cal technique such as for prostatectomy, partial nephrectomy 
and pyeloplasty, surgical expertise) could undermine results 
interpretability. This being said, the risk of bias assessment 
revealed that the overall quality of evidence in this meta-
analysis was moderate, as most studies demonstrated moder-
ate or low risk of bias (Supplementary Fig. 1a-b).

In conclusion, IGS is still in its early stages. Large, multi-
center, randomized controlled trials are imperative to deter-
mine the benefits of IGS for patients. However, the absence 
of a general consensus on standardized protocols for the clini-
cal evaluation of new techniques complicates the conduct of 
multicenter trials and the comparison between clinical stud-
ies. Nevertheless, our meta-analysis has demonstrated that the 
implementation of IGS has the potential to enhance surgical 
outcomes across various specialties and operations.

Conclusions

The current study suggests that the performance of robot-
assisted surgery might be consistently enhanced by intraopera-
tive image guidance. This is especially true when pathologic 
outcomes are considered. The usage of IGS might increase 
the detection of metastatic lymph nodes, and simultaneously 
it can boost the precision of tumor resection, as testified by 
the significant reduction of positive surgical margins at final 
pathology. Therefore, IGS has the potential to impact patient 
prognosis, besides surgical conduct.
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