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Selective internal radiation therapy (SIRT) with yttrium-90 
(90Y) has recently emerged as a possible treatment option 
for several liver malignancies, including intermediate- and 
advanced-stage hepatocellular carcinoma and intrahepatic 
cholangiocarcinoma [1–4], allowing to local energy delivery, 
to induce cancer cell death while sparing peripheral healthy 
liver tissue and lungs from significant damage [5].

Pre- and post-therapy imaging plays a key role to enable 
the estimation of absorbed radiation doses in both tumor and 
non-tumor regions based on the distribution of microspheres. 
In particular, single-photon emission computed tomography 
with computed tomography (SPECT/CT), based on tech-
netium99m (99mTc) macro aggregated albumin (MAA), is 
the reference imaging for the pre-treatment dosimetry plan 
[6]. Additionally, 90Y Bremsstrahlung SPECT is commonly 
employed for post-treatment dosimetry assessment, ensur-
ing the attainment of the intended dose to the target lesion, 
detecting any unforeseen extrahepatic dose accumulation in 
remote tissues, and ultimately forecasting treatment efficacy 
[6]. However, 90Y Bremsstrahlung SPECT imaging, with a 
wide energy window requirements due to low photopeak, 
presents certain challenges such as dominant photon scat-
ter, low photon yield, collimator septal penetration, lim-
ited spatial resolution and thus, low sensitivity [7]. On the 
other hand, 90Y positron emission tomography (PET) has 
become increasingly favored for post-treatment dosimetry 
assessment, due to greater spatial resolution of scanners, in 
particular those with novel digital technology, as compared 
to SPECT [8]. In addition, the introduction of whole-body 
PET/CT with long-axial-field of view (LAFOV), encom-
passing comprehensive body coverage in a single scan, 
allows for evaluation of adsorbed dose to lung and healthy 
liver tissue that are both are at high dose related risk of 

complications, such as radiation pneumonitis or liver dys-
function [9].

In this scenario, we read with great interest the article by 
Zeimpekis et al. [10] focused on the assessment of 90Y liver 
radioembolization post-treatment findings in 17 patients 
with different malignancies. Specifically, in addition to 
measuring the actual absorbed dose using post-treatment 
LAFOV PET scans and comparing it with the expected dose 
from the pre-treatment plan, the authors aimed to explore the 
feasibility of shorter scan durations while preserving com-
parable image quality to the current standard 20-min scans 
in clinical practice.

Interestingly, the average predicted and actual mean 
tumor absorbed dose based on the pre-treatment [99mTc]
MAA SPECT/CT scan and 90Y PET/CT, as calculated 
with Simplicit90Y™ software, did not significantly differ 
(median = 304.5 vs. 279.0 Gy, p = 0.6). However, differ-
ences between predicted and actual mean tumor absorbed 
dose emerged with HERMIA software. The authors pos-
tulated that the underestimation of the measured tumor 
absorbed dose by HERMIA could stem from misregistra-
tion between anatomical and functionally segmented areas, 
as well as signal spill-over between smaller pixels in PET 
images and the electron range of 90Y, as demonstrated in a 
prior investigation [11]. Particularly, the expected and actual 
average whole liver and lung dose did not significantly differ 
across all reconstruction times. To note, it becomes clear that 
the LAFOV PET approach implies a more precise simultane-
ous whole-body dosimetry. Estimating the precise dose to 
lung and liver tissues is crucial for administering the optimal 
activity to the target. This approach enables increased dos-
age to the lesion while ensuring tissue preservation, thus 
embodying the dual aims of precision medicine: enhancing 
therapeutic efficacy while minimizing collateral damage.

Regarding image quality metrics, there was no statisti-
cally significant differences between 20- and 5-min recon-
structed times for the peak signal to noise ratio (SNR), coef-
ficient of variation, and lesion-to-background ratio. This 
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implies that scans lasting only 5 min can achieve comparable 
image quality to those lasting 20 min, potentially improving 
patient comfort and streamlining throughput in daily clinical 
practice. However, it is important to note that these metrics 
have been presented as averages across all 17 patients, due 
to significant variations in factors such as injected activity 
and patient mass.

In conclusion, the authors demonstrated in their explora-
tory study that simulated 5-min reconstructed images, when 
compared to the 20-min standard scan, exhibited equivalent 
image peak SNR and noise behavior, while also performing 
similarly in post-treatment dosimetry of tumor, whole liver, 
and lung absorbed doses. However, to solidify these find-
ings, promote standardization and establish broader appli-
cability, further studies with prospective and multicenter 
design are warranted. Such endeavors would provide a more 
comprehensive understanding of the efficacy and reliabil-
ity of whole-body PET/CT in the setting of post-treatment 
dosimetry assessment.
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