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Abstract
Purpose  The PET scanners with long axial field of view (AFOV) having ~ 20 times higher sensitivity than conventional 
scanners provide new opportunities for enhanced parametric imaging but suffer from the dramatically increased volume 
and complexity of dynamic data. This study reconstructed a high-quality direct Patlak Ki image from five-frame sinograms 
without input function by a deep learning framework based on DeepPET to explore the potential of artificial intelligence 
reducing the acquisition time and the dependence of input function in parametric imaging.
Methods  This study was implemented on a large AFOV PET/CT scanner (Biograph Vision Quadra) and twenty patients were 
recruited with 18F-fluorodeoxyglucose (18F-FDG) dynamic scans. During training and testing of the proposed deep learning frame-
work, the last five-frame (25 min, 40–65 min post-injection) sinograms were set as input and the reconstructed Patlak Ki images by 
a nested EM algorithm on the vendor were set as ground truth. To evaluate the image quality of predicted Ki images, mean square 
error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) were calculated. Meanwhile, a linear 
regression process was applied between predicted and true Ki means on avid malignant lesions and tumor volume of interests (VOIs).
Results  In the testing phase, the proposed method achieved excellent MSE of less than 0.03%, high SSIM, and PSNR of ~ 0.98 
and ~ 38 dB, respectively. Moreover, there was a high correlation (DeepPET: R2 = 0.73, self-attention DeepPET: R2=0.82) 
between predicted Ki and traditionally reconstructed Patlak Ki means over eleven lesions.
Conclusions  The results show that the deep learning–based method produced high-quality parametric images from small 
frames of projection data without input function. It has much potential to address the dilemma of the long scan time and 
dependency on input function that still hamper the clinical translation of dynamic PET.
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Introduction

Positron emission tomography (PET) plays an important 
role in molecular imaging, which quantitatively reveals the 
tissue metabolism and neurochemistry in vivo and has been 
widely used in humans and animals [1, 2]. In clinical routine, 

a semi-quantitative index, namely standardized uptake value 
(SUV), is deemed as the routine interpretation of PET images 
[3]. However, there are a number of factors, such as the amount 
of tracer injected and uptake time after injection, that affect 
the accuracy of image evaluation and diagnosis [4]. In order 
to enable the absolute quantitative analysis, dynamic PET scan 
following kinetic modeling has been applied to provide useful 
physiological parameters of interest such as blood flow and This article is part of the Topical Collection on Advanced Image 

Analyses (Radiomics and Artificial Intelligence).

 *	 H. Liu 
	 liuhf@zju.edu.cn

1	 College of Biomedical Engineering & Instrument Science, 
Zhejiang University, Hangzhou, People’s Republic of China

2	 College of Optical Science and Engineering, Zhejiang 
University, Hangzhou, People’s Republic of China

3	 Department of Nuclear Medicine, Inselpital, Bern University 
Hospital, University of Bern, Bern, Switzerland

4	 Advanced Clinical Imaging Technology, Siemens Healthcare 
AG, Lausanne, Switzerland

5	 Department of Engineering Physics, Tsinghua University, 
Beijing, China

6	 LaTIM, INSERM, UMR 1101, University of Brest, Brest, 
France

7	 Computer Aided Medical Procedures and Augmented 
Reality, Institute of Informatics I16, Technical University 
of Munich, Munich, Germany

/ Published online: 3 November 2022

European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:701–714

http://crossmark.crossref.org/dialog/?doi=10.1007/s00259-022-06003-4&domain=pdf


1 3

metabolism, providing complementary information for clinical 
diagnosis and therapy [5, 6]. Conventionally, the approaches to 
produce parametric images rely on independently reconstructing 
a series of dynamic images from sinogram data first and then 
fitting the time activity curves (TACs) through kinetic models, in 
which the linear graphical analyses, e.g., Patlak/Logan plot and 
non-linear compartment models, were acknowledged [6]. How-
ever, the noise distribution in iteratively reconstructed dynamic 
images is usually space variant, objective dependent, and dif-
ficult to characterize, resulting in inaccurate estimation of para-
metric images in this indirect approach [7, 8]. The parametric 
image reconstruction tackles this problem by directly generat-
ing parametric images from measured raw sinograms where the 
noise distribution is a well-defined Poisson distribution [9]. It 
has the advantages to reduce the noise propagation and influence 
[10] and therefore improves the quality of the parametric images 
[11] as well as the physiological quantification [12].

In spite of its promising image results and potential clinical 
applications, dynamic PET imaging still has been hampered by 
some limitations: (i) long acquisition time, (ii) accurate measure-
ment of arterial input function (AIF) is needed, and (iii) large 
data sizes due to number of frames [3–5, 13]. In current standard 
axial field-of-view PET scanners, dynamic whole-body imaging 
can be achieved by using a protocol of multi-bed multi-pass, due 
to the small axial field of view (AFOV) and low sensitivity of 
the PET scanner itself [11, 14, 15]. Usually, a routine dynamic 
scan starts after tracer injection and lasts for more than 1 h to 
guarantee adequate photon counts and avoid noisy image results. 
Such long acquisitions result in inevitable physiological motion 
[2] and low-throughout PET scan for hospitals [16], as well as 
discomforting conditions for patients. Moreover, parametric 
image reconstruction methods require an accurate estimation 
of AIF, for which an invasive blood sampling through a catheter 
in the arterial or arterialized venous [17] was performed in early 
research, but it is invasive and costly for patient and clinical staff. 
Therefore, several alternative non-invasive methods have been 
proposed, including the population-based [18], factor analysis 
[19], image-driven input function (IDIF) [20–22], simultaneous 
estimation [23], and recent machine learning methods [24]. IDIF 
is the most common non-invasive method and needs to meas-
ure the activity distribution of like the ascending or descending 
aorta, and left ventricle (LV). The characterization of dynamic 
PET scan implied many data frames required so that large data-
set became a tough issue to be overcome [25].

Recent advancements in long axial field-of-view (LAFOV) 
PET scanners such as the uEXPLORER (United Imaging 
Shanghai, China), PennPET Explorer, and Biograph Vision 
Quadra (Siemens Healthineers, Hoffman Estates, IL, USA) pro-
vide new possibilities and challenges for parametric imaging 
[26–29], making a single-bed single-pass whole-body dynamic 
scan possible [30, 31]. The large coverage and high sensitivity 
make it convenient for blood input function measurement, more 
accurate tracer kinetic modeling, and high-quality parametric 

imaging [32]. It also enabled the potential use of abbreviated 
dynamic imaging protocols [33]. Nevertheless, the estimation 
of AIF is still necessary in current dynamic protocol of either 
conventional or novel total-body PET scanners; many short time 
frame data were acquired leading to heavy storage and computa-
tion burden for PET system. Therefore, the methodology avoid-
ing AIF measurement and saving storage is urgently needed.

In recent years, deep learning has been applied to many 
kinds of tasks in medical imaging, such as noise reduction 
[34–37], image segmentation [38, 39], and image recon-
struction [40–44]. Using convolutional neural networks 
(CNNs) or generative adversarial networks (GAN) could 
get comparable and superior results compared to traditional 
algorithms, along with a fast computation speed.

In particular, researches about using CNNs as regulariza-
tion term in reconstruction model [40] or directly transform-
ing the PET projection data into image through CNNs [43, 
44] draw much attention in deep learning–based PET image 
reconstruction. The work in [44] proposed a convolutional 
encoder–decoder (CED) model, i.e., DeepPET, to reconstruct 
the PET sinogram into a high-quality image successfully with-
out time-consuming back-projection steps. Therefore, motivated 
by the powerful representation ability and the end-to-end train-
ing pattern of DeepPET, we intended to realize fast parametric 
imaging with not only high image quality but also no need to 
apply an IDIF. Specifically, we modified the original DeepPET 
architecture and introduced self-attention modules to recon-
struct the dynamic multi-frame sinograms into the direct Patlak 
plot images. The experiment was implemented on a total-body 
PET scanner, the Biograph Vision Quadra. Twenty patients 
were recruited for an 18F-FDG dynamic scan. During training, 
the acquired sinograms in partial scan time were set as input 
and the conventionally reconstructed direct Patlak Ki images 
were as ground truth. As a preliminary study, this work mainly 
attempted to demonstrate the feasibility of fast parametric recon-
struction without input function using deep learning technology.

Materials and methods

Data preparation

Biograph Vision Quadra is a LAFOV PET scanner with a 
high sensitivity (176 cps/KBq) [29] which has the potential 
to accelerate data acquisition [31], and the long axial length 
(106 cm) covers the critically important organ of interest, 
enabling parametric imaging of major organs of interest in 
a single-bed position. Twenty patients were recruited for an 
18F-FDG dynamic scan. The local Institutional Review Board 
approved the study (KEK 2019–02,193), and all patients 
provided informed consent. As the Patlak graphical method 
is commonly used to extract the late-time linear phase of a 
graphical plot, we chose the last 5-frame (25 min, 40–65 min 
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post-injection) sinograms as the training input dataset, in 
which the sinograms were crystal-based and only random 
correction was applied by subtracting the delayed sinograms. 
Meanwhile, they were reconstructed into parametric image by 
a direct parametric image reconstruction method, the nested 
EM algorithm (8 iterations, 5 subsets, and 30 nested loops) 
with an IDIF measured from the descending aorta. A Gauss-
ian filter with 2-mm FWHM was applied to the final recon-
structed parametric images [13, 32].

Parametric image reconstruction model

In a dynamic PET scan, measured data y is following a Poisson 
distribution as below:

where plj specified the PET system matrix, l, j is the index 
of sinogram bins and image pixel, m means the index of the 
frame, r and s are the measured random noise and scatter 
events during data acquisition, and x is the activity map. 
For conventional parametric imaging reconstruction in this 
work, linear Patlak modeling was used, which is the most 
widely used graphical analysis technology for irreversible 
tracers, like 18F-FDG. In this model, the activity map x at 
the time t can be modeled below [45]:

where t∗ is the equilibrium time, Ki means the uptake rate 
of tracer into the irreversibly bound compartment, and the 
intercept DV means the initial volume of distribution. Cp rep-
resents the plasma input function obtained by the aforemen-
tioned invasive blood sampling or non-invasive approaches.

To estimate the Ki and DV directly from projection data, a 
nested EM algorithm [46] was employed, in which the activity 
image update and parameter estimation are decoupled into the 
following steps ((4)–(6)) iteratively[13]:

(1)ylm ∼ Poisson{ylm}

(2)ylm =
∑nj

j=1
pljxjm + rlm + slm

(3)x(t) = Ki∫ t

0
Cp(𝜏)d𝜏 + DV ⋅ Cp(t) t > t∗

(4)xjm ∶=
xjm

pj

�
l
Plj

ylm∑nj
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(5)
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0
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where the sub-loop or namely nested loop in (5) is embedded 
in the main loop from (4) to (6). In this work, we targeted 
the Patlak Ki image.

CNN framework

In this study, we constructed a deep CNN network moti-
vated by DeepPET [44]; it employed a CED architecture 
to reconstruct projection data into an image. Compared to 
the traditional iterative methods, e.g., maximum-likelihood 
expectation maximization (MLEM), DeepPET reconstruc-
tion was implemented by learning a mapping or an operator 
from projection into image by plenty of training datasets. 
Adequately diverse and extensive training data is the key 
consideration mapping an unseen data input to an unknown 
ground truth [47]. Therefore, we attempted to construct a 
DeepPET-like structure for the task of parametric imaging. 
Figure 1 illustrates the schematic view of the CNN frame-
work used in this study, which consists of encoding, trans-
formation, and decoding parts, as well as a domain transfor-
mation module that reconstructs the input sinograms into 
dynamic images by the ordered subset expectation maximi-
zation (OSEM) algorithm, and then introduces the dynamic 
image information into the decoding part. The final output is 
the predicted parametric image. Introducing dynamic image 
information can promote the network to learn richer features 
such that to improve the generalization ability itself. The 
multi-frame sinograms were fed into the encoding phase in 
a way of multi-slice input and the direct reconstructed Patlak 
Ki images were set as the training label. While, due to the 
characteristics of parametric reconstruction, we introduced 
a self-attention module to capture the spatial and temporal 
features in spatial and channel dimensions. Traditional con-
volution operations process a local receptive field by cus-
tomized-size kernels (e.g., 3 × 3, 5 × 5) and lack the ability 
to capture global information or long-range dependency [48, 
49]. Therefore, we replaced the transformation layer between 
encoder and decoder in origin DeepPET with spatial atten-
tion and temporal/channel attention modules to improve the 
feature representation, as can be seen on the right of Fig. 1.

As shown in Fig.  1, the multi-frame sinograms went 
through the encoding phase, and then into a latent space rep-
resentation, and were rebuilt stepwise into a dataset of image 
domain in the decoding phase. In detail, each layer of the net-
work consists of a convolutional layer (Conv), batch normali-
zation layer (BN), and activation layer (ReLU). At first, sino-
grams were convoluted with two layers having a kernel size 
of 7 × 7, and then processed by two down-sampling blocks 
with five 5 × 5 convolution layers and the other layers having 
a kernel size of 3 × 3. As mentioned above, we adopted two 
structures to be the transformation phase; one was the mod-
ule used in DeepPET, and the other was the self-attention 
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module. In DeepPET, all features in the transformation layer 
were same size of 16 × 16 and the structure consists of con-
secutive three, five, and three convolution layers, respectively. 
As for the details of self-attention module, shown in Fig. 2, 
it depicts that there are two parallel attention modules con-
necting the encoder and decoder. After the encoder phase, 
the feature maps were first fed into a convolution module to 
get high-level features. Then, the parallel spatial and chan-
nel attention modules were employed to obtain the attention 
matrix representing the spatial dependency within each slice 
and the interdependency between channel maps, respectively. 
The following steps were a matrix multiplication between 
the attention matrix and the high-level features and an ele-
ment-wise sum between two multiplied matrixes. Prior to the 
decoder phase, the summed result was fed into a convolution 
module again. The difference between spatial and channel 
attention and the calculation details were referenced from a 

scene segmentation task, namely DANet [50]. Finally, in the 
decoding phase, the feature maps were decreased by a series 
of up-sampling and Conv-BN-ReLU blocks, and the last 3 × 3 
convolution layer delivered one feature map.

Optimization

In the optimization step, the mean absolute error (MAE) was 
adopted as a loss function, described below:

where the yi means Patlak Ki, the label data, xi means sino-
gram, and f  represents the neural network. To encourage 
the network to generate the realistic textures and details to 
label, we introduced a perceptual loss [51], and the expres-
sion is as follows:

(7)MAE =
1

N

∑N

i=1
||yi − f (xi)

||

Fig. 1   Left: The DeepPET framework used as baseline in this work, including three parts: encoder, transformation layer, and decoder. Right: 
Different ways regarded as transformation layer: upper is the module used in DeepPET, and lower is the self-attention module

Fig. 2   An overview of the self-
attention module consisting of 
a spatial attention module and a 
channel attention module
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For the mapping function � , we chose a pre-trained 
VGG16 network [52]. We extracted the second and fifth 
pooling layer outputs and calculated their MAE loss for 
consideration of both low-level and high-level features, and 
details can be seen in Fig. 3. Overall, the total loss function 
is as follows:

where � and � are the weighting parameters and control the 
MAE loss and perceptual loss, respectively. We evaluated 
the performance of the proposed network trained with dif-
ferent combinations of � and � to determine the final loss 
function. The value of � was first set to 0 and � was chosen 
from {0.01, 0.1, 1, 10, 50}. After fixing the optimal value for 
� , � was chosen from {0.01, 0.1, 0.5, 1}. The effect of � and 
� values on predicted results is shown in Fig. 4. The mean 
square error (MSE) between predicted Ki and label Ki was 

(8)Ploss =
1

N

∑N

i=1
||�(f (xi)) − �(yi)

||

(9)Loss = � ⋅MAE + � ⋅ Ploss

set as the criterion. Finally, the minimum of MSE was found 
when � and � were set to 10 and 0.01, respectively.

Training details

During network training and testing, the sinograms 
and Patlak Ki images were set as input and label data, 
respectively. The dimension of the original sinogram 
was 520 × 50 × 5 and the Patlak Ki was 440 × 440. We 
resized the sinogram and Ki images into 256 × 256 × 5 
and 256 × 256 by an interpolation algorithm, respectively. 
Sixteen patient data were used in training and four in test-
ing. Data pairs of sinograms and direct Patlak Ki images 
were involved in network training and optimization; the 
whole workflow can be seen in Fig. 5. The network was 
implemented using Python3.8 and Pytorch1.8. The train-
ing and testing processes were implemented on Ubuntu 
20.04. For the optimization of our network, we chose an 
Adam optimizer with a learning rate of 0.0001; the batch 
size was set to 48. The epoch number of 300 was chosen, 
where the model converged. In order to inspect the per-
formance of the CNN-based method on lesion volume, a 
qualified nuclear medicine physician assisted to identify 
the 18F-FDG avid malignant lesions and tumor volume of 
interests (VOIs) using a professional tool (PMOD v.4.1) 
setting a threshold with 50% of max in SUV images.

Evaluation metrics

To perform a quantitative evaluation of the CNN-based 
methods, MSE, structural similarity index measure (SSIM), 
and peak signal-to-noise ratio (PSNR) were calculated.

Fig. 3   The procedure of calculating the perceptual loss

Fig. 4   Left: The predicted error of different � when � was set as 0. Right: Different � when � as set as 10
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where ux and uy are the mean value of network output and 
label, �xy means covariance and � is variance, and c1 and c2 
are two constants.

Results

General results

To assess the performance of CNN-based reconstruction, 
six normal 2D slices representing multiple body parts from 
four test patient data were shown to prove how capable the 
CNN output is compared to the conventional reconstructed 
direct Ki. The comparisons between the DeepPET and pro-
posed self-attention DeepPET were also carried out, as 
shown in Fig. 6; these two networks were dubbed Deep-
PET and proposed in all figures and tables, respectively. 
From top to bottom, Fig. 6 shows the results of DeepPET, 
self-attention DeepPET, and label Ki images. In order 

(10)MSE =
1

N

∑N

i=1
(yi − f (xi))

2

(11)SSIM(x, y) =
(2�x�y + c1)(2�xy + c2)

(�2
x
+ �2

y
+ c1)(�

2
x
+ �2

y
+ c2)

(12)PSNR = 10 ⋅ log10(
MAX

2

MSE
)

to observe more details, we zoomed in the local region 
where the red-frame rectangle was in the label Ki image 
for each result. Overall, as seen in Fig. 6, the CNN-based 
results can produce similar image structures to the nested 
EM results. The results of self-attention DeepPET outper-
formed those of the DeepPET in detail for which the fully 
2D convolution operations with a limited receptive field 
are insufficient to capture global information. Especially in 
the high activity regions, self-attention DeepPET showed 
a closer structure profile and value distribution to label Ki 
images than the original DeepPET framework. Taking the 
cardiac area, for example, the predicted results of Deep-
PET seemed to overestimate Ki showing a broader distri-
bution in high Ki region for slice 3, while underestimate 
Ki for slice 4, compared with the self-attention DeepPET. 
In slice 2, the DeepPET results even had  small structures 
missing. To quantitatively compare their differences, MSE, 
PSNR, and SSIM values between predicted results and 
label images were listed on the lower left of each image 
slice. The low MSE (< 0.1%), high PSNR (> 30  dB), 
and SSIM (> 0.9) could be observed in both CNN-based 
methods. It demonstrated that the CNN-based framework 
can achieve excellent image quality as traditional direct 
parametric image reconstruction and the performance of 
self-attention DeepPET is better than that of the DeepPET 
framework.

In quantitative analysis, the average MSE, SSIM, and 
PSNR values were calculated over all the test datasets 
to evaluate the performance of CNN-based parametric 

Fig. 5   The workflow of data acquisition, processing, and training
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reconstruction, as listed in Table 1; also, a more clear 
demonstration can be seen in Fig. 7. From Table 1, it is 
apparent that both CNN-based methods got a small MSE 
of about 0.03% and a high SSIM of about 0.98, as well 
as a considerable PSNR. Additionally, between DeepPET 
and self-attention DeepPET, the MSE value was 0.032% 
for the former and 0.028% for the latter, and PSNR for 
the latter is ~ 0.7 dB higher than the former, whereas both 
predicted images had a quite similar statistical result on 
SSIM value. Besides that, as one of the concerns in our 

work, the reconstruction time between the CNN-based 
methods is shown in Table 2. Here, we regarded the sum 
of the model loading time (nearly 3.0 s) and image genera-
tion time of an individual volume (619 slices per patient) 
as the reconstruction time. The CNN-based methods took 
less than 20 s to reconstruct an individual volume. Since 
self-attention DeepPET replaced the very deep convolu-
tion layer in the transformation part of DeepPET with self-
attention modules that only involved few convolution and 
matrix operations, it took less time than DeepPET.

Lesion analysis

According to the lesion segmentation results, we got 11 
VOIs from the test dataset and selected six slices to show, 
as seen in Fig. 8, which shows the results of DeepPET, self-
attention DeepPET, and label Ki from top to bottom. The 

Fig. 6   The Ki images reconstructed by CNN and Nested EM. From 
upper to lower, the results of DeepPET, proposed self-attention Deep-
PET, and nested EM (label), respectively, are shown. The MSE, 

PSNR, and SSIM values between the predicted result and label data 
were shown in the lower left of each image

Table 1   Quantitative results in terms of MSE, SSIM, and PSNR

Method MSE (%) SSIM PSNR (dB)

DeepPET 0.032 ± 0.045 0.981 ± 0.016 37.55 ± 5.074
Proposed 0.028 ± 0.042 0.983 ± 0.015 38.24 ± 5.097

Fig. 7   Box plots of quantitative comparison between DeepPET and self-attention DeepPET results for four test patients in terms of MSE, PSNR, 
and SSIM
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values of related evaluation metrics including MSE, PSNR, 
and SSIM were listed, and the local regions were zoomed in. 
Qualitatively and quantitatively, compared to the Patlak Ki 
images reconstructed by the nested EM algorithm, the pre-
dicted Ki could recover the most details of lesion. Moreover, 
the proposed method using self-attention module produced 
better result than the DeepPET framework in terms of MSE, 
PSNR, and SSIM. Similarly, the results of DeepPET had 
a larger error than that of self-attention DeepPET in case 
of the same learning rate and epoch number implemented. 
Like the normal slices, self-attention DeepPET delineated a 
more accurate profile and value distribution for each lesion 
than DeepPET. For example, in lesion 1, the DeepPET result 
overestimated the Ki values on the edge of the lesion, in 
which the higher Ki means a higher tracer influx rate, while 
the proposed self-attention framework showed lesion mor-
phological structures closer to the label Ki.

To quantify the performance of the CNN-based method 
on lesion detection, we calculated the Ki means with 
standard deviations over a total of 11 lesion VOIs and 
listed the statistical result in Table 3; the unit of Ki is 
mL/g/min. Additionally, the histogram and linear regres-
sion results are shown in Fig. 9. In the regression plot, 
the value in the horizontal axis is true Ki and in the verti-
cal axis is predicted Ki from CNN-based methods. No 
significant difference between CNN-based and traditional 

reconstructed results was found, which suggested that 
the CNN-based method is implementable in parametric 
reconstruction and could produce the same high-quality 
images as direct reconstructed images. The high correla-
tion between CNN-based and nested EM methods verified 
this conclusion, and the R2 was 0.73 for DeepPET and 0.82 
for proposed self-attention DeepPET.

In Fig. 10, we selected four larger lesions to evaluate the 
correlation between predicted Ki and true Ki. Based on the 
lesion segmentation masks, we calculated the Ki mean in 
each slice within each lesion volume. It means that the num-
ber of calculated Ki mean is equal to the number of slices a 
lesion volume covers. A linear regression process was applied 
between predicted Ki and true Ki. In each subplot, the left 
presented the sagittal (top), coronal (middle), and transverse 
(bottom) planes, and the lesions were labeled in red and the 

Table 2   Mean computation cost comparison

Method DeepPET Proposed

Time (sec) 19.34 8.95

Fig. 8   The Ki image slices with lesion obtained from CNN-based method and nested EM reconstruction. From upper to lower, the results of 
DeepPET, proposed self-attention DeepPET, and nested EM (label), respectively

Table 3   The Ki means and standard deviations in lesions (N = 11)

Lesions DeepPET Proposed Label

Lesion_01 0.028 ± 0.008 0.033 ± 0.009 0.038 ± 0.01
Lesion_02 0.013 ± 0.004 0.014 ± 0.006 0.016 ± 0.004
Lesion_03 0.0014 ± 0.003 0.015 ± 0.003 0.016 ± 0.003
Lesion_04 0.0066 ± 0.001 0.0068 ± 0.002 0.0072 ± 0.002
Lesion_05 0.016 ± 0.002 0.0156 ± 0.002 0.016 ± 0.002
Lesion_06 0.016 ± 0.003 0.016 ± 0.003 0.014 ± 0.003
Lesion_07 0.015 ± 0.003 0.018 ± 0.004 0.016 ± 0.003
Lesion_08 0.0082 ± 0.006 0.0084 ± 0.006 0.0075 ± 0.006
Lesion_09 0.0213 ± 0.006 0.0197 ± 0.006 0.0171 ± 0.004
Lesion_10 0.018 ± 0.002 0.016 ± 0.002 0.013 ± 0.003
Lesion_11 0.0283 ± 0.0004 0.0277 ± 0.0005 0.021 ± 0.0005
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right presented the regression result. As seen in Fig. 10, there 
was a significant correlation between predicted Ki and true 
Ki found on most lesions. Additionally, the proposed self-
attention DeepPET showed better result than the DeepPET.

Moreover, to further investigate the ability of CNN-based 
parametric imaging in small lesion, three small lesions with 
diameter less than 10 mm were chosen from the twenty patients’ 
data. The new training and testing were performed, and the 

training details were the same as above. As shown in Fig. 9, 
they are the nodule located in the posterior lower segment of 
the right liver lobe, the nodule in apical segment of the left lung, 
and the lymph node in the right axilla, respectively. The diam-
eters of 8.9 mm, 8.0 mm, and 6.0 mm were measured on static 
PET transverse view, respectively, as seen in Fig. 11a. As can 
be seen from Fig. 11b, the predicted Ki results indicated that the 
CNN-based methods could detect the small lesion successfully. 

Fig. 9   The histogram result with standard deviation (a) and the linear regression between predicted Ki and label Ki values (b) based on Table 4

Fig. 10   The scatter plot between predicted Ki from CNN-based method and label Ki on four larger lesion volumes
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With the lesion segmentation mask, we calculated the Ki means 
within these three lesions for both CNN-based results and label 
data, as shown in Table 4. From the results, the predicted Ki 
images preserved the lesion details and had comparable statis-
tic values, which is meaningful for clinical oncology research. 
Meanwhile, with the self-attention mechanism introduced, the 
predicted results behaved better than DeepPET.

Discussion

In this work, we estimated the parametric images using a CNN-
based method for the total-body PET scanner. Based on previ-
ous work such as DeepPET and DPIR-Net [43, 44] that success-
fully produced static PET images directly from raw projection 

data, we proposed a deep convolutional encoder–decoder net-
work for dynamic parametric reconstruction.

Apart from the raw projection data, we involved the 
low-resolution dynamic images in the decoding phase to 
facilitate the network to converge to optimal results under 
the circumstance of a limited dataset. In previous research 
about DeepPET [43, 44], a large number of datasets includ-
ing simulation phantoms were used. In this study, present 
results have proven that utilizing sinogram and dynamic 
images simultaneously could deliver high-quality paramet-
ric images for the DeepPET-like network. In addition, we 
explored the feasibility of CNN-based parametric image 
generation from static or dynamic PET images only [53, 
54]. A 2D U-Net CNN [55] was adopted to map static or 
dynamic PET images into parametric images. The static 
PET image (256 × 256, 60–65 min post-injection) and 
dynamic PET images (256 × 256 × 5, 40–65 min post-injec-
tion) were sent into U-Net CNN and trained separately. 
Compared with the proposed DeepPET-based structures, 
the parameters except for learning rate remained during the 
training of U-Net. A learning rate of 0.0002 was chosen 
for U-Net to achieve the optimal results. There are three 

Table 4   The Ki means and standard deviations in small lesions

Lesions DeepPET Proposed Label

Lesion_A 0.0163 ± 0.005 0.0157 ± 0.005 0.0158 ± 0.005
Lesion_B 0.0041 ± 0.001 0.0052 ± 0.001 0.0047 ± 0.001
Lesion_C 0.0041 ± 0.002 0.0041 ± 0.0021 0.0041 ± 0.0024

Fig. 11   a The static PET images. b the Ki images obtained from the DeepPET, the proposed self-attention DeepPET, and the nested EM
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examples seen in Fig. 12. The first column shows static 
PET images, the middle four columns show predicted Ki 
images from different CNN structures, and the last col-
umn shows the Patlak Ki images. The predicted Ki results 
obtained from U-Net trained with static/dynamic images 
looked inferior, especially in low Ki regions, compared 
to DeepPET-based networks trained with sinogram and 
dynamic images, and in magnified regions, the latter results 
presented a closer structure and value distribution to label 
Ki than the former. Figure 13 shows the quantitative results 
of the test dataset among four different CNN-based meth-
ods in terms of MSE, PSNR, and SSIM. The two Deep-
PET-based methods achieved lower MSE, higher PSNR, 
and SSIM than U-Net. Meanwhile, training U-Net with 
dynamic PET images achieved better results than that with 

static images. This may be because the multi-frame input 
can be regarded as feature augmentation and introduces 
time-varying tracer distribution information.

Around the deep learning–based parametric imaging 
researches, a CNN module was embedded into reconstruc-
tion model, like CT-guided Logan plot [56], in which an 
iterative reconstruction framework with a deep neural net-
work as a constraint was implemented. This kind of method 
no longer need the large number of training pairs, but the 
corresponding anatomical image from CT or MRI. Another 
approach is mapping indirect Patlak images to direct ones 
by CNN, whereas prior to CNN was a procedure of indirect 
Patlak reconstruction [57]. Anyway, for this deep learn-
ing–based parametric reconstruction, it is necessary to 
acquire blood input function non-invasively or invasively. 

Fig. 12   Three slices of static PET, predicted Ki, and Patlak Ki images 
from left to right. The predicted Ki images are the results obtained 
from U-Net trained by static images, U-Net trained by dynamic 

images, and DeepPET and self-attention DeepPET trained by sino-
grams along with dynamic images, respectively

Fig. 13   Box plots of quantitative comparison of different predicted results for all the test patients in terms of MSE, PSNR, and SSIM
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While, the proposed CNN-based method worked well with-
out other anatomical images and blood input function, deliv-
ering high-quality Patlak Ki estimations comparable to the 
standard nested EM algorithm.

Recently, there has been an attractive interest in the total-
body PET scanner. The LAFOV offers large anatomical 
coverage with excellent sensitivity. In previous scanners, the 
poor sensitivity of less than 1% has long been a challenge 
that results in poor signal-to-noise ratio (SNR) in images. 
LAFOV PET approach addressed this dilemma. Up to now, 
several studies have demonstrated that total-body PET leads 
to an approximately 40-fold increment in effective sensitivity 
and enables shorter times [58]. The PET scanner with higher 
sensitivity than conventional scanner has significant potential 
to promote the development of fast dynamic scans and lower 
radiation scans. However, with it comes dramatically increased 
volume and complexity of dynamic data. With respect to this 
motivation, studies about parametric imaging of early kinetics 
of 18F-FDG have demonstrated the feasibility of estimating 
parametric images using only the first 90 s of post-projection 
scan data on the total-body PET scanner [25]. In this study, we 
used the last five frames as data to be reconstructed, which not 
only saves the data volume but also conforms to the conclusion 
that Patlak graphical method is commonly used to extract the 
late-time linear phase of a graphical plot.

All the results demonstrated that the CNN-based method 
could achieve an equivalent image quality to direct paramet-
ric reconstruction results using the nested EM algorithm. It is 
evidenced suggesting that deep learning methods potentially 
can generate total-body PET parametric images using data 
from Biograph Vision Quadra and LAFOV PET scanner. For 
the dynamic protocols on Biograph Vision Quadra, a total 
of 62 frames were reconstructed leading to a large data size 
in excess of one gigabyte, and it takes considerable time to 
perform both indirect and direct reconstruction. Therefore, a 
deep learning–based approach may be appropriate and could 
significantly save the reconstruction time and complexity.

Compared with static PET scans, dynamic PET kinetic anal-
ysis reveals the tracer kinetics and has a temporal dimension. In 
CNN, multi-frame sinograms were fed into a network and the 
temporal information was convoluted in channel dimension. To 
account for the characteristics of parametric reconstruction, we 
replaced the deep convolution layer in the transformation part 
of DeepPET with two parallel self-attention modules: spatial 
and channel attention. The results reveal that only using 2D 
convolution operations would miss the global information of 
features and lead to insufficient performance on detail structure 
in the final predicted Ki images. Moreover, in this work, we 
only targeted the Patlak graphical plot, which is mainly used 
in an irreversible or nearly irreversible radiotracer, e.g., 18F-
FDG. As for the other tracers like gallium-68 (68 Ga)-labeled 
prostate-specific membrane antigen (68 Ga-PSMA) or the non-
linear compartment model, there is also an important issue for 

further research. Meanwhile, because of the limited dataset 
at present, we introduced a domain transformation module to 
constrain the network training process. Despite its simplicity, 
noise propagates from emission images to final estimated Ki 
images. With this consideration, a more diverse and extensive 
simulation or real datasets are required that would make CNN 
sufficiently represent the possible features of the input domain. 
Additionally, due to the limitation of current academic compu-
tational resources, the proposed networks only tackle the 2-D 
parametric reconstruction ignoring the spatial information and 
leading to inconsecutive predicted results across slices [59]. 
Nevertheless, with the further increasing of AI computational 
power, the 3-D network combining with the major parts of this 
work, such as loss function and attention mechanism, may be 
feasible in the future for the task of 3-D parametric imaging.

Conclusion

The purpose of this study is to demonstrate the feasibil-
ity of CNN-based parametric imaging on a total-body 
PET scanner, Biograph Vision Quadra. We proposed an 
encoder–decoder framework with spatial and channel self-
attention modules to generate high-quality Patlak Ki images 
from dynamic data. We only used few frames of data but 
with adequate quality, which owes to the high sensitivity of 
scanner. The results show that the CNN-based method can 
produce high-quality parametric images from few projec-
tion data. In all test datasets, the proposed method achieves 
excellent MSE of less than 0.03%, high SSIM, and PSNR 
of ~ 0.98 and ~ 38 dB, respectively. Meanwhile, no input 
function used in the CNN-based method and the dramatic 
reduction of reconstruction time have much potential to 
make dynamic PET scan more acceptable clinically.
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