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Abstract
Purpose The efficacy of sublobar resection of primary lung cancer have been proven in recent years. However, sublobar 
resection for highly invasive lung cancer increases local recurrence. We developed and validated multiple machine learning 
models predicting pathological invasiveness of lung cancer based on preoperative  [18F]fluorodeoxyglucose (FDG) positron 
emission tomography (PET) and computed tomography (CT) radiomic features.
Methods Overall, 873 patients who underwent lobectomy or segmentectomy for primary lung cancer were enrolled. Radiom-
ics features were extracted from preoperative PET/CT images with the PyRadiomics package. Seven machine learning models 
and an ensemble of all models (ENS) were evaluated after 100 iterations. In addition, the probability of highly invasive lung 
cancer was calculated in a nested cross-validation to assess the calibration plot and clinical usefulness and to compare to 
consolidation tumour ratio (CTR) on CT images, one of the generally used diagnostic criteria.
Results In the training set, when PET and CT features were combined, all models achieved an area under the curve (AUC) 
of ≥ 0.880. In the test set, ENS showed the highest mean AUC of 0.880 and smallest standard deviation of 0.0165, and when 
the cutoff was 0.5, accuracy of 0.804, F1 of 0.851, precision of 0.821, and recall of 0.885. In the nested cross-validation, the 
AUC of 0.882 (95% CI: 0.860–0.905) showed a high discriminative ability, and the calibration plot indicated consistency 
with a Brier score of 0.131. A decision curve analysis showed that the ENS was valid with a threshold probability ranging 
from 3 to 98%. Accuracy showed an improvement of more than 8% over the CTR.
Conclusion The machine learning model based on preoperative  [18F]FDG PET/CT images was able to predict pathological 
highly invasive lung cancer with high discriminative ability and stability. The calibration plot showed good consistency, 
suggesting its usefulness in quantitative risk assessment.
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Introduction

Lung cancer has one of the highest mortalities among 
cancer worldwide [1], and the 5-year survival rate is less 
than 50% for locally advanced lung cancer with invasion 
of other organs or mediastinal lymph node metastasis. In 
contrast, the 5-year survival rate is more than 80% for 
stage I lung cancer, for which surgery is the initial therapy, 
and a long-term survival can be expected with appropri-
ate staging and treatment [2]. However, even stage I lung 
cancer is not uniformly pathologically invasive, and there 
are some high-grade lung cancers. Small-cell lung cancer 
[3] and large-cell neuroendocrine carcinoma [4] have a 
poor prognosis, as do adenocarcinoma with micropapil-
lary component [5]. Recurrence rates and prognoses vary, 
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and it is necessary to provide appropriate medical treat-
ment for each patient rather than uniform local therapy and 
postoperative follow-up. In terms of surgery, lobectomy 
is the standard procedure for primary lung cancer, but the 
indication of sublobar resection for small lung cancer has 
been verified in the large-scale clinical trials JCOG0802/
WJOG4607L [6] and CALGB140503 [7]. The underlying 
reason is that sublobar resection is expected to be non-
inferior to lobectomy with respect to overall survival in 
small lung cancers. JCOG0802/WJOG4607L showed that 
local recurrence was more likely with sublobar resection 
than lobectomy, but the overall survival was superior due 
to an improvement in deaths from other diseases [6].

However, radical treatment for recurrence may require 
a pneumonectomy, and the burden of radiation therapy 
and chemotherapy is large. Therefore, the selection of 
procedure should depend on the risk of recurrence. Lung 
cancers prone to recurrence tend to have lymphovascu-
lar invasion or pleural invasion, and an increase in local 
recurrence has been reported in cases in which sublobar 
resection was performed for highly invasive cancer [8]. 
Koike et al. reported that lymphatic invasion and pleural 
invasion were independent predictors of local recurrence 
in sublobar resection, with hazard ratios of 3.824 and 
2.272, respectively. However, the preoperative diagnosis 
of invasiveness is still difficult in the clinical setting since 
the pathological invasiveness of lung cancer is evaluable 
only after scrutinizing the pathological specimen. There-
fore, we explored methods for estimating the presence of 
invasion based solely on preoperative radiomic features.

The invasiveness of lung cancer has been convention-
ally evaluated based on tumour diameter and consolidation 
tumour ratio (CTR) on computed tomography (CT) images 
[9]. Although higher CTR tends to indicate higher malig-
nancy, CT findings do not always match the pathologic 
invasive findings in individual cases [10]. In addition, 
many lung cancers are solid nodules without ground-glass 
opacity, and false-positive results occur frequently with 
CTR [11]. Other than CT scan, fluorodeoxyglucose-pos-
itron emission tomography (FDG-PET) is recommended 
for evaluating the presence of lymph node metastases and 
inspecting distant metastases [12]. FDG-PET is also useful 
for a qualitative evaluation reflecting the tumour metabo-
lism. Not only the maximum standardised uptake value 
 (SUVmax) but also the metabolic tumour volume (MTV) 
and total lesion glycolysis (TLG) are useful for making 
a diagnosis, evaluating the curative effect, and determin-
ing the prognosis [13, 14]. Furthermore, with the recent 
development of radiomics, which aims to extract quantita-
tive radiological features from medical images in a high-
throughput manner for diagnostic and therapeutic applica-
tions, medical imaging modalities including FDG-PET are 
expected to fill new clinical roles.

The application of machine learning to radiomics has 
been shown to improve the predictive performance in the 
diagnosis and prognosis prediction [15]. Many machine 
learning models with CT images have been reported in lung 
cancer [16, 17], but few analyses have been performed on 
FDG-PET images, and no studies have predicted highly 
invasive lung cancer restricted to patients who had under-
gone surgery. Even in the reported PET image studies, the 
small sample size has limited the evaluation of the prediction 
models [18].

In the present study, we constructed and validated a PET/
CT radiomics-based machine learning model to predict 
pathological highly invasive lung cancer in a large cohort 
of patients who had undergone surgery for lung cancer. 
This study further analysed the predictive performance and 
its application to clinical practice, and compared machine 
learning model to the CTR on CT images. We also evalu-
ated the performance when the histological type was lim-
ited to adenocarcinoma (Adc) or squamous cell carcinoma 
(Sqc) and when the tumour diameter was limited to ≤ 3 cm 
or ≤ 2 cm.

Materials and methods

Patient selection

This study is a retrospective, single-centre study. Patients 
who underwent surgery for primary lung cancer between 
January 2008 and December 2020 at the Department of 
Thoracic Surgery, Chiba Cancer Centre, were included. 
Exclusion criteria were as follows: (i) a history of radical 
treatment for lung cancer; (ii) neoadjuvant chemotherapy 
for lung cancer; (iii) patients with pathology specimens 
showing multiple lung cancers; (iv) no  [18F]FDG PET/CT 
using a Siemens Biograph 6 LSO (Siemens, Erlangen, Ger-
many) within 3 months before surgery; (v) missing analys-
able imaging data; (vi) weakly integrated and not suitable 
for an analysis; (vii) partial resection performed; and (viii) 
pathology report not sufficient to diagnose pathological 
highly invasive lung cancer. Cases of partial resection were 
excluded because the lymph nodes were not evaluated. A 
flowchart of the selection criteria is shown in Fig. 1. Ulti-
mately, 873 of 1668 patients met the criteria and were eligi-
ble. This study was approved by the Ethics Review Commit-
tee at our institution (No. R04-134), and written informed 
consent was waived for this retrospective study.

Pathological findings

Pathological highly invasive lung cancer was defined in 
cases with any of the following: (i) lymph node metastasis; 
(ii) vascular invasion; (iii) lymphatic invasion; (iv) pleural 
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invasion; or (v) intrapulmonary metastasis. The control 
group was defined as cases of lung cancer without any of 
the above findings.

Image acquisition

[18F]FDG PET/CT images were obtained using a Biograph 6 
PET/CT scanner (Siemens Healthcare) at the Chiba Cancer 
Centre. The median number of days between the date of 
PET/CT and the date of surgery was 34 (interquartile range: 
23–45). Imaging was performed following the guidelines 
of the Japanese Society of Nuclear Medicine.  [18F]FDG at 
4 MBq/kg of body weight was injected before image acquisi-
tion, and imaging started 60 min after the acquisition. PET 
was performed for 2 min per bed, with a shorter imaging 
time per bed for higher doses and longer imaging time for 
lower doses to reduce the effect of dose differences. The CT 
slice thickness was 5 mm. The point spread function algo-
rithm corrected the image reconstruction.

Tumour segmentation

PET and CT images were retrieved from the electronic medi-
cal record, loaded by 3D slicer software, version 4.11, and 
used for lung cancer segmentation. Grow from seeds imple-
mented in 3D slicer was used to segment lung cancer in CT 
images. Grow from seeds achieves segmentation by start-
ing from pixels that are simply pointed out as lung cancer 
and background pixels and enlarging the region of interest 

[19]. PET Tumor Segmentation, a semi-automatic method, 
was used for PET image segmentation. PET Tumor Seg-
mentation, which is faster and more consistent than manual 
segmentation [20], can be implemented as an extension of 
3D slicer. The  SUVmax,  SUVmean, MTV, and TLG of the 
segmented regions were calculated using the PET-IndiC, an 
extension of 3D slicer.

Radiomics feature extraction

The Python package Pyradiomics (version 3.0.1 https:// 
github. com/ Radio mics/ pyrad iomics) was used for feature 
extraction. Both PET and CT images were resampled to a 
uniform voxel size of 2.0 × 2.0 × 2.0 by B Spline completion. 
Discretization of PET and CT images was set to a bin width 
of 0.5 for PET images and 25 for CT images [21]. A total of 
3190 features (1595 each) were extracted. The original 107 
features were calculated for each PET and CT image. One 
thousand four hundred eighty-eight features were calculated 
with filters of square, square root, logarithm, exponential, 
logarithm, wavelet, and Laplacian of Gaussian, and three 
sigma values of 2.0, 3.0, and 4.0 were used in the Laplacian 
of Gaussian filter.

Model development

The workflow of this study consists of two steps (Supple-
mentary Fig. 1). The first step involves analysing only CT, 
only PET, and combined PET/CT features (hereafter denoted 

Fig. 1  The flow chart of patient 
selection. A total of 1668 
patients underwent lung cancer 
resection during the study 
period. Ultimately, 873 patients 
met the criteria and were 
included in the study
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as PET/CT) to evaluate prediction performance and stabil-
ity of each machine learning model. The patient cohort was 
divided 70% into a training set and 30% into a test set, and 
feature standardization and selection were performed based 
on the training set and applied to the test set. Feature selec-
tion was performed with Boruta [22], a feature selection 
method based on the variable importance of Random Forest 
(RF). Boruta selects variables by creating random shadow 
variables and repeatedly comparing variable importance 
to them. Although several feature selection methods exist, 
Boruta has been validated in many studies, and Degenhardt 
et al. concluded that Boruta was more effective than other 
methods in selecting a small subset containing the best pre-
dictor variables in omics data [23]. In the present study, the 
parameters of Boruta were set to n_estimators 300, perk 100, 
and alpha 0.05.

The machine learning models used in our study were 
logistic regression (LR), support vector machine (SVM), 
K-nearest neighbour (KNN), RF, light gradient boosting 
machine (LGB) [24], deep neural net (DNN), and TabNet 
[25]. As deep neural models, not only DNN but also Tab-
Net, which is specialised for tabular data, were used. We 
also established the ensemble model (ENS), which averaged 
the prediction probabilities of all models in the test set. For 
machine learning models other than TabNet, hyperparame-
ters were optimised using fivefold cross-validation with area 
under the curve (AUC) as the evaluation metrics. TabNet 
was optimised using the validation set after pretraining with 
fixed parameters. Details of the hyperparameter settings are 
shown in Supplementary Table 1. The same procedure was 
repeated for 100 iterations with different random seeds to 
evaluate prediction performance and stability, from the divi-
sion of patients to constructing the machine learning model 
as one iteration. The mean and standard deviation (SD) of 
the AUC, accuracy, F1, precision, and recall were calculated 
as evaluation metrics.

For the second step of the analysis, a calibration plot and 
decision curve analysis (DCA) [26] based on predicted prob-
ability were performed for clinical use. A calibration plot 
visualises the reliability of the predicted probability compar-
ing the probability and actual proportions. A DCA uses the 
theoretical relationship between the relative harms of false 
positives and false negatives to indicate the range or amount 
of benefit from changing the thresholds on which treatment 
selection is based. Net Benefit of a model is given by:

Here, pt is the changing threshold probability. The higher 
the net benefit, the more beneficial the model. To calculate 
the probability for all patients, all models except for TabNet 
were analysed by nested fivefold cross-validation with the 
inner loop of fivefold cross-validation. TabNet was analysed 

Net Benef it =
True Positive Count

n
−

False Positive Count

n
(

pt

1 − pt
)

with the inner loop of hold-out. In addition, we performed an 
analysis limited to Adc, Sqc, and tumours with a horizontal 
section diameter ≤ 3 cm and ≤ 2 cm, based on the predicted 
probabilities calculated in the analysis of all patients. In 
addition, a comparison of the CTR was also performed. The 
CTR was measured based on thin-slice CT if taken within 
3 months before surgery.

Statistical analyses

As appropriate, categorical or continuous variables were 
compared with Fisher’s exact test, t-tests, or the Mann–Whit-
ney U test. All analyses were two-tailed, with P < 0.05 indi-
cating a significant difference. Statistical analyses of the 
patient background and a DCA were performed using the 
R software program (version 3.6.3, http:// www.R- proje ct. 
org). Python (version 3.7) with the scikit-learn package 
(version 1.0.2) and Pytorch (version 1.10.2) were used to 
build machine learning models and evaluate their predictive 
performance.

Results

Patient characteristics

A total of 873 lung cancer patients were ultimately eligible. 
Pathologically 317 patients were in the control group with-
out any invasion findings, and 556 had highly invasive lung 
cancer. Patient characteristics are shown in Table 1.

Age was not significantly different between the con-
trol group and highly invasive group. The highly inva-
sive group showed higher proportions of male subjects 
(P < 0.001) and smokers (P < 0.001) than the control group. 
The tumour diameter on CT was significantly larger in the 
highly invasive group than in the control group (P < 0.001). 
Furthermore, according to FDG-PET images, the  SUVmax 
(P < 0.001) and the  SUVmean (P < 0.001) were higher and 
the MTV was larger (P < 0.001), resulting in a higher TLG 
(P < 0.001) in the highly invasive group than in the con-
trol group. Lobectomy was more frequently selected in the 
highly invasive group than in the control group (P < 0.001). 
In terms of histology, Adc was more common in the control 
group than in the highly invasive group. Vascular invasion 
was the most common reason for highly invasive lung cancer 
(82.3%), followed by lymphatic invasion in 45.5%, pleural 
invasion in 55.2%, pulmonary metastasis in 6.1%, and lymph 
node metastasis in 38.3% of cases.

Machine learning prediction

Seven machine learning models and a simple average of 
predictions on the test set were established to evaluate 
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prediction performance. The above steps were repeated 100 
iterations to obtain the mean and SD of predicted probabili-
ties. In the training set, the model was constructed with the 
AUC as the evaluation metrics (Supplementary Table 2). All 
models except for TabNet were cross-validated and achieved 
a mean AUC > 0.88 for PET/CT, > 0.87 for PET, and > 0.85 
for CT. LGB achieved the highest mean AUC of 0.894 (SD 
0.00838) for PET/CT and 0.885 (SD 0.00921) for PET. LGB 
and DNN achieved the highest AUC of 0.865 for CT and 
mean SDs of 0.00969 and 0.00982, respectively.

The results in the test set are shown in Table 2. For evalu-
ations except for the AUC, the threshold was set to 0.5. For 
PET/CT, LR and ENS achieved the highest mean AUC of 
0.880 and mean SDs of 0.0168 and 0.0165 respectively, 

outperforming SVM (AUC 0.867, SD 0.0191), KNN (AUC 
0.868, SD 0.0167), RF (AUC 0.875, SD 0.0170), LGB 
(AUC 0.874, SD 0.0182), DNN (AUC 0.875, SD 0.0194), 
and TabNet (AUC 0.871, SD 0.0170). For PET alone, ENS 
achieved an AUC of 0.872 (SD 0.0177), the best perfor-
mance. Although less predictive performance than PET/CT, 
all models performed well. For CT alone, ENS achieved an 
AUC of 0.856 (SD 0.0183), which showed similarly high 
predictive performance, but all models performed worse 
than PET alone or PET/CT. Figure 2A shows the probabil-
ity of each model in one test set. Cases with high or low 
predictive probability tended to show equal probability in 
all models, while cases with probability around 0.5 were 
scattered with markedly different values in each model. 

Table 1  Patient characteristics

The patients’ background characteristics are presented. Categorical variables were analysed with Fisher’s 
exact test and continuous variables with a t-test or the Mann–Whitney U test. CT, computed tomography; 
FDG-PET, fluorodeoxyglucose positron emission tomography; SUV, standardised uptake value; MTV, met-
abolic tumour volume; TLG, total lesion glycolysis

Total (n = 873) Control group (n = 317) Highly invasive (n = 556) P value

Age, mean ± SD 69.1 ± 8.4 68.7 ± 9.2 0.49
Sex  < 0.001
 Female 141 (44.5%) 137 (24.6%)
 Male 176 (55.5%) 419 (75.4%)
 Pack years, median (IQR) 16 (0–40) 40 (15–57)  < 0.001
 CT tumour size, median (IQR) 24.7 (20.1 – 31.6) 35.0 (26.0 – 47.4)  < 0.001

FDG-PET findings, median (IQR)
 SUVmax 2.99 (1.58—6.08) 13.4 (7.75 – 19.22)  < 0.001
 SUVmean 1.85 (1.23—2.72) 4.84 (3.25 – 6.91)  < 0.001
 MTV 3.02 (1.78 – 6.29) 12.1 (5.15 – 29.00)  < 0.001
 TLG (SUVmean*Volume) 5.99 (2.43—16.42) 62.4 (19.35 – 188.24)  < 0.001

Surgical procedure  < 0.001
 Lobectomy 245 (77.3%) 523 (94.1%)
 Segmentectomy 72 (22.7%) 33 (5.9%)

Tumor histology  < 0.001
 Adenocarcinoma 272 (85.8%) 324 (58.3%)
 Squamous cell carcinoma 37 (11.7%) 154 (27.7%)
 Others 8 (2.5%) 78 (14.0%)

Pathological stage -
 1A 265 (83.6%) 96 (17.3%)
 1B 41 (12.9%) 200 (36.0%)
 2A 10 (3.2%) 81 (14.6%)
 2B 1 (0.3%) 29 (5.2%)
 3A 0 110 (19.8%)
 3B 0 6 (1.1%)
 4 0 34 (6.1%)

Pathological findings (%) -
 Vascular invasion 0 458 (82.3%) -
 Lymphatic invasion 0 253 (45.5%) -
 Pleural invasion 0 307 (55.2%) -
 Pulmonary metastasis 0 34 (6.1%) -
 Lymph node metastasis 0 213 (38.3%) -
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Table 2  Performance of the 
machine learning models for the 
test set

The mean value and standard deviation of 100 times for each evaluation index are shown. Bold indicates 
the highest values. CT, computed tomography; LR, logistic regression; SVM, support vector machine; KNN, 
K-nearest neighbour; RF, random forest; LGB, light gradient boosting machine; DNN, deep neural net; 
ENS, ensemble; PET, positron emission tomography

AUC (SD) Accuracy (SD) F1 score (SD) Precision (SD) Recall (SD)

CT
 LR 0.854 (0.0167) 0.792 (0.0330) 0.845 (0.0198) 0.806 (0.0473) 0.892 (0.0383)
 SVM 0.842 (0.0206) 0.795 (0.0208) 0.838 (0.0182) 0.837 (0.0262) 0.842 (0.0330)
 KNN 0.845 (0.0215) 0.791 (0.0196) 0.842 (0.0166) 0.809 (0.0265) 0.879 (0.0266)
 RF 0.851 (0.0187) 0.798 (0.0194) 0.847 (0.0161) 0.817 (0.0249) 0.879 (0.0260)
 LGB 0.848 (0.0202) 0.792 (0.0202) 0.842 (0.0161) 0.810 (0.0264) 0.878 (0.0250)
 DNN 0.853 (0.0188) 0.794 (0.0207) 0.843 (0.0173) 0.818 (0.0312) 0.872 (0.0398)
 TabNet 0.848 (0.0209) 0.794 (0.0202) 0.844 (0.0168) 0.812 (0.0363) 0.882 (0.0442)
 ENS 0.856 (0.0183) 0.798 (0.0188) 0.846 (0.0158) 0.819 (0.0251) 0.876 (0.0281)

PET
 LR 0.869 (0.0184) 0.788 (0.0415) 0.841 (0.0236) 0.810 (0.0480) 0.878 (0.0342)
 SVM 0.864 (0.0179) 0.792 (0.0207) 0.841 (0.0193) 0.815 (0.0330) 0.873 (0.0495)
 KNN 0.859 (0.0201) 0.790 (0.0195) 0.840 (0.0173) 0.814 (0.0277) 0.868 (0.0284)
 RF 0.867 (0.0193) 0.791 (0.0200) 0.839 (0.0169) 0.821 (0.0288) 0.860 (0.0283)
 LGB 0.866 (0.0189) 0.786 (0.0200) 0.835 (0.0173) 0.817 (0.0273) 0.856 (0.0264)
 DNN 0.869 (0.0181) 0.788 (0.0206) 0.836 (0.0197) 0.820 (0.0374) 0.857 (0.0532)
 TabNet 0.866 (0.0177) 0.783 (0.0284) 0.839 (0.0185) 0.796 (0.0454) 0.893 (0.0530)
 ENS 0.872 (0.0177) 0.793 (0.0189) 0.842 (0.0160) 0.817 (0.0280) 0.871 (0.0265)

PET/CT
 LR 0.880 (0.0168) 0.806 (0.0188) 0.852 (0.0151) 0.824 (0.0244) 0.883 (0.0215)
 SVM 0.867 (0.0191) 0.807 (0.0195) 0.853 (0.0158) 0.825 (0.0281) 0.885 (0.0282)
 KNN 0.868 (0.0167) 0.797 (0.0189) 0.847 (0.0150) 0.811 (0.0278) 0.887 (0.0280)
 RF 0.875 (0.0170) 0.797 (0.0202) 0.844 (0.0167) 0.823 (0.0264) 0.869 (0.0290)
 LGB 0.874 (0.0182) 0.797 (0.0201) 0.845 (0.0164) 0.820 (0.0243) 0.873 (0.0261)
 DNN 0.875 (0.0194) 0.802 (0.0204) 0.848 (0.0178) 0.824 (0.0330) 0.877 (0.0456)
 TabNet 0.871 (0.0170) 0.794 (0.0238) 0.845 (0.0173) 0.810 (0.0368) 0.887 (0.0406)
 ENS 0.880 (0.0165) 0.804 (0.0185) 0.851 (0.0147) 0.821 (0.0249) 0.885 (0.0240)
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Fig. 2  The predicted probability and coefficient correlation of all 
models. A The probability of each model in one test set is visual-
ized in the swarm plot. Identical cases are connected by straight lines. 

Plots indicate highly invasive lung cancer (orange) and lung cancer in 
the control group (blue). B Correlation coefficients of probability for 
each model are shown
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Figure 2B shows the correlation coefficient of probability 
for each model. The ENS had a coefficient of 0.97 or higher 
for all models, indicating a strong correlation. Conversely, 
the deep model had a weak correlation with a coefficient of 
less than 0.96 for all models except for ENS.

Calibration plot and DCA results

The probability of including in the highly invasive lung 
cancer was calculated for all lung cancers based on nested 
fivefold cross-validation. Figure 3 shows the analysis of 
ENS based on all cases, and the AUC was 0.882 (95% CI: 
0.860–0.905). In the calibration plot, the predicted probabil-
ity closely matched the actual highly invasive cancer prob-
ability, with a Brier score of 0.131 (Fig. 3B). In the decision 
curve, the net benefit was higher for using the probability 
of ENS than for the assumption that all lung cancers were 
highly invasive if the threshold probability was greater than 
6% (Fig. 3C). For the control group, a threshold probability 
between 2 and 94% was valid (Fig. 3D).

Next, patients with Adc (Fig.  4A, B, C) and Sqc 
(Fig. 4D, E, F) were extracted from the results based on 

all patients. The receiver operating curves (ROCs) are 
shown in Supplementary Fig. 2. For Adc, ENS achieved 
an AUC of 0.885 (95% CI: 0.859–0.911) and a Brier score 
of 0.138. The decision curve showed validity with a pre-
dictive probability threshold of 3–98% for highly invasive 
lung cancer and 2–97% for the control group. For Sqc, 
the AUC was 0.789 (95% CI: 0.704–0.875), and the Brier 
score was 0.129. The decision curve showed validity with 
a predictive probability threshold of 49–91% for highly 
invasive lung cancer and 9–51% for the control group. 
For tumours with a diameter of ≤ 3 cm (Fig. 5A, B, C), 
ENS achieved an AUC of 0.836 (95% CI: 0.798–0.874) 
and Brier score of 0.165, and for tumours with a diameter 
of ≤ 2 cm (Fig. 5D, E, F), ENS achieved an AUC of 0.834 
(95% CI: 0.765–0.903) and Brier score of 0.163. When 
limited to tumours with a diameter of ≤ 3 cm, the decision 
curve showed validity with a predictive probability thresh-
old of 7–82% for highly invasive lung cancer and 18–93% 
for the control group. When limited to tumours with a 
diameter of ≤ 2 cm, the decision curve showed validity 
with a predictive probability threshold of 4–79% for highly 
invasive lung cancer and 21–93% for the control group.

Fig. 3  Machine learning model 
with ENS for all cases. A ROC 
curve for ENS model in dif-
ferentiating pathological highly 
invasive and non-invasive lung 
cancer. B The calibration plot 
shows the consistency between 
the predicted probability of 
highly invasive cancer and the 
actual rate. Bars indicate the 
group with highly invasive lung 
cancer (orange) and the control 
group (blue) per interval of 
predicted probability. C A DCA 
for pathological highly invasive 
cancer. D A DCA for the con-
trol group
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The comparison with CT findings

The results of ENS were compared with CTR which is 
current diagnostic criteria. Since CTR is generally meas-
ured with thin-slice CT, thin-slice CT if taken were used 
to compare with ENS in all patients. Thin-slice CT was 
performed in 698 patients. Results are shown in Table 3, 
and ROC curves are shown in Supplementary Fig. 3. For 
all patients, the AUC of the CTR was 0.73, and with a cut-
off value of 0.5, the accuracy was 0.712, sensitivity 0.991, 
and specificity 0.224, while with a cut-off value of 1.0, 
the accuracy was 0.726, sensitivity 0.811, and specificity 
0.577. ENS achieved an AUC of 0.882, accuracy 0.811, 
sensitivity 0.888, and specificity 0.675. For the 488 cStage 
IA patients, the AUC of the CTR was 0.701, and with a 
cut-off value of 0.5, the accuracy was 0.570, sensitivity 
0.982, and specificity 0.211, while with a cut-off value of 
1.0, the accuracy was 0.648, sensitivity 0.727, and speci-
ficity 0.579. ENS had an AUC of 0.811, accuracy of 0.736, 
sensitivity of 0.780, and specificity of 0.697.

Discussion

To our knowledge, this is the first report on developing 
machine learning models for predicting highly invasive 
lung cancer using preoperative PET/CT. A machine learn-
ing model for predicting pathological highly invasive lung 
cancer was established based on radiomics features extracted 
from PET/CT in a large cohort. The best predictive perfor-
mance was achieved by combining PET and CT features and 
ensemble multiple machine learning models.

Seven machine learning models were applied in this 
study. Gradient boosting is generally shown to perform well 
on tabular data [27], but the excellent performance of deep 
models has been reported in recent years. Not only DNN 
with a few hidden layers [28] but also models designed for 
tabular data have been proposed [25]. When limited to AUC 
alone, ENS showed the best results, with an AUC of 0.856 
(SD 0.0.183) for CT, AUC of 0.872 (SD 0.0177) for PET, 
and AUC of 0.880 (SD 0.0165) for PET/CT. Ensemble with 
unweighted simple averaging necessarily show superior 
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Fig. 4  Machine learning model with ENS for adenocarcinoma or 
squamous cell carcinoma. A, B, C and D, E, F indicate data for ade-
nocarcinoma and squamous cell carcinoma, respectively. A, D The 
calibration plot shows the group with highly invasive cancer (orange) 
and the control group (blue) per interval of the predicted probabil-

ity. The predicted probability of highly invasive lung cancer and the 
actual proportion was consistent. B, E A DCA for pathological highly 
invasive lung cancer for adenocarcinoma and squamous cell car-
cinoma. C, F A DCA for the control group of adenocarcinoma and 
squamous cell carcinoma
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results, especially when the models are of similarly high per-
formance and low correlation [29]. All models in this study 
had excellent prediction performance, and especially DNN 

had low correlation coefficients with the other models. When 
combining multiple models, selecting a deep model with a 
low correlation coefficient may lead to better results. On the 
other hand, LR showed high prediction performance in PET/
CT alongside ENS, indicating that classical models could be 
effective even with high-throughput omics data. When the 
risk of comparison bias was low, LR was indicated to show 
no marked difference in AUC from other machine learning 
models [30], so it is important to construct and combine 
multiple machine learning models for each analysis.

Lobectomy has long been the standard procedure for 
managing lung cancer. In 1995, a randomised trial compared 
lobectomy and sublobar resection for lung cancers with a 
diameter ≤ 3 cm. The results showed that sublobar resection 
was associated with a threefold risk of local recurrence and 
an increased mortality rate [31]. However, recently, small 
lung cancers with a high rate of ground-glass opacity found 
on thin-slice CT were shown to be primarily pathological 
non-highly invasive lung cancers [11]. In surgery, lung 
cancer with a low CTR showed a good recurrence-free sur-
vival, even with sublobar resection [32]. For patients whose 

O
b
s
e
r
v
e
d
 P

r
o
p
o
r
ti
o
n

1.0

0.8

0.6

0.4

0.2

0.0

Predicted Probability

0.0 0.2 0.4 0.6 0.8 1.0

300

250

200

150

100

50

Threshold Probability

0.0 0.2 0.4 0.6 0.8 1.0

Threshold Probability

0.0 0.2 0.4 0.6 0.8 1.0

N
e
t 
B

e
n
e
fi
t

0.4

0.3

0.2

0.1

0.0

N
e
t 
B

e
n
e
fi
t

0.5

0.4

0.3

0.2

0.1

0.0

140

120

100

80

60

40

20

O
b
s
e
r
v
e
d
 P

r
o
p
o
r
ti
o
n

1.0

0.8

0.6

0.4

0.2

0.0

Predicted Probability

0.0 0.2 0.4 0.6 0.8 1.0

N
e
t 
B

e
n
e
fi
t

0.4

0.3

0.2

0.1

0.0

Threshold Probability

0.0 0.2 0.4 0.6 1.0

N
e
t 
B

e
n
e
fi
t

0.5

0.4

0.3

0.2

0.1

0.0

Threshold Probability

0.0 0.2 0.4 0.6 0.8 1.00.8

Brier score: 0.165

Brier score: 0.163

CBA

FED
S

a
m

p
le

 s
iz

e
S

a
m

p
le

 s
iz

e

Fig. 5  Machine learning model with ENS for tumours ≤ 3  cm 
or ≤ 2  cm in diameter. A, B, C and D, E, F indicate data for 
tumours ≤ 3 cm and ≤ 2 cm in diameter, respectively. A, D A calibra-
tion plot shows the consistency between the predicted probability of 
highly invasive cancer and the actual proportion. Bars indicate the 

group with highly invasive cancer (orange) and the control group 
(blue) for each interval of predicted probability. B, E A DCA for 
pathological highly invasive cancer for tumours ≤ 3 cm and ≤ 2 cm in 
diameter. C, F A DCA for control group of tumors ≤ 3 cm and ≤ 2 cm 
in diameter

Table 3  ENS and CTR performance for all patients and cStage IA

Comparison of ENS and CTR. The AUC, accuracy, sensitivity, and 
specificity are shown for all cases or limited to cStage IA. CTR 
cut-offs of 0.5 and 1 were tested. AUC , area under the curve; ENS, 
ensemble; CTR , consolidation tumour ratio

AUC Accuracy Sensitivity Specificity

All cStage (n = 873)
 ENS 0.882 0.811 0.888 0.675
 CTR (cutoff) 0.73
 0.500 0.712 0.991 0.224
 1.000 0.726 0.811 0.577

cStage IA (n = 488)
 ENS 0.811 0.736 0.780 0.697
 CTR (cutoff) 0.701
 0.500 0.570 0.982 0.211
 1.000 0.648 0.727 0.579
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cancer was inoperable due to their age or presence of major 
comorbidities, stereotactic body radiotherapy (SBRT) has 
also been shown to be effective and to have a low recur-
rence rate in cases of lung cancer with a low CTR, similar 
to surgery [33, 34]. However, as reported in JCOG0802/
WJOG4607L, although sublobar resection was superior to 
lobectomy in terms of the overall survival, local recurrence 
was increased in the patients with a high CTR. SBRT has 
also been shown to increase local recurrence when the CTR 
is high [34]. Regarding surgery, the risk of local recurrence 
increases with proximity to the surgical margins [35, 36]. 
As for tumour effects, local recurrence is more common in 
highly invasive lung cancer than the other lung cancer [8, 
37], and even in Adc, the presence of micropapillary patterns 
[38] or spread through air space (STAS) [39] is associated 
with an increased risk of recurrence. However, because the 
evaluation of invasiveness requires assessing extant invasion 
into anatomic structures, it is difficult to practically diagnose 
pathological highly invasive lung cancer preoperatively in 
cases without lymph node metastasis. CT effectively predicts 
invasiveness, provided that the findings reflect the patho-
logic invasion findings [11]. As shown by Aokage et al. [10], 
although there is a strong correlation between CT findings 
and invasiveness, CT findings do not always match the path-
ologic invasive findings in individual cases.

Several reports have shown that PET findings also effec-
tively predict pathological highly invasive lung cancer. Li 
et al. showed that the MTV obtained from preoperative PET/
CT was an independent predictor of lymphatic invasion, with 
an AUC of 0.854 when multiple factors were combined in 
the same cohort (not validation data) [40]. Despite the good 
statistical performance, however, no machine learning model 
has been built to predict highly invasive lung cancer based 
on PET/CT findings. Regarding machine learning models 
in lung cancer, Zhou et al. analysed PET images using the 
gradient boosting decision tree (GBDT) as a feature selector 
and classifier to differentiate between primary lung cancer 
and metastatic lung tumours, achieving an AUC of 0.983 
[41]. In the same study, the GBDT was similarly used as a 
feature selector and classifier to differentiate lung Adc from 
lung Sqc, achieving an AUC of 0.839. Zhang et al. predicted 
the presence of an EGFR mutation on pretreatment PET/
CT in non-small-cell lung cancer [42]. The least absolute 
shrinkage and selection operator (LASSO) algorithm was 
used to achieve an AUC of 0.87. A nomogram including 
the radiomics signature score by LASSO was also created 
within the same study, and the calibration plot showed con-
sistency. Both studies had high predictive performance, and 
these findings along with the good results in the present 
study support the potential utility of machine learning mod-
els based on PET/CT images.

In our study, the ENS model was superior to the CTR 
both for all cases and when restricted to cStage IA cases. The 

accuracy was 9.9% higher for all patients and 16.6% higher for 
cStage IA patients than for those with a CTR cut-off of 0.5. 
When the cut-off was set at 1.0, the accuracy was 8.5% higher 
for all patients and 8.8% higher for cStage IA. The CTR tends 
to be prone to producing false positives, and machine learn-
ing models based on PET/CT, which show good overall per-
formance, are valid. However, simply predicting whether or 
not a patient has highly invasive lung cancer is not sufficient 
for clinical use. While lobectomy is the standard resection 
approach, an essential aspect of performing sublobar resection 
involves minimizing false-negative results of highly invasive 
lung cancer. However, when a patient undergoes passive sub-
lobar resection due to respiratory deterioration or a comorbid-
ity, some risk of recurrence is assumed to be acceptable when 
the risk–benefit balance is considered.

It is important to note that the predicted probability of 
highly invasive lung cancer and the actual percentage of 
highly invasive lung cancer should approximate each other. 
Each patient has a different threshold for the predicted 
probability of highly invasive lung cancer in surgical selec-
tion. The treatment plan should be based on the individual 
risk–benefit balance, and a DCA that provides quantitative 
value criteria would be beneficial. The present study pre-
sented calibration plots and the results of a DCA for highly 
invasive and less-highly invasive lung cancer. The calibra-
tion plot approximated the actual percentage of highly inva-
sive lung cancer when all cases were analysed and when 
cases were limited. The DCA indicated that the model was 
valuable over a wide range of threshold values. If the pre-
dicted probability of pathological highly invasive lung can-
cer could be presented for each patient, it might be useful 
for a more detailed consideration of therapeutic strategy.

Several limitations associated with the present study war-
rant mention. First, this study was a single-centre retrospec-
tive study, and the influence of bias cannot be excluded. 
Especially in the PET-CT analysis, it is technically com-
plicated to analyse multiple scanners because the reference 
value differs for each scanner. Therefore, we limited our 
analysis to a single scanner. Conversely, whether or not the 
same level of prediction performance can be achieved for 
other PET images is unclear. Prediction models should be 
conducted for PET images of multiple scanners at multi-
ple facilities using harmonization in the future to generalise 
these results. Second, this study was conducted with sublo-
bar resection in mind. Although an increased risk of recur-
rence has been shown for highly invasive lung cancer, the 
comparison should be made with actual recurrence and over-
all survival rates. This study only concerns the prediction of 
highly invasive lung cancer and does not analyse the risk of 
recurrence or survival. Whether or not these models are clin-
ically useful needs to be determined based on the postopera-
tive course, so further analyses are warranted. A multicentre 
prospective analysis of machine learning model applications 
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for the discrimination of invasiveness in preoperative lung 
cancer might be able to resolve this issue. Third, segmenta-
tion was performed using a method that eliminated manual 
segmentation as much as possible, but complete automatic 
segmentation was not achieved. To ensure reproducibility, 
it will be necessary to perform analyses based on a uniform 
procedure or automatic segmentation.

In conclusion, the machine learning models based on pre-
operative PET/CT findings accurately predicted pathological 
highly invasive lung cancer in the present study. In ENS, the 
accuracy was 81.1% for all cases and 73.6% for cStage IA, 
showing an improvement in accuracy of more than 8% over 
the CTR. This model predicts with high accuracy invasiveness 
that cannot be evaluated by CT alone, so it may be useful for 
determining treatment indication. The predicted probability and 
actual percentage of pathological highly invasive lung cancer 
were well approximated, and a DCA indicated that the models 
could provide validity with a wide range of thresholds in clini-
cal analyses. Machine learning models of FDG-PET findings 
provided accurate information for predicting highly invasive 
lung cancer and may aid in the selection of surgical procedures.
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