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Abstract
Purpose Chimeric antigen receptor T-cell therapy (CART) prolongs survival for patients with relapsed/refractory B-cell 
non-Hodgkin’s lymphoma. The recently introduced International Metabolic Prognostic Index (IMPI) was shown to improve 
prognostication in the first-line treatment of large B-cell lymphoma. Here, we investigate the prognostic value of the IMPI 
for progression-free (PFS) and overall survival (OS) in the setting of CD19 CART.
Methods Consecutively treated patients with baseline 18F-FDG PET/CT imaging and follow-up imaging at 30 days after 
CART were included. IMPI is composed of age, stage, and metabolic tumor volume (MTV) at baseline and was compared 
with the International Prognostic Index (IPI). Both indices were grouped into quartiles, as previously described for IPI. In 
addition, the continuous IMPI was subdivided into tertiaries for better separation of risk groups. Overall response rate (ORR), 
depth of response (DoR), and PFS were determined based on Lugano criteria. Proportional Cox regression analysis studied 
association of IMPI and IPI with PFS and OS.
Results Thirty-nine patients were included. The IPI was 1 in 23%, 2 in 21%, 3 in 26%, 4 in 21%, and 5 in 10% of the 
patients.  IMPIlow risk,  IMPIintermediate risk, and  IMPIhigh risk patients had 30-day ORR of 69%, 62%, and 62% and 30-day DoR 
of − 67%, − 66%, and − 54% with a PFS of 187 days, 97 days, and 87 days, respectively. ORR and DoR showed no corre-
lation with lower IMPI (r = 0.065, p = 0.697). Dividing patients into three risk groups showed a significant trend for PFS 
stratification (p = 0.030), while IPI did not (p = 0.133). Neither IPI nor IMPI yielded a significant association with OS after 
CART (both p > 0.05).
Conclusion In the context of CART, the IMPI yielded prognostic value regarding PFS estimation. In contrast with IMPI in 
the first-line DLBCL setting, we did not observe a significant association of IMPI at baseline with OS after CART.
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Introduction

Chimeric antigen receptor T-cell therapy (CART) directed 
against the CD19 antigen [1] has demonstrated efficacy in 
relapsed/refractory (r/r) large B-cell lymphoma (LBCL) 
[2–4], follicular lymphoma (FL) [3, 4], and mantle cell 
lymphoma (MCL) [5]. Compared to historical controls, 
CART has significantly improved progression-free sur-
vival (PFS) and overall survival (OS) [6].

The prognosis of LBCL has historically been esti-
mated by the International Prognostic Index (IPI), intro-
duced in 1993, which includes age, performance status, 
Ann Arbor stage, serum lactate dehydrogenase (LDH), 
and extranodal involvement [7]. The IPI score has been 
shown to be prognostic for PFS in the setting of CART 
[8, 9], yet no association with OS has been observed [9]. 
The pivotal trials JULIET and ZUMA-1 showed trends 
for higher overall response rates (ORR) with lower IPI 
scores [3, 4], as well as the recent ZUMA-12 trial [10].

The metabolic tumor volume (MTV) of the lymphomas 
on baseline 18F-Fluorodeoxyglucose positron emission 
tomography–computed tomography (18F-FDG PET/CT) 
is prognostic in Hodgkin [11] and several lymphoma sub-
types of non-Hodgkin lymphoma including transformed FL 
[12], MCL [13], and LBCL [14]. Imaging-based response 
assessment for determination of PFS in most lymphoma 
entities has most frequently relied on 18F-FDG PET/CT. 
In current and ongoing phase III trials, the most widely 
adopted response criteria are based on the Lugano crite-
ria from 2014 [15, 16]. The prognostic value of MTV as a 
component of a prognostic index has been studied recently 
using five published trials on DLBCL [17, 18]. The recently 
introduced International Metabolic Prognostic Index (IMPI) 
was developed after review of the prognostic potential of the 
IPI components as well as MTV and resulted in a simplified 
modification. IMPI only includes age, Ann Arbor stage, and 
MTV, yet outperformed IPI in survival estimation in the 
first-line DLBCL treatment setting [17].

We aimed to compare the prognostic value of the IMPI 
and the historically established IPI for progression-free 
(PFS) and overall survival (OS) in the context of CD19 
CART for r/r B-NHL.

Methods

Study design and population

The study population was based on a prospective reg-
istry of all patients consecutively treated with stand-
ard-of-care CD19 CART (i.e., axicabtagene ciloleucel, 

tisagenlecleucel, brexucabtagene autoleucel) at the Com-
prehensive Cancer Center Munich of the Ludwig-Maxi-
milian University Munich  (CCCMLMU) between January 
2019 and May 2022 (data cutoff). The following inclusion 
criteria were applied:

1. Patients with r/r lymphoma (DLBCL and MCL)
2. Any measurable disease on imaging according to 

Lugano criteria [15].
3. Available 18F-FDG PET/CT imaging studies at base-

line (≤ 2 weeks before CART) and at least at follow-up 
around 30 days (FU) or before if clinical progression 
was evident

The following exclusion criteria were applied:

1. Any non-diagnostic imaging studies or missing baseline 
18F-FDG PET/CT

2. Patients with non-measurable disease
3. Lack of follow-up examinations or survival data at time 

of study inclusion

Histologic diagnoses were reviewed by expert patholo-
gists. Patients received lymphodepletion with fludarabine 
and cyclophosphamide according to the manufacturers’ 
instructions.

Definition of IPI and IMPI

IPI was calculated using age, Eastern Cooperative 
Oncology Group (ECOG) performance status, Ann 
Arbor stage, serum LDH, and extranodal involvement 
[7]. IMPI was calculated using age, Ann Arbor stage, 
and MTV [17]. Tumor delineations were performed 
by a board-certified imaging expert. For stratification 
and statistical analysis, the IPI scores were grouped 
as 0–1 (low risk), 2 (low intermediate risk), 3 (high 
intermediate risk), and 4–5 (high risk) as described 
previously (International Non-Hodgkin’s Lymphoma 
Prognostic Factors Project) [7]. We compared the 
IMPI with IPI, first dividing the study population into 
four groups with the same sizes as the IPI categories 
 (IMPIlow risk,  IMPIlow intermediate risk,  IMPIhigh intermediate risk, 
and  IMPIhigh risk). For this purpose, we ranked patients 
to their absolute IMPI and matched patient numbers 
according with the number of the corresponding IPI 
risk group. In a second subdivision, the advantage 
of the interval-scaled IMPI was used to subdivide it 
into the tertials  IMPIlow risk,  IMPIintermediate risk, and 
 IMPIhigh risk to generate 3 groups with the same size for 
a more detailed breakdown of PFS stratification.
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18F‑FDG PET/CT imaging

PET/CT images were acquired approximately 45 min 
after tracer injection (159–275 MBq weight-adapted with 
approximately 2.5–4.5 MBq 18F-FDG per kg bodyweight) 
and for the FDG PET/CT contrast-enhanced or unen-
hanced CTs using a slice thickness of 2 mm 120 kVp, 
100–400 mAs, and dose modulations were performed 
for attenuation correction. The following scanners 
were used: Biograph 64 and Biograph mCT (Siemens 
Healthineers, Germany) or Discovery 690 (GE Health-
care, USA). Both scanners fulfilled the requirements 
indicated in the European Association of Nuclear Medi-
cine (EANM) imaging guidelines and obtained EANM 
Research Ltd. (EARL1) accreditation during acquisition. 
The following reconstruction algorithms were used: Bio-
graph 64, TrueX (3 iterations, 21 subsets) with Gauss-
ian post-reconstruction smoothing (2 mm full width at 
half-maximum); Biograph mCT, TrueX (3 iterations, 21 
subsets); Discovery 690, VUE Point FX algorithm with 
2 iterations and 36 subsets. All systems resulted in a PET 
image with a voxel size of 2 × 2 × 2  mm3. Images were 
normalized to decay-corrected injected activity per kg 
body weight (SUV g/mL).

Imaging response assessment

Overall response was determined based on Lugano crite-
ria with segmentation of up to 6 target lesions (TL). The 
sum of the product of diameters (SPD) was measured to 
determine tumor burden (TB). DoR was calculated as the 
percent change of SPD from baseline to 30-day follow-up. 
Spleen size was measured with splenomegaly being defined 
by a vertical length > 13.0 cm. Target lesions (TL), non-
target lesions (NTL), and new appearing lesions (NL) dur-
ing therapy were evaluated quantitatively and qualitatively. 
All imaging analyses were performed with dedicated trial 
reporting software mint Lesion 3.8 (mint Medical GmbH; 
Heidelberg, Germany). The MTV was evaluated using the 
open-source software platform LIFEx (https:// www. lifex soft. 
org) [19]. Attenuation-corrected PET images were analyzed, 
and the threshold of the absolute standardized uptake value 
(SUV) was set to ≥ 4 to define hypermetabolic lymphoma 
tissue as described before [20, 21].

Statistical analysis

All statistical analyses were performed using GraphPad 
Prism 9. Proportional Cox regression analysis studied 

Fig. 1  Flow chart. A total of 80 
lymphoma patients were treated 
with CAR T-cell therapy at our 
site. Thirty-two patients did 
not have a baseline 18F-FDG 
PET/CT examination close to 
the CAR T-cell transfusion, 4 
patients were excluded because 
of lack of survival documenta-
tion, and 5 patients did not have 
a measurable lesion according 
to the Lugano criteria. Thirty-
nine patients met the inclusion 
criteria
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association of IMPI and IPI with PFS and OS. For survival 
analysis, PFS and OS were visualized using Kaplan–Meier 
survival curves with categorization for IMPI and IPI as 
described above. Multivariable regression analysis was 
used to study associations between IMPI, IPI, and DoR. 
The overall response rate (ORR) was calculated as the rate 
of patients with CR and PR. Log-rank (Mantel-Cox) test 
was performed to examine the significance of the results. 
p values below 0.05 were considered to indicate statistical 
significance.

Results

Patient characteristics

Thirty-nine out of 80 patients met the inclusion criteria 
(median age: 67 years, 38% female). Thirty-two patients 
had to be excluded because of missing baseline 18F-FDG 
PET/CT examination close to the CAR-T-cell transfusion, 
4 patients were excluded because of lack of survival docu-
mentation, and 5 patients did not have a measurable lesion 
according to the Lugano criteria. A flow chart is provided 
in Fig. 1. The IPI was determined for all patients. The dis-
tribution of IPI scores 1–5 was 23%, 21%, 26%, 21%, and 
10%, respectively. Three patients (8%) had stage I disease, 
10 patients (26%) stage II, 9 patients (23%) stage III, and 
17 patients (44%) stage IV according to Ann Arbor staging 
system. Twenty-eight out of 39 patients (72%) received a 
bridging therapy between apheresis and CAR T-cell infu-
sion. Median SPD at baseline was 4835  mm2, and median 
MTV at baseline was 345 mL. Detailed patient characteris-
tics are demonstrated in Table 1.

IMPI and depth of response (DoR)

The DoR as percent increase or decrease in SPD from BL 
to FU was calculated for all 39 patients and is illustrated 
in Fig. 2. The color coding of the waterfall plot was cho-
sen according to the categories of the IMPI risk catego-
ries. Patients with  IMPIlow risk were labeled green, with 
 IMPIintermediate risk labeled yellow, and with  IMPIhigh risk 
labeled red. The majority of patients had a good 30-day DoR, 
with median percentage change of − 67%, − 66%, and − 54% 
for  IMPIlow risk,  IMPIintermediate risk, and  IMPIhigh risk, respec-
tively. In 24 of 39 patients (62%), Lugano-based TB 
decreased by more than 50% 30 days after CART. In 8 
patients (21%), there was a slight decrease < 50%, and in 1 
patient (3%), the size of lymphoma manifestations had not 
changed. TB increased in 6 patients (15%), by > 50% in 4 
patients (10%), and by < 50% in 2 patients (5%). There was 
no correlation between DoR, IMPI, and IMPI 3-year PFS 
(r = 0.065; p = 0.697).

Imaging‑based overall response

Overall response rate (ORR) was similar for all IMPI risk 
categories.  IMPIlow risk,  IMPIintermediate risk, and  IMPIhigh risk 
patients had a 30-day ORR of 69%, 62%, and 62%, respec-
tively. Imaging-based response classification of the differ-
ent IMPI risk groups by Lugano criteria also showed only 

Table 1  Patient characteristics

CAR  chimeric antigen receptor, LBCL large B-cell lymphoma, IMPI 
International Metabolic Prognostic Index, IPI International Prognos-
tic Index, LDH lactate dehydrogenase, MCL mantle cell lymphoma, 
MTV metabolic tumor volume, SPD sum of the product diameters

Age Median 67

Gender Female: 15 (38%)
Male: 24 (62%)

Lymphoma entity LBCL: 31 (79%)
MCL: 8 (21%)
- Blastoid MCL 3 (8%)
- Classic MCL 5 (13%)

Ann Arbor stage I: 3 (8%)
II: 10 (26%)
III: 9 (23%)
IV: 17 (44%)

IPI 1: 9 (23%)
2: 8 (21%)
3: 10 (26%)
4: 8 (21%)
5: 4 (10%)

CART Product Tisagenlecleucel: 19 (49%)
Axicabtagene ciloleucel: 9 (23%)
Brexucabtagene autoleucel: 8 (21%)
Lisocabtagene maraleucel: 3 (8%)

Bridging Chemotherapy: 22 (56%)
Immunotherapy: 3 (8%)
Radiation: 2 (5%)
Combined therapy: 1 (3%)
No bridging 11 (28%)

LDH (median) Apheresis: 377 U/L
Prior lymphodepletion: 307 U/L

SPD (median) Total: 4,835  mm2

IMPI low risk: 786  mm2

IMPI intermediate risk: 7160  mm2

IMPI high risk: 10,406  mm2

MTV (median) Total: 345 mL
IMPI low risk: 6 mL
IMPI intermediate risk: 410 mL
IMPI high risk: 1199 mL

Probability of 3y-PFS 
according to IMPI

Total: 77%
IMPI low risk: 89%
IMPI intermediate risk: 77%
IMPI high risk: 62%
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minor differences. In the  IMPIlow risk group, 3 patients (23%) 
showed CR, 6 patients (46%) PR, 2 patients (15%) SD, and 2 
patients (15%) PD at 30-day FU. Of the 13  IMPIintermediate risk 
patients, 2 patients (15%) had CR, 6 patients (46%) PR, 1 
patient (8%) SD, and 4 patients (31%) PD. In the  IMPIhigh 

risk group, 1 patient (8%) was detected with CR, 7 patients 
(54%) with PR, 4 patients (31%) with SD, and 1 patient 
(8%) with PD.

IPI and IMPI scores and imaging endpoints

For the same three IMPI-based risk groups, we per-
formed an analysis of association with PFS. The median 
Lugano-based PFS was 187 days, 97 days, and 87 days for 
 IMPIlow risk,  IMPIintermediate risk, and  IMPIhigh risk patients, 
respectively (Table 2). A moderate negative correlation 
between IMPI 3y-PFS probability and IPI (r =  − 0.672, 
p < 0.001) and a moderate positive correlation between PFS 
and OS (r = 0.619, p < 0.001) was observed. IPI and the size-
adjusted IMPI groups were not able to stratify PFS (both 
p > 0.05). However, dividing patients into three risk groups 
 IMPIlow risk,  IMPIintermediate risk, and  IMPIhigh risk according to 
their IMPI 3y-PFS probability showed a significant trend for 

PFS stratification (p = 0.030). Neither IPI nor IMPI yielded a 
significant association with OS after CART (both p > 0.05). 
Kaplan–Meier curves for PFS and OS with the different 
group forms are depicted in Fig. 3A–C.

Discussion

In our study set in the context of later-line CART for r/r 
B-NHL patients, the IMPI outperformed the IPI for prog-
nostication of PFS. However, we did not find a significant 
association with ORR, DoR, and OS, neither for IMPI nor 
for IPI, in this patient population. Unlike first-line LBCL 
treatment, the prognostic relevance of IMPI (and possibly 
IPI) regarding OS may therefore be limited in the CART 
setting.

In the first-line treatment setting, the association of imag-
ing endpoint surrogates of survival such as PFS with OS has 
been established [22, 23]. In contrast, later disease stages 
may reflect phenotypic and metabolic changes of the lym-
phoma manifestations themselves, which may in turn affect 
these associations [24, 25]. Typically, more widespread 
nodal locations are involved, and extranodal lesions are more 
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Fig. 2  Depth of response and IMPI. Color-coded waterfall plot for 
depth of response (DoR) as percentage change of Lugano tumor 
burden (TB) of all patients from baseline to follow-up 30 days after 

CART. Positive values indicate an increase and negative values 
a decrease in TB. Bars are labeled red for  IMPIhigh risk, yellow for 
 IMPIintermediate risk, and green for  IMPIlow risk at baseline

Table 2  Influence of IMPI on imaging endpoints at 90 days and on PFS

ORR DoR PFS CR PR SD PD

IMPIlow risk 69% -508.9 mm2 (-67%) 187 d 3 (23%) 6 (46%) 2 (15%) 2 (15%)

IMPIintermediate risk 62% -2,881.2 mm2 (-66%) 97 d 2 (15%) 6 (46%) 1 (8%) 4 (31%)

IMPIhigh risk 62% -6,543.7 mm2 (-54%) 87 d 1 (8%) 7 (54%) 4 (31%) 1 (8%)

Comparison of different risk groups (low, intermediate, and high) based on tertiaries of the International Metabolic Prognostic Index (IMPI). 
Shown are overall response rates (ORR) and depth of response (DoR) as change in sum of the product diameters (SPD) of up to 6 target lesions 
from baseline to follow-up 30  days after CART. In addition, median PFS, number of patients with complete response (CR, green), partial 
response (PR, yellow), stable disease (SD, gray), and progressive disease (PD, red) as defined by Lugano criteria are displayed
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frequently encountered. Importantly, these imaging findings 
are associated with elevated systemic inflammatory mark-
ers, which are of prognostic interest in the context of CART 

[26–28]. Notably, prognostic indices have so far not been 
adapted to such changes in the disease course, and data on 
association with OS is scarce [15, 29].
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Fig. 3  Survival Stratification by IPI and IMPI. Depicted are the 
Kaplan–Meier curves for progression-free survival (PFS, left) and 
overall survival (OS, right). The upper row (A) shows the color-coded 
Kaplan–Meier curves according to the IPI groups with low risk (IPI 
0–1, green), low intermediate risk (IPI 2, yellow), high intermediate 
risk (IPI 3, orange), and high risk (IPI 4–5, red). The middle row (B) 

demonstrates the survival curves for the size-adjusted IMPI groups 
analogous to the IPI groups with the same color coding. The lower 
row (C) depicts a split of the IMPI groups by tertials into 3 equally 
sized groups with the following color coding: IMPI low risk (green), 
IMPI intermediate risk (yellow), and IMPI high risk (red)
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In our study population, the division of groups according 
to the originally published 4 risk groups [7] was not able to 
stratify PFS or OS. This could be due to the limited number 
of subjects in this study. Another explanation is that the IPI 
might have a different prognostic value in context of later 
line treatments such as CART. Consistent with this would 
be that division of patients into a low-risk IPI group (IPI 
0–2) and a high-risk group (IPI 3–5) showed a small non-
significant difference in PFS in our cohort (Supplemental 
Fig. 1A) but no difference in OS (Supplemental Fig. 1B), as 
previously published in the setting of CART [9].

Novel prognostic indices, imaging endpoints, and 
response criteria in lymphoma will likely evolve from 
selected lesion-based assessments (as, e.g., with the Lugano 
criteria) to whole tumor burden quantification (as, e.g., with 
MTV). In the first-line setting, the IMPI has outperformed 
the conventional IPI in estimating outcome of DLBCL 
patients. Notably, MTV has replaced the three compo-
nents LDH, Ann Arbor stage, and performance status [17]. 
This indicates that whole tumor burden may contain more 
important prognostic information and that other less granu-
lar clinical or serological data may carry some redundant 
information.

To our knowledge, there is no literature comparing IMPI 
and IPI in the context of advanced lymphoma under CAR 
T-cell therapy. Our study has limitations which need to be 
considered when interpreting the results. First, this is a 
single-center study with a limited number of subjects. This 
may limit the interpretation of the association of IMPI or IPI 
with OS. Second, some patients had to be excluded as there 
was no measurable disease on PET. This represents a limita-
tion of imaging-based prognostic indices (as compared with 
IPI) in clinical routine. Third, resulting from the operational 
and logistical nature of CART, the clinical use of bridging 
therapy may affect the MTV as the metabolic activity is 
likely altered by systemic bridging regimens. During the 
bridging period, this may affect the metabolic component 
of the lymphomas more strongly than the morphologic lym-
phoma masses, which could also affect the prediction of OS.

In conclusion, the IMPI yielded superior prognostic value 
compared to the IPI alone regarding the estimation of PFS 
following CD19 CART and thus holds potential as a novel 
prognostic index. In contrast with IMPI in the first-line 
DLBCL setting, we did not observe a significant association 
of IMPI at baseline with OS after CART. Future research 
should prospectively assess the value of IMPI regarding OS 
in larger studies of r/r B-NHL patients receiving CART.
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