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Abstract
Purpose Postoperative early recurrence (ER) leads to a poor prognosis for intrahepatic cholangiocarcinoma (ICC). We aimed 
to develop machine learning (ML) radiomics models to predict ER in ICC after curative resection.
Methods Patients with ICC undergoing curative surgery from three institutions were retrospectively recruited and assigned 
to training and external validation cohorts. Preoperative arterial and venous phase contrast-enhanced computed tomography 
(CECT) images were acquired and segmented. Radiomics features were extracted and ranked through their importance. 
Univariate and multivariate logistic regression analysis was used to identify clinical characteristics. Various ML algorithms 
were used to construct radiomics-based models, and the predictive performance was evaluated by receiver operating char-
acteristic curves, calibration curves, and decision curve analysis.
Results 127 patients were included for analysis: 90 patients in the training set and 37 patients in the validation set. Ninety-
two patients (72.4%) experienced recurrence, including 71 patients exhibiting ER. Male sex, microvascular invasion, TNM 
stage, and serum CA19-9 were identified as independent risk factors for ER, with the corresponding clinical model having 
a poor predictive performance (AUC of 0.685). Fifty-seven differential radiomics features were identified, and the 10 most 
important features were utilized for modelling. Seven ML radiomics models were developed with a mean AUC of 0.87 ± 0.02, 
higher than the clinical model. Furthermore, the clinical-radiomics models showed similar predictive performance to the 
radiomics models (AUC of 0.87 ± 0.03).
Conclusion ML radiomics models based on CECT are valuable in predicting ER in ICC.

Keywords Intrahepatic cholangiocarcinoma · Radiomics · Machine learning · Early recurrence · Contrast-enhanced 
computed tomography

Introduction

Intrahepatic cholangiocarcinoma (ICC) is the second most 
common primary liver cancer (PLC), which is prevalent in 
Asian countries [1–3]. Liver resection remains the only cura-
tive treatment for ICC, but most patients are at an advanced 
stage at first diagnosis that are not indicated for surgery[4]. 
Even after surgery, the prognosis is unsatisfactory, with a 
median overall survival (OS) of approximately 30 months 
and a 5-year survival rate of approximately 30%[5, 6]. 
Postoperative recurrence occurs in approximately 53%-
79% of cases after surgery, which is the leading cause of 
death[7, 8]. As an important prognostic factor, early recur-
rence (ER) is common in clinical practice. Wang et  al. 
showed that ICC patients with ER experienced a worse OS 
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than patients with late recurrence, a similar finding to that 
observed by Tonouchi et al.[9, 10]. Li et al. also found that 
ER was associated with a shorter OS in ICC patients fol-
lowing surgery[11]. Therefore, ER is recognized as a risk 
factor of worse prognosis, and there is increasing interest 
in finding novel biomarkers predicting ER in ICC. Identify-
ing patients who are likely to experience ER is important 
for determining surveillance strategies and optimizing indi-
vidual management.

Radiomics is a new technique that involves the high-
throughput extraction of quantitative image features [12, 13]. 
It has been widely applied in the diagnostic, prognostic, and 
predictive assessment of cholangiocarcinoma [14, 15]. In 
addition, some clinical indicators, such as the controlling 
nutritional status (CONUT) score, prognostic nutritional 
index (PNI) and albumin-bilirubin (ALBI) score, are also 
associated with the prognosis of ICC. The CONUT score 
is a valuable biomarker reflecting the patient’s immune-
nutritional status which is a predictor of poor prognosis 
for ICC patients undergoing hepatectomy[16]. Zheng et al. 
confirmed the prognostic value of CONUT in predicting the 
recurrence of ICC[17]. The PNI is a predictor of individual 
nutritional and inflammatory status, and the ABLI score is 
an important indicator of liver function. Previous studies 
have demonstrated the prognostic value of PNI and ALBI 
for patients with ICC undergoing hepatectomy[18–20]. 
However, limited work has been reported about their role in 
predicting the ER for ICC patients undergoing hepatectomy.

In recent years, machine learning (ML) has attracted 
increasing attention in the field of hepatology[21, 22]. Pre-
vious studies have confirmed the practical value of com-
bining radiomics with ML in various liver diseases. Shen 
et al. developed an ML radiomics model to identify ICC with 
lithiasis[23]. Qin et al. showed that ML radiomics could pre-
dict ER in perihilar cholangiocarcinoma[24]. Jhaveri et al. 
showed that ML radiomics could aid in the differentiation 
of liver cancers[25]. However, few studies have reported the 
role of ML radiomics based on contrast-enhanced computed 
tomography (CECT) in predicting ER in ICC. Therefore, the 
aim of our study was to develop ML radiomics models to 
predict ER in ICC after curative resection.

Material and methods

Patients

Patients with ICC who underwent curative resection from 
three institutions were retrospectively recruited from June 
2011 to June 2021. Patients from the First Affiliated Hospital 
of Wenzhou Medical University were assigned to the train-
ing cohort, while patients from the Eastern Hepatobiliary 
Surgery Hospital of Naval Medical University and the First 

Affiliated Hospital of Zhejiang Chinese Medical University 
were assigned to the external validation cohort. The inclu-
sion criteria were as follows: (1) pathologically diagnosed 
ICC; (2) receiving curative liver resection; and (3) perfor-
mance status (PS) score 0–2. The exclusion criteria were as 
follows: (1) combined with other malignancies; (2) receiving 
other antitumour treatments before surgery; (3) Child–Pugh 
score > 7; (4) incomplete clinical information (e.g., labora-
tory test results, pathological data, or operative data); (5) 
absence of CECT images performed within 1 month before 
surgery; (6) OS < 1 month due to postoperative complica-
tions; and (7) lost to follow-up. The flowchart of the study 
is shown in Fig. 1.

Definition of clinical parameters

Clinical information, including demographic data, labora-
tory test, clinicopathologic data and imaging data were col-
lected. Body mass index (BMI) was calculated as weight 
(kg)/height2  (m2). CONUT score was calculated based on 
serum albumin (ALB), total lymphocyte count, and total 
cholesterol concentration[16]. PNI was calculated with the 
following formula: 10 × serum albumin (g/dl) + 0.005 × total 
lymphocyte count (/mm3)[18]. ALBI score was calculated 
as follows:  (log10 bilirubin × 0.66) + (albumin × –0.085)
[20]. Major resection was defined as liver resection over 
than three segments. Macrovascular invasion was defined 
as invasion of portal vein, hepatic artery, or hepatic veins, 
whereas microvascular invasion (MVI) was defined as intra-
parenchymal vascular involvement identified by pathological 
examination. TNM stage was defined according to the 8th 
edition of the American Joint Committee on Cancer staging 
system[26].

Surgical management and follow‑up strategy

All patients involved in the study underwent curative 
resection with sufficient preservation of future liver rem-
nant volume. The surgical plan and perioperative man-
agement were determined by a multidisciplinary team 
(MDT). Patients were followed up regularly once every 
three months within the first two years after surgery and 
then once every six months afterwards, following the 
guidelines of the Chinese Society of Clinical Oncol-
ogy (CSCO). OS was defined as the time from surgery 
to death for any reason or censored at the last follow-up. 
Disease-specific survival (DSS) was defined as the time 
from surgery to death from ICC or censored at the last 
follow-up. Recurrence was monitored by two experienced 
hepatologists CG (15 years of clinical experience) and 
YZP (35 years of clinical experience). Recurrence was 
defined as positive findings on surveillance imaging or his-
tologically confirmed disease, and was determined mainly 
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according to imaging examinations (e.g., ultrasonography, 
CT, magnetic resonance imaging (MRI), or positron emis-
sion tomography/computed tomography (PET/CT)) and 
serum tumour biomarkers (e.g., carbohydrate antigen 19–9 
(CA 19–9)) [27]. Early recurrence was defined as recur-
rence within one year after surgery[11]. The treatment 
strategy after recurrence was determined by the MDT. The 
observation deadline was set to June 30, 2022.

CT imaging protocol

Multiple CT scanners were used to perform the CECT 
scans. The CT scanning parameters were as follows: tube 
voltage, 110–120 kVp; tube current, 130–375 mAs; rota-
tion time,0.5–0.8 s; pixel spacing, 0.5–0.8 mm; slice thick-
ness, 5 mm; image matrix, 512 × 512; and reconstruction 
interval, 5 mm. Detailed information on the CT scanners 
and imaging protocols is shown in Supplementary Table 1. 
The nonionic contrast agents used were iohexol (Yangtze 
River Pharmaceutical Group, Taizhou, China) and ioversol 
(Liebel-Flarsheim Canada Inc., Quebec, Canada). A dos-
age of 1.5 ml/kg of nonionic contrast agent was injected 
intravenously at a speed of 3 ml/s. The arterial and portal 
venous phase CT scans were performed 25–30 s and 60–75 s 
after injection, respectively. To reduce the variability derived 
from the different CT scanners and parameters, image pre-
processing was performed (e.g., gray level normalization).

ROI segmentation and radiomics feature extraction

Radiomics analysis was performed according to the stand-
ardized procedures from a previous study[28]. The arterial 
and venous phase CECT images were reviewed by two 
experienced radiologists YF and YYJ, who were blinded 
to the clinical data. MRIcroGL software was used to seg-
ment the three-dimensional (3D) region of interest (ROI) 
manually slice-by-slice. Python software with the “Pyradi-
omics” package was used to extract the radiomics features. 
The ROIs from the arterial and venous phase images were 
drawn separately (Supplementary Fig. 1). The intra- and 
interobserver agreement was performed from 30 randomly 
chosen images to assess the radiomics features’ reliabil-
ity with “irr” R package. The intraobserver correlation 
analysis was performed according to twice extraction of 
radiomics features by reader 1 in a 1-week period. The 
interobserver correlation analysis was performed between 
the extraction of radiomics features by reader 1 and reader 
2. Radiomics features with intra- and interclass correla-
tion coefficient values > 0.75 were selected for subsequent 
analysis. The radiomics features extracted by YYJ were 
selected for subsequent analysis.

Before feature selection, Z-score standardization was 
used to normalize the radiomics features. The independ-
ent-samples t test was used to remove similar features 
and retain different features. The max-relevance and min-
redundancy (mRMR) algorithm was implemented to rank 

Fig. 1  The flowchart of this study
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the importance of the radiomics features and select the 
significant features for subsequent analysis.

Machine learning approaches for model 
construction

Patients in the training cohort were used to identify predomi-
nant features and develop predictive algorithms, and patients 
in the validation cohort were used to evaluate the predic-
tive performance. Based on the selected radiomics features, 
seven supervised ML classifiers were used to construct radi-
omics models with the “Scikit-learn 0.24.0” python pack-
age, including logistic, random forest (RF), neural network 
(NN), Bayes, support vector machine (SVM), Light Gradi-
ent Boosting Machine (LightGBM), and Xtreme Gradient 
Boosting (XGBoost). In addition, we incorporated clinical 
data to develop clinical-radiomics models to improve the 
predictive value. Receiver operating characteristic (ROC) 
curves and the area under the curve (AUC) were generated 
to evaluate the performance of the models. Calibration curve 
analysis and decision curve analysis (DCA) were used to 
test the robustness and clinical applicability of the models.

Statistical analysis

SPSS software (version 20.0), Python software (version 
3.9.R) and R software (version 4.1.0) were used to perform 
statistical analysis. Continuous data were analyzed by t test 
or Mann–Whitney U test, and are shown as mean ± stand-
ard deviation (SD) or median (interquartile range) accord-
ing to the distribution. Categorical data were analyzed by 
the chi-square test or Fisher’s exact test, and are shown as 
numbers (percentages). Univariate and multivariate logis-
tic regression analyses were performed to identify risk fac-
tors. Multivariable logistic regression analyses were car-
ried out on variables with a P value < 0.1 in the univariate 
analysis. Kaplan–Meier curve analysis was used to evaluate 
OS and DSS. Statistical significance was established at P 
value < 0.05.

Results

Patient characteristics

A total of 254 patients with ICC undergoing surgery were 
reviewed from three institutions. After exclusion, 127 
patients were included in the analysis, including 90 patients 
in the training cohort and 37 patients in the external valida-
tion cohort. The baseline characteristics between the training 
and validation cohorts are listed in Supplementary Table 2, 
and most characteristics were not different. The mean age 
was 63.8 ± 10.4 years, and the mean BMI was 22.2 ± 3.3 kg/

m2. Sixty-seven patients (52.8%) were men, 37 patients 
(29.1%) had hepatitis B infection, 36 patients (28.3%) had 
liver cirrhosis, and the vast majority of patients (89.8%) had 
a Child–Pugh class of A.

A total of 92 patients experienced recurrence, including 
72 patients (78.3%) diagnosed by CT, 17 patients (18.5%) by 
MRI, two patients (2.2%) by ultrasonography and one patient 
(1.1%) by PET/CT. Seventy-one patients (55.9%) exhibited 
ER. The baseline characteristics between patients with and 
without ER are shown in Table 1. Significant differences 
were observed in sex (P = 0.019), tumour size (P = 0.015), 
lymphatic metastasis (P = 0.003), MVI (P = 0.003), mac-
rovascular invasion (P = 0.005), TNM stage (P < 0.001), 
carcinoembryonic antigen (CEA) (P = 0.016) and CA19-9 
(P = 0.006). During the follow-up period, a total of 96 
patients (75.6%) died, including 86 patients died of disease 
recurrence and 10 patients died of other reasons without 
experiencing recurrence (e.g., cerebral hemorrhage). Six 
patients (4.7%) were alive at the last follow-up with disease 
recurrence. The one-year overall survival rate and one-year 
disease specific survival rate for patients with ER was lower 
than patients without ER. Patients with ER experienced 
shorter OS (hazard ratio (HR) = 6.50, 95% CI: 3.94–10.71, 
P < 0.001) and DSS (HR = 10.70, 95% CI: 6.00–19.06, 
P < 0.001) than patients without ER (Fig. 2).

Extraction of radiomics features

A total of 214 features were extracted from each patient, 
with 107 each in the arterial and venous phase images as 
follows: 14 shape-based features, 18 first order statistical 
features, 24 Gy level cooccurrence matrix (Glcm) features, 
16 Gy level run length matrix (Glrlm) features, 16 Gy level 
size zone matrix (Glszm) features, 14 Gy level dependence 
matrix (Gldm) features, and five neighboring gray tone dif-
ference matrix (Ngtdm) features (Supplementary Table 3). 
The results of intra- and interobserver agreement analysis are 
shown in Supplementary Table 4. We first excluded redun-
dant features with intra- or interclass correlation coefficient 
value less than 0.75, and then 165 features were included 
into subsequent analysis. Finally, 57 differential radiomics 
features were retained, including 42 upregulated features and 
15 downregulated features in patients with ER (Fig. 3). The 
importance of the radiomics features was ranked through the 
mRMR algorithm, and the top 10 most important features 
were selected for subsequent analysis.

Clinical factors associated with early recurrence

The results of univariate and multivariate logistic 
regression analysis are shown in Table 2. Through uni-
variate regression analysis, sex (P = 0.020), tumour size 
(P = 0.026), lymphatic metastasis (P = 0.005), MVI 
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Table 1  Baseline characteristics 
of ICC patients with and 
without early recurrence after 
curative liver resection

No. (%)

Variables Total (N = 127) ER (N = 71) Non-ER (N = 56) P value

Age, year, mean ± SD 63.8 ± 10.4 64.9 ± 9.8 62.4 ± 11.1 0.178
Sex, n (%) 0.019
 Male 67 (52.8%) 44 (62.0%) 23 (41.1%)
 Female 60 (47.2%) 27 (38.0%) 33 (58.9%)

BMI, kg/m2, mean ± SD 22.2 ± 3.3 21.9 ± 2.8 22.6 ± 3.8 0.301
PS score, n (%) 0.153
 0 59 (46.5%) 29 (40.8%) 30 (53.6%)
 1–2 68 (53.5%) 42 (59.2%) 26 (46.4%)

HBV, n (%) 0.291
 No 90 (70.9%) 53 (74.6%) 37 (66.1%)
 Yes 37 (29.1%) 18 (25.4%) 19 (33.9%)

Liver cirrhosis, n (%) 0.215
 No 91 (71.7%) 54 (76.1%) 37 (66.1%)
 Yes 36 (28.3%) 17 (23.9%) 19 (33.9%)

Child–Pugh, n (%) 0.875
 A 114 (89.8%) 64 (90.1%) 50 (89.3%)
 B 13 (10.2%) 7 (9.9%) 6 (10.7%)

Tumor number, n (%) 0.061
 Solitary 107 (84.3%) 56 (78.9%) 51 (91.1%)
 Multiple 20 (15.7%) 15 (21.1%) 5 (8.9%)

Tumor size, cm, median (IQR) 5.0 (3.0–6.6) 5.0 (4.0–7.0) 4.0 (2.5–6.0) 0.015
Differentiation, n (%) 0.107
 Moderate-High 98 (77.2%) 51 (71.8%) 47 (83.9%)
 Low-Undifferentiated 29 (22.8%) 20 (28.2%) 9 (16.1%)

Lymphatic metastasis, n (%) 24 (18.9%) 20 (28.2%) 4 (7.1%) 0.003
Microvascular invasion, n (%) 21 (16.5%) 18 (25.4%) 3 (5.4%) 0.003
Macrovascular invasion, n (%) 13 (10.2%) 12 (16.9%) 1 (1.8%) 0.005
Perineural invasion, n (%) 25 (19.7%) 18 (25.4%) 7 (12.5%) 0.071
TNM stage, n (%) < 0.001
 I-II 84 (66.1%) 37 (52.1%) 47 (83.9%)
 III-IV 43 (33.9%) 34 (47.9%) 9 (16.1%)

Surgical approach, n (%) 0.105
 Laparoscopy 10 (7.9%) 3 (4.2%) 7 (12.5%)
 Laparotomy 117 (92.1%) 68 (95.8%) 49 (87.5%)

Type of hepatectomy, n (%) 0.074
 Major 40 (31.5%) 27 (38.0%) 13 (23.2%)
 Minor 87 (68.5%) 44 (62.0%) 43 (76.8%)

Surgical margin, n (%) 0.730
 R0 118 (92.9%) 65 (91.5%) 53 (94.6%)
 R1 9 (7.1%) 6 (8.5%) 3 (5.4%)

AFP, ng/ml, median (IQR) 3.3 (2.1–5.3) 3.1 (2.2–5.2) 3.6 (2.1–5.8) 0.831
CEA, μg/L, median (IQR) 3.0 (1.9–9.9) 3.7 (2.0–16.6) 2.4 (1.7–4.7) 0.016
CA19-9, U/ml, median (IQR) 57.9 (21.8–456.2) 185.7 (23.0–1034.6) 36.9 (15.2–110.3) 0.006
TBIL, μmol/L, median (IQR) 9.0 (7.0–13.0) 9.0 (6.0–12.0) 9.5 (7.0–13.8) 0.517
ALB, g/L, mean ± SD 38.9 ± 4.9 38.5 ± 4.8 39.4 ± 4.9 0.316
ALT, U/L, median (IQR) 24.0 (16.0–36.0) 27.0 (16.0–38.0) 22.0 (15.0–32.0) 0.225
AST, U/L, median (IQR) 27.0 (21.0–36.0) 29.0 (22.0–41.0) 25.0 (21.0–34.8) 0.140
Prothrombin, s, median (IQR) 13.5 (12.8–14.1) 13.6 (13.0–14.1) 13.5 (12.6–14.1) 0.230
CONUT score, n (%) 0.205
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(P = 0.006), macrovascular invasion (P = 0.022), TNM 
stage (P < 0.001), CA19-9 (P = 0.041) and hospital stay 
(P = 0.030) were associated with ER. Then variables with 
P < 0.1 were then included into the multivariate analysis 
with “Forward LR” method, and the results showed that 
male sex (P = 0.026), MVI (P = 0.006), TNM III-IV stage 
(P = 0.002) and elevated CA 19–9 (P = 0.051) were inde-
pendent risk factors of ER. Correspondingly, a clinical 
model was built with an AUC of 0.685, and the calibra-
tion curve and DCA indicated an unsatisfactory perfor-
mance (Fig. 4D-F).

Construction of machine learning radiomics‑based 
models

Seven ML radiomics models were constructed with a mean 
AUC of 0.87 ± 0.02 (Fig. 4A). Among them, RF, NN and 
SVM showed the best performance (AUC of 0.89). The cali-
bration curves and DCA showed a favourable performance 
(Fig. 4B and C). Seven ML clinical-radiomics models were 
also built with a mean AUC of 0.87 ± 0.03 (Fig. 5). The 
clinical-radiomics models showed a similar predictive power 
over the radiomics models, indicating the pivotal role of 

Table 1  (continued) No. (%)

Variables Total (N = 127) ER (N = 71) Non-ER (N = 56) P value

 0–1 60 (47.2%) 30 (42.3%) 30 (53.6%)
 ≥ 2 67 (52.8%) 41 (57.7%) 26 (46.4%)
PNI, n (%) 0.555
 < 50 94 (74.0%) 54 (76.1%) 40 (71.4%)
 ≥ 50 33 (26.0%) 17 (23.9%) 16 (28.6%)
ALBI score, n (%) 0.513
 < -2.6 73 (57.5%) 39 (54.9%) 34 (60.7%)
 ≥ -2.6 54 (42.5%) 32 (45.1%) 22 (39.3%)
Adjuvant therapy, n (%) 24 (18.9%) 15 (21.1%) 9 (16.1%) 0.470
Hospital stay, day, median (IQR) 13.0 (11.0–18.0) 15.0 (11.0–20.0) 13.0 (11.0–16.0) 0.135
One-year OS rate, % 59.8 (51.3–68.4) 38.0 (26.7–49.3) 87.5(78.9–96.1)  < 0.001
One-year DSS rate, % 63.9 (55.4–72.5) 38.0 (26.7–49.3) 100 (100–100) < 0.001

Abbreviations: ER, Early recurrence; SD, standard deviation; BMI, Body mass index; PS, Performance 
status; HBV, Hepatitis B virus; IQR, Interquartile range; AFP, Alpha fetoprotein; CEA, carcinoembryoni
c; Antigen; CA19-9, carbohydrate antigen 19–9; TBIL, Total bilirubin; ALB, Albumin; ALT, Alanine ami-
notransferase; AST, Aspartate aminotransferase; CONUT, Controlling nutritional status; PNI, Prognostic 
nutritional index; ALBI, Albumin-bilirubin; OS, Overall survival; DSS, Disease specific survival

Fig. 2  Kaplan–Meier curves 
analysis between ICC patients 
with and without ER after 
curative resection. A Kaplan–
Meier curves of overall survival 
between patients with and 
without ER; B Kaplan–Meier 
curves of disease specific sur-
vival between patients with and 
without ER. ICC, intrahepatic 
cholangiocarcinoma; ER, early 
recurrence; HR, hazard ratio
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radiomics in predicting ER in ICC. To further confirm the 
stability of the ML algorithms, we developed two new mod-
els by swapping the parameters of the radiomics models and 
clinical-radiomics models, and the new radiomics models 
and new clinical-radiomics models all showed good predic-
tive performance (Supplementary Fig. 2).

We further constructed models using the arterial and 
venous phase features separately and compare their indi-
vidual contributions. We selected the top 10 most important 
arterial phase features and top 10 venous phase features to 
construct their individual radiomics and clinical-radiomics 
models. The mean AUCs of the radiomics and clinical-
radiomics models derived from arterial phase features were 
0.72 ± 0.04 and 0.79 ± 0.03 (Supplementary Fig. 3). The 
mean AUCs of the radiomics and clinical-radiomics mod-
els derived from venous phase features were 0.84 ± 0.02 
and 0.85 ± 0.04 (Supplementary Fig. 4). The predictive 
performance of the arterial phase feature-based models was 
inferior to the venous phase feature-based models and the 
comprehensive models, while the comprehensive models 
including the whole set of features exhibited the best pre-
dictive performance.

Discussion

The proneness of ER after surgery remains a major barrier 
preventing therapeutic success in ICC, and timely identify-
ing patients who are likely to experience ER is clinically 
important. Our study identified important radiomics features 
from pretreatment CECT images and constructed favorable 

ML radiomics-based models to predict ER in ICC. We pro-
pose that CECT-based radiomics is a useful, noninvasive and 
easy-to-use tool for predicting ER in ICC.

In light of the dismal prognosis of ICC, there has been 
increasing interest in identifying biomarkers for predicting 
the prognosis [29, 30]. Several clinical factors have been 
identified, such as serum tumour biomarkers, tumour size, 
tumour number, MVI, and lymph node metastases [7, 9, 31]. 
The study by Lang et al. showed that male sex is a predictor 
of RFS [32]. In our study, we found that male sex, MVI, 
TNM stage III-IV, and elevated CA19-9 were independent 
risk factors for ER in ICC, which is in accordance with pre-
vious studies. However, predicting the ER in ICC only with 
clinical factors was insufficient (AUC of 0.685), and a more 
reliable method was needed.

Currently, radiomics has been widely applied in the 
management of PLC, which is performed based on existing 
images without additional cost [3, 33, 34]. It can convert 
medical images into mineable data, displaying more infor-
mation than simple tumour phenotypic data. In this study, 
we extracted radiomics features from 3D volumetric ROIs of 
pretreatment CECT images, which can provide more com-
prehensive information about tumour heterogeneity than 2D 
ROIs. We found that the radiomics models performed better 
than conventional clinical models in predicting ER in ICC. 
Further clinical-radiomics models also achieved remarkable 
predictive performance, superior to that of clinical model 
and similar to that of radiomics models, indicating the piv-
otal role of radiomics in predicting ER in ICC. Interestingly, 
the radiomics features from venous phase CECT images may 
play a more important role in predicting the ER in ICC, 

Fig. 3  Differential radiomics features and partial clinicopathological 
characteristics of ICC with and without ER after curative resection. 
A Heatmaps of differential radiomics features and partial clinico-
pathological characteristics between patients with and without ER; 

B Importance ranking of differential radiomics features through the 
mRMR algorithm. ICC, intrahepatic cholangiocarcinoma; ER, early 
recurrence; mRMR: max-relevance and min-redundancy
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Table 2  Univariate and 
multivariable logistic regression 
analysis of clinical factors 
associated with early recurrence 
in ICC patients undergoing 
curative resection

Univariate logistic analysis Multivariate logistic analysis

Variables OR (95%CI) P value OR (95%CI) P value

Age 1.024 (0.989–1.060) 0.178
Sex

  Female Reference Reference
  Male 2.338 (1.142–4.786) 0.020 2.530 (1.116–5.737) 0.026
  BMI 0.942 (0.845–1.050) 0.281

PS score
  0 Reference
  1–2 1.671 (0.824–3.388) 0.155
  HBV 0.661 (0.306–1.427) 0.292
  Liver cirrhosis 0.613 (0.282–1.333) 0.217

Child Pugh score
  A Reference
  B 0.911 (0.288–2.883) 0.875

Tumor number
  Solitary Reference
  Multiple 2.732 (0.927–8.052) 0.068
  Tumor size 1.185 (1.021–1.376) 0.026

Differentiation
  Moderate-High Reference
  Low-Undifferentiated 2.048 (0.849–4.942) 0.111
  Lymphatic metastasis 5.098 (1.629–15.955) 0.005
  Microvascular invasion 6.000 (1.668–21.584) 0.006 6.624 (1.709–25.677) 0.006
  Macrovascular invasion 11.186 (1.408–88.900) 0.022
  Perineural invasion 2.377 (0.914–6.181) 0.076

TNM stage
  I-II Reference Reference
  III-IV 4.799 (2.048–11.246) < 0.001 4.298 (1.702–10.854) 0.002

Surgical approach
  Laparoscopy Reference
  Laparotomy 0.309 (0.076–1.254) 0.100

Type of hepatectomy
  Minor Reference
  Major 2.154 (0.985–4.707) 0.054
  R1 margin 1.631 (0.389–6.832) 0.503
  AFP 1.005 (0.989–1.022) 0.512
  CEA 1.003 (0.995–1.012) 0.467
  CA199 1.000 (1.000–1.000) 0.041 1.000 (1.000–1.000) 0.051
  TBIL 1.001 (0.987–1.015) 0.906
  ALB 0.963 (0.895–1.036) 0.314
  ALT 1.002 (0.996–1.008) 0.565
  AST 1.002 (0.995–1.009) 0.661
  Prothrombin 1.174 (0.850–1.621) 0.330

COUNT score
  0–1 Reference
   ≥ 2 1.577 (0.779–3.193) 0.206

PNI
   < 50 Reference

   ≥ 50 0.787 (0.355–1.744) 0.555
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as venous images yielded most of the important radiomics 
features in this study.

Radiomics features are usually associated with tumour 
size, tumour shape, voxel intensity or spatial relationship 
between voxels[35]. In our study, the ten most important 
radiomics features are mainly shape-based features (e.g., 
shape surface area) and features reflecting tumour het-
erogeneity (e.g., gray level non-uniformity), which are 

known to be relevant for prognosis. Shape surface area 
could indicate the relative size of the image array, where 
a greater value implies a greater tumour size which can 
lead to a higher recurrence risk[7, 31]. Xiang et al. also 
identified shape features from CECT suggesting that larger 
tumors tend to have higher recurrence rate in gallblad-
der carcinoma[36]. Uniformity is an indicator of image 
array heterogeneity, with greater values implying greater 

Table 2  (continued) Univariate logistic analysis Multivariate logistic analysis

Variables OR (95%CI) P value OR (95%CI) P value

ALBI score
   < -2.6 Reference

   ≥ -2.6 1.268 (0.623–2.583) 0.513
  Adjuvant therapy 1.399 (0.561–3.485) 0.471
  Hospital stays 1.073 (1.007–1.144) 0.030

Abbreviations: BMI, Body mass index; PS, Performance status; HBV, Hepatitis B virus; AFP, Alpha feto-
protein; CEA, carcinoembryonic; Antigen; CA, carbohydrate antigen; TBIL, Total bilirubin; ALB, Albu-
min; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; CONUT, Controlling nutritional 
status; PNI, Prognostic nutritional index; ALBI, Albumin-bilirubin

Fig. 4  Predictive performance of the ML radiomics models and clini-
cal model in predicting ER in ICC. A ROC curves of the ML radi-
omics models; B Calibration plots of the ML radiomics models; C 
Decision curve analysis of the ML radiomics models; D ROC curves 
of the clinical model; E Calibration plot of the clinical model; F 
Decision curve analysis of the clinical model. ML, machine learning; 

ER, early recurrence; ICC, intrahepatic cholangiocarcinoma; ROC, 
receiver operating characteristic curves; TPR, true positive rate; FPR, 
false positive rate; AUC, area under the receiver operating character-
istic curve; SVM, Support Vector Machine; LightGBM, Light Gradi-
ent Boosting Machine; XGBoost, eXtreme Gradient Boosting
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heterogeneity which is associated with a complex tumour 
microenvironment (e.g., gene instability, hypoxia, angio-
genesis, and immune status). Notably, Zhang et al. pre-
sented a radiomics signature based on texture and shape 
features to predict MVI status in hepatocellular carcinoma 
(HCC)[37], which may further contribute to the recur-
rence. Another study by Xu et al. also identified radiom-
ics features related to tumour size and heterogeneity as the 
most important features for predicting MVI and survival 
in HCC, which is similar to our findings[38].

Although we confirmed a certain role of radiomics in 
predicting ER in ICC, the biological meaning of the selected 
radiomics features is still unclear, since there was a lack 
of genomic or immunohistochemistry profiling. A hypoth-
esized interpretation is that these radiomics features, which 
correlate significantly with tumour structure and microenvi-
ronment, can be used as surrogate markers of tumour hetero-
geneity and a more aggressive biological behaviour in ICC. 
Therefore, it is worth investigating the potential relationship 
between radiomics features and clinicopathological features 
underlying the biological behaviour of tumours, since their 
combination has shown promising potential in improving 
outcome prediction[39].

To make the results more compelling, we applied seven 
ML algorithms to construct radiomics-based models. As a 
type of artificial intelligence (AI), ML is achieving increas-
ing use in various liver diseases, with the advantages of gen-
erating predictive models more accurately than conventional 
approaches[22]. ML radiomics has been a promising tool in 
clinical practice[40, 41]. In our study, all the ML radiom-
ics models achieved satisfactory performance, indicating 
the favourable clinical value of ML radiomics in predicting 
the ER of ICC. In addition, we performed stringent exter-
nal validation to further improve the generalizability and 

reproducibility of our results, which is necessary to translate 
radiomics analysis into clinical application[42].

The potential benefit of neoadjuvant therapy and postop-
erative adjuvant therapies is still controversial, and standard 
selection criteria for patients suitable for these therapies are 
absent[43, 44]. Promisingly, the present ML radiomics models 
can provide significant reference in estimating recurrence risk 
and optimizing surveillance program for ICC, especially in the 
selection of potential patients eligible for neoadjuvant or adju-
vant therapies. By inputting the radiomics features extracted 
from pretreatment CECT images into our ML algorithms, the 
probability of ER is provided. For patients who are predicted 
to have a high risk of ER, appropriate neoadjuvant or adjuvant 
therapies and intensive screening after surgery may be needed 
to delay or avoid recurrence, which is also recommended by 
the guidelines of the National Comprehensive Cancer Network 
(NCCN) [45]. In contrast, neoadjuvant or adjuvant therapies 
should be taken with caution to avoid additional adverse results 
which may reduce the patients’ quality of life. In addition, com-
bining surgery with locoregional therapies or novel drugs such 
as immune checkpoint inhibitors, routine lymphadenectomy 
and accurate nodal staging may also provide some benefit in 
improving the prognosis of ICC for patients with high recur-
rence risk[4, 46]. Therefore, the ML radiomics is valuable and 
practical for optimizing treatment strategies and guiding clinical 
decision-making. In addition, the extracted radiomics features 
can also be used as surrogate markers of underlying biological 
activities driving the ER of ICC.

Although the results are promising, there are still some 
limitations in the study. First, this is a retrospective study 
with a limited sample size. A large number of patients were 
excluded because of a lack of imaging data, which may 
result in some potential selection bias. Prospective stud-
ies with larger cohorts are needed to validate the results. 

Fig. 5  Predictive performance of the ML clinical-radiomics models 
in predicting ER in ICC. A ROC curves of the ML clinical-radiomics 
models; B Calibration plots of the ML clinical-radiomics models; C 
Decision curve analysis of the ML clinical-radiomics models. ML, 
machine learning; ER, early recurrence; ICC, intrahepatic cholangio-

carcinoma; ROC, receiver operating characteristic curves; TPR, true 
positive rate; FPR, false positive rate; AUC, area under the receiver 
operating characteristic curve; SVM, Support Vector Machine; Light-
GBM, Light Gradient Boosting Machine; XGBoost, eXtreme Gradi-
ent Boosting
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Second, the manual delineation of ROIs may have resulted 
in some degree of heterogeneity and affected the accuracy 
of data extraction. Third, although external validation 
was performed to enhance the generalizability of radiom-
ics models, differences among the CT scanners and their 
parameters may have led to some bias because engineered 
features are critically dependent on image acquisition set-
tings. Finally, the potential mechanism underlying the radi-
omics features has not been elucidated. Clarifying the bio-
logical meaning of radiomics features underlying tumour 
behaviour is important but challenging, and may shed new 
light on the biological drivers of patient outcomes[42].

In conclusion, this study characterized the potential role 
of CECT-based radiomics in predicting the ER of ICC 
and developed valuable ML radiomics models. This may 
provide significant benefit for accurate risk stratification 
and guiding clinical decision making.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00259- 023- 06184-6.
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