
https://doi.org/10.1007/s00259-022-05904-8

ORIGINAL ARTICLE

Assessing dynamic metabolic heterogeneity in non‑small cell lung 
cancer patients via ultra‑high sensitivity total‑body  [18F]FDG PET/CT 
imaging: quantitative analysis of  [18F]FDG uptake in primary tumors 
and metastatic lymph nodes

DaQuan Wang1 · Xu Zhang2 · Hui Liu3 · Bo Qiu1 · SongRan Liu4 · ChaoJie Zheng3 · Jia Fu4 · YiWen Mo2 · NaiBin Chen1 · 
Rui Zhou1 · Chu Chu1 · FangJie Liu1 · JinYu Guo1 · Yin Zhou5 · Yun Zhou3 · Wei Fan2 · Hui Liu1

Received: 14 February 2022 / Accepted: 3 July 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Purpose This study aimed to quantitatively assess  [18F]FDG uptake in primary tumor (PT) and metastatic lymph node 
(mLN) in newly diagnosed non-small cell lung cancer (NSCLC) using the total-body  [18F]FDG PET/CT and to characterize 
the dynamic metabolic heterogeneity of NSCLC.
Methods The 60-min dynamic total-body  [18F]FDG PET/CT was performed before treatment. The PTs and mLNs were 
manually delineated. An unsupervised K-means classification method was used to cluster patients based on the imaging fea-
tures of PTs. The metabolic features, including Patlak-Ki, Patlak-Intercept,  SUVmean, metabolic tumor volume (MTV), total 
lesion glycolysis (TLG), and textural features, were extracted from PTs and mLNs. The targeted next-generation sequenc-
ing of tumor-associated genes was performed. The expression of Ki67, CD3, CD8, CD34, CD68, and CD163 in PTs was 
determined by immunohistochemistry.
Results A total of 30 patients with stage IIIA–IV NSCLC were enrolled. Patients were divided into fast dynamic FDG 
metabolic group (F-DFM) and slow dynamic FDG metabolic group (S-DFM) by the unsupervised K-means classification 
of PTs. The F-DFM group showed significantly higher Patlak-Ki (P < 0.001) and  SUVmean (P < 0.001) of PTs compared 
with the S-DFM group, while no significant difference was observed in Patlak-Ki and  SUVmean of mLNs between the two 
groups. The texture analysis indicated that PTs in the S-DFM group were more heterogeneous in FDG uptake than those in 
the F-DFM group. Higher T cells  (CD3+/CD8+) and macrophages  (CD68+/CD163+) infiltration in the PTs were observed 
in the F-DFM group. No significant difference was observed in tumor mutational burden between the two groups.
Conclusion The dynamic total-body  [18F]FDG PET/CT stratified NSCLC patients into the F-DFM and S-DFM groups, based 
on Patlak-Ki and  SUVmean of PTs. PTs in the F-DFM group seemed to be more homogenous in terms of  [18F]FDG uptake 
than those in the S-DFM group. The higher infiltrations of T cells and macrophages were observed in the F-DFM group, 
which suggested a potential benefit from immunotherapy.
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Introduction

Non-small cell lung cancer (NSCLC) represents the largest 
entity of lung cancer. Although the combination of immu-
notherapy with surgery, chemotherapy, and radiotherapy 
has led to a remarkable improvement in the prognosis of 
NSCLC patients, a noticeable proportion of patients fail 
to be cured due to tumor heterogeneity [1]. In addition 
to the tumor, node, and metastasis (TNM) stage, tumor 
heterogeneity assessed by imaging and histopathologic 
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examination has been confirmed to be associated with the 
prognosis of patients [2–4].  [18F]fluorodeoxyglucose posi-
tron emission tomography/computed tomography  ([18F]
FDG PET/CT) plays a significant role in the diagnosis and 
assessment of tumor heterogeneity because of its nonin-
vasive property [5]. Heterogeneities in  [18F]FDG uptake 
are observed in both primary tumors (PTs) and metastatic 
lymph nodes (mLNs) in lung cancer patients[6, 7]. Previ-
ous studies suggested that the intratumoral heterogeneity 
of FDG uptake was predictive of treatment response and 
prognosis in various tumors [8, 9], including non-small 
cell lung cancer [10–12].

Different imaging modalities, such as dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) and 
1-h dynamic  [18F]FDG PET/CT, have yielded kinetic 
parameters reflecting tumor heterogeneity. A full 1-h 
dynamic  [18F]FDG PET acquisition allows tumor blood 
flow and metabolism evaluation after a single injection of 
 [18F]FDG. Recently, an investigation of tumor heteroge-
neity using texture analysis has emerged. Standard PET/
CT parameters combined with texture analysis provide 
useful information for clarifying the correlation between 
metabolic heterogeneity and histological types, tumor 
aggressiveness, or patient prognosis [13–15]. Likewise, 
the present study hypothesizes that dynamic FDG uptake 
patterns of PTs and mLNs assessed by total-body  [18F]
FDG PET/CT might also bring valuable information for a 
deeper insight into tumor heterogeneity.

The clinically widely used PET scanners, which are 
short axial field-of-view (AFOV), have some limitations, 
including a long scanning time, a low signal-to-noise 
ratio (SNR), a high dose of ionizing radiation, and most 
importantly the lack of whole-body quantitative imaging. 
Total-body PET scanner was developed to overcome these 
limitations. It provides a 1940-mm scan range to cover the 
entire human body. In addition, the markedly increased 
sensitivity is obtained by increasing the number of detec-
tors, which allows for the total-body dynamic acquisi-
tion and improves the detectability of exiguous changes 
[16]. Compared with conventional PET, a total-body PET 
scanner provides new opportunities for a more accurate 
tracer kinetic analysis with higher spatial resolution [17]. 
Moreover, the Patlak-Ki extracted from dynamic total-
body PET represents the rate of FDG uptake and is an 
absolute quantitative index of FDG metabolism, which 
separates the metabolized FDG from FDG uptake and 
provides a more accurate characterization of tumor meta-
bolic heterogeneity [18].

This study aimed to quantitatively assess  [18F]FDG 
uptake in PTs and mLNs in newly diagnosed NSCLC 
patients using the total-body  [18F]FDG PET/CT and to char-
acterize the dynamic metabolic heterogeneity of NSCLC.

Methods

Patients and study design

Patients with stage IIIA–IV NSCLC were enrolled in 
the present study. Eligible patients were required to 
meet the following criteria: (1) untreated histologically 
or cytologically confirmed NSCLC; (2) patients aged 
between 18 and 75 years; (3) patients with unresect-
able stage IIIA–IV disease according to the 8th edi-
tion of the American Joint Committee on Cancer Stag-
ing System; (4) Eastern Cooperative Oncology Group 
(ECOG) Performance Status score of 0 or 1; (5) life 
expectancy ≥ 12 weeks; (6) adequate hematologic, renal, 
and hepatic functions: absolute neutrophil count ≥ 1500/
uL, hemoglobin ≥ 9.0  mg/dL, platelet ≥ 100,000/uL, 
serum creatinine clearance ≥ 50 ml/min, serum biliru-
bin ≤ 1.5 times the upper limit of normal (ULN), and 
aspartate transaminase and alanine transferase ≤ 2.5 
times the ULN; and (7) forced expiratory volume in 1 s 
 (FEV1) ≥ 0.8 L.

Exclusion criteria included history of another primary 
malignancy, uncontrolled intercurrent illness, pregnant 
or breastfeeding women, and any situation that would be 
improper for this study judged by researchers.

Before treatment, all patients underwent both total-body 
 [18F]FDG PET/CT dynamic scan and delayed static PET/CT 
scan on the uEXPLORER PET/CT scanner (United Imaging 
Healthcare, Shanghai, China). Patients with a high blood 
glucose level (> 10 mmol/l) or those who were unable or 
unwilling to undergo a PET scan were excluded. This study 
was approved by the institutional review board. All patients 
signed a written informed consent form.

Total‑body [18F]FDG PET/CT imaging

The total-body  [18F]FDG PET/CT imaging protocol is 
described in Supplementary Fig. 1. Patients were required 
to avoid strenuous exercise 24 h beforehand and fast for up 
to 6 h prior to the total-body  [18F]FDG PET/CT scan. At 
the time of  [18F]FDG injection, the fasting blood glucose 
level was required to be less than 10 mmol/L. The 60-min 
dynamic total-body  [18F]FDG PET imaging was performed 
from head to toe after intravenous injection of 3.0 MBq/kg 
FDG via a vein near the ankle. The 10-min delayed static 
PET imaging was subsequently conducted 3 h after the 
injection (and 2 h after the conclusion of the dynamic total-
body  [18F]FDG PET imaging). During the interval between 
the dynamic and delayed static PET imaging, the patient was 
required to stay quiet.
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Quantitative analysis of dynamic metabolic uptake

The quantitative analysis of dynamic  [18F]FDG uptake 
was shown in Supplementary Figs. 2 and 3. The dynamic 
acquisition was reconstructed into 92 dynamic time frames, 
with a spatial resolution of 1.67 mm × 1.67 mm × 2.89 mm. 
The dynamic time frames were as follows: 2 s (2 s) frame 
duration for 1–30th frame, 5 s for 31–42nd frame, 10 s for 
43–48th frame, 30 s for 49–52nd frame, 60 s for 53–77th 
frame, and 120 s for 78–92nd frame. All time frames were 
reconstructed using the ordered subset expectation maxi-
mization (OSEM) (4 iterations, 20 subsets) with the point-
spread function recovery and time-of-flight. Attenuation, 
random, and scatter corrections were applied to all time 
frames. The parametric images (Patlak-Ki, Patlak-Intercept) 
were calculated from the 20–60-min frames using the Patlak 
graphical analysis and an image-derived arterial input func-
tion (AIF) extracted from the descending aorta across all 92 
frames from 0 to 60 min.

The CT, PET, and endobronchial ultrasound-guided 
biopsy were used for the diagnosis of metastatic lymph 
nodes (mLNs) [19]. The criteria of metastatic lymph node 
included: short-axis size ≥ 10 mm on pre-treatment CT 
scan, metastasis reported on the pre-treatment PET scan 
 (SUVmax ≥ 2.5)[20], or biopsy positive on endobronchial 
ultrasound-guided biopsies. Volumes of interest (VOIs) of 
PTs and mLNs were manually delineated on the last time 
frame (10 min) of dynamic PET data by a nuclear medicine 
physician and a radiation oncologist with more than 10 years 
of professional experience, and a consensus was reached 
when there was an inconsistency. The rigid registration was 
performed between the PET and CT images for tumor delin-
eation. The manual delineation of VOI was performed on 
PET images, with reference to the morphological structure 
displayed on CT images (Supplementary Fig. 4a,b). Besides, 
for the patients whose primary tumor and mLN were fused, 
the double evaluation was applied by two experts to iden-
tify the boundary between PT and mLN (Supplementary 
Fig. 4c,d). VOIs including the PTs and mLNs were deline-
ated using the 3D-Slicer software (https:// www. slicer. org) 
and Evidance Platform. The necrotic regions within the 
tumor were considered to be part of the tumor during deline-
ation (Supplementary Fig. 4a,b).

Unsupervised K‑means classification of PTs 
and mLNs

An unsupervised K-means clustering algorithm was used 
to classify patients into different groups. The features used 
for classification included the  SUVmean extracted from 50- 
to 60-min static PET images, the metabolic tumor volume 
(MTV), total lesion glycolysis (TLG), and the mean values 
of Patlak-Ki and Patlak-Intercept extracted from the Patlak 

parametric images. The Laplacian Score (LS), an unsuper-
vised feature selection method, combined with a distance-
based entropy measure (LSE), was used to select the opti-
mal feature subset for clustering [21]. The LS evaluated the 
importance of a feature by its locality preserving ability, and 
a smaller LS indicated that the feature was more important. 
The number of clusters was determined by the silhouette 
coefficient, which was higher when clusters were dense and 
well separated. The clustering was performed using the 
scikit-learn package (https:// scikit- learn. org). Textural fea-
tures extracted from VOIs were evaluated.

Capture‑based targeted next‑generation 
sequencing of PTs

Archived formalin-fixed paraffin-embedded (FFPE) tissue 
samples of PTs were collected. Matched peripheral blood 
samples were also collected as the germline control. The 
genomic DNA was extracted from FFPE and peripheral 
blood samples. A capture probe covering 1021 genes that 
were correlated with carcinogenesis and tumor development 
was employed. The next-generation sequencing (NGS) was 
performed on the Next Seq 2000 Sequencing system (Illu-
mina Inc., Chicago, IL, USA).

Immunohistochemistry and quantification 
of the expressions of CD3, CD8, CD68, CD163, CD34, 
and Ki67 in clinical specimens

Tissue blocks of FFPE samples of PTs were sectioned into 
3-μm slices for immunohistochemistry (IHC). First, the pres-
ence of PTs was confirmed using hematoxylin and eosin 
(H&E) staining. After deparaffinization and hydration, the 
other serial slides were heated with ethylenediaminetet-
raacetic acid (EDTA, pH 8.0) in an autoclave to complete 
antigen retrieval. After cooling, specimens were incubated 
with 3%  H2O2 at room temperature (RT) for 10 min to 
extinguish endogenous peroxidase activity. Sections were 
then incubated with the primary antibodies against CD3 
(ZS; clone LN10; dilution, 1:100), CD8 (ZS; clone SP16), 
CD68(ZS; clone KP1), CD163 (ZS; clone 10D6), CD34 
(ZS; clone 10C9), and Ki67 (ZS; clone MIB1) for 60 min at 
37 ℃, and antibody dilution buffer was used to create blank 
control. Following thrice washing with phosphate-buffered 
saline (PBS; 2 min/step), an enzyme-labeled secondary anti-
body (ZS) was added to slices and incubated at 37 ℃ for 
20 min. After another thrice washing with PBS (2 min/step), 
freshly prepared 3,3′-diaminobenzidine (DAB) was used as 
a chromogenic substrate for visualization through a 5-min 
incubation at RT, and sections were finally counterstained 
with hematoxylin.

The mean micro-vessel number of the most inten-
sive neovascularization areas was used to define the 
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micro-vessel density (MVD). First, after navigating the 
whole slide at 40 × magnification, a CD34 stained hot 
spot was identified to further select five high-power fields 
(HPFs) with the highest density of  CD34+ micro-ves-
sels. Finally, based on the selected HPFs, an average of 
CD34 + micro-vessels per HPF was calculated to define 
the MVD.

All slides stained with H&E containing PTs were scanned 
using an Aperio Scanner (Leica Biosystem, Wetzlar, Ger-
many). Whole-slide images (WSIs) were reviewed by 2 
pathologists with more than 5 years of professional experi-
ence in telepathology. The number of WSIs per case ranged 
from one to five.

Two pathologists with more than 5  years of profes-
sional experience, who were blinded to clinical data, were 
employed to confirm IHC quality, calculate MVD, and 
assist in the pre-training of machine learning, in which any 
disagreement was discussed until a consensus was reached. 
 CD3+ tumor-infiltrating lymphocyte (TIL),  CD8+ TIL, 
 CD68+ tumor-associated macrophage (TAM),  CD163+ 
TAM, and Ki67 were computed using the digital image 
analysis (DIA) via Patholmpression software on the Evid-
ance Platform.

Statistical analysis

The comparisons of image-derived PET metrics and IHC 
indices between clustered groups were performed using the 
independent-samples t-test or the Mann–Whitney U test 
according to the normality of the variables. P < 0.05 was 
considered statistically significant. The Bonferroni cor-
rection was applied for multiple comparisons of metabolic 
parameters, in which the significance level was corrected by 
dividing 0.05 by the number of pairwise tests.

Results

Clinical characteristics

A total of 30 newly diagnosed stage IIIA–IV NSCLC 
patients were enrolled between September 2020 and August 
2021. The clinical characteristics of 30 NSCLC patients are 
summarized in Table 1. Patients’ median age at the time of 
diagnosis was 60 (range, 41–69) years. Among them, 27 
(90%) patients were male and 3 (10%) were female. Besides, 
27 (90%) and 3 (10%) patients had stage III and stage IV 
diseases, respectively. There were 16 (53.3%) patients with 
squamous cell carcinoma and 12 (40%) patients with adeno-
carcinoma. The mean value of  FEV1 for all patients was 2.3 
L (range, 0.99–3.39).

Unsupervised K‑means classification of patients

The features used for patient classification were determined 
with the method of Laplacian feature importance scores 
(LSE). As shown in Fig. 1a, the Laplacian scores (LS) of 
all feature candidates were calculated and ranked in ascend-
ing order. Patlak-Ki and  SUVmean of the PTs occupied the 
top 2 places, which indicated the highest importance for 
classification. The distance-based entropy (Fig. 1b) sug-
gested that involving more features for classification based 
on the LS rank would generally decrease the stability and 
efficiency of the classification. The combination of Patlak-
Ki and  SUVmean of the PTs remained the best feature set for 
patient classification. Then, the number of patient clusters 
was determined through the silhouette analysis. As shown 
in Fig. 1c, the patient classification with 2 clusters showed 
the highest silhouette coefficient, which indicated that it 
was more appropriate to classify patients into 2 groups. 

Table 1  NSCLC patients’ baseline characteristics (n = 30)

ECOG, Eastern Cooperative Oncology Group; FEV1, forced expira-
tory volume in 1  s; NSCLC, non-small cell lung cancer; NOS, not 
specified

Characteristics Number of patients (%)

Age, years old/median (range) 60 (41–69)
Gender
Male 27 (90.0)
Female 3 (10.0)
ECOG
0 9 (30.0)
1 21 (70.0)
Smoking status
Yes 16 (53.3)
No 14 (46.7)
Tumor location
Left upper 13 (43.3)
Left lower 3 (10.0)
Right upper 9 (30.0)
Right middle 1 (3.3)
Right lower 4 (13.3)
Histology
Squamous cell carcinoma 16 (53.3)
Adenocarcinoma 12 (40.0)
Lymphoepithelioma-like carcinoma 1 (3.3)
NSCLC-NOS 1 (3.3)
Stage
IIIA 5 (16.7)
IIIB 14 (46.7)
IIIC 8 (26.7)
IV 3 (9.9)
FEV1, L 2.3 (0.99–3.39)
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Figure 1d illustrated the clustering results obtained from 
the K-means clustering. Among all the features, the Pat-
lak-Ki and  SUVmean, rather than the volume-based metrics, 
contributed most to the grouping of the PTs. Therefore, the 
patients were divided into the fast dynamic FDG metabo-
lism (F-DFM) group and the slow dynamic FDG metabolism 
(S-FDM) group based on Patlak-Ki and  SUVmean of PTs.

Dynamic and static metabolic characterization 
of PTs

The PTs in the F-DFM group had significantly higher 
 SUVmean (6.91 ± 1.09 g/ml vs. 3.40 ± 1.01 g/ml, P < 0.001) 
and Patlak-Ki (3.65 ± 0.89 ml/min/100 g vs. 1.63 ± 0.57 ml/
min/100 g, P < 0.001) than those in the S-DFM group. 
However, no statistically significant differences were 

observed between the F-DFM group and S-DFM group in 
terms of MTV [27.34 (range, 6.3–178.93)  cm3 vs. 52.97 
(range, 1.43–159.12)  cm3, P = 0.803], TLG [214.17 (range, 
48.06–1388.04) vs. 204.03 (range, 3.37–555.59), P = 0.244], 
and Patlak-Intercept (0.41 ± 0.19 vs. 0.39 ± 0.12, P = 0.772). 
The comparison of dynamic (Patlak-Ki and Patlak-Intercept) 
and static  (SUVmean, MTV, and TLG) metabolic characteri-
zation of the PTs is summarized in Fig. 2.

As shown in Fig. 3, different from PTs, no statistically sig-
nificant differences were observed between the two groups 
regarding both Patlak-Ki and  SUVmean of mLNs (Patlak-Ki 
of mLNs in the F-DFM and S-DFM groups: 1.96 ± 1.12 ml/
min/100 g vs. 1.81 ± 1.00 ml/min/100 g, P = 0.715;  SUVmean 
of mLNs in the F-DFM and S-DFM groups: 4.06 ± 2.00 g/
ml vs. 3.80 ± 1.88 g/ml, P = 0.719). In the F-DFM group, the 
Patlak-Ki and  SUVmean were significantly higher in PTs than 

Fig. 1  Unsupervised classification of patients based on the PET 
parameters of PTs and mLNs. (a) The Laplacian scores (LS) of all 
feature candidates were calculated and ranked in ascending order. 
A smaller LS indicated that the feature was more important. (b) 
Distance-based entropy for the clusters with different feature subset, 
and the subset consists of the Ki and  SUVmean showed the best per-

formance. (c) The silhouette coefficient scores for the clusters with 
different number, and the patient classification with 2 clusters showed 
the highest silhouette coefficient values. (d) The visualization of the 
clustered data, where the blue points refer to the F-DFM group and 
the red points refer to the S-FDM group
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those in mLNs (Patlak-Ki of PTs and mLNs: 3.65 ± 0.89 ml/
min/100 g vs. 1.96 ± 1.12 ml/min/100 g, P < 0.001;  SUVmean 
of PTs and mLNs: 6.91 ± 1.09 g/ml vs. 4.06 ± 2.00 g/ml, 
P < 0.001), which indicated higher metabolic activity of 
PTs. By contrast, there was no significant difference in 
metabolic activity of PTs and mLNs in the S-DFM group 
(Patlak-Ki of PTs and mLNs: 1.63 ± 0.57 ml/min/100 g vs. 
1.81 ± 1.01 ml/min/100 g, P = 0.556;  SUVmean of PTs and 
mLNs: 3.40 ± 1.01 g/ml vs. 3.80 ± 1.88 g/ml, P = 0.377).

In the initial uptake time (0–3 min after  [18F]FDG injec-
tion), all PTs and mLNs shared a tumor-like perfusion pat-
tern (fast wash-in and washout). From 6 min after the  [18F]
FDG injection, PTs had faster and higher  [18F]FDG uptake 
than mLNs in the F-DFM group, while no significant dif-
ference was observed in  [18F]FDG uptake between PTs and 
mLNs in the S-DFM group. The dynamic FDG uptake of 
PTs in the F-DFM group was significantly different com-
pared to that in the S-DFM group, while no significant dif-
ference was observed in the FDG uptake of mLNs between 
the two groups. Figures 4 and 5 display typical dynamic 

 [18F]FDG uptake patterns for patients in the F-DFM and 
S-DFM groups, respectively. It was revealed that PTs in the 
S-DFM group exhibited a more heterogeneous spatial dis-
tribution of FDG uptake than those in the F-DFM group.

The metabolic parameters of lesions were compared 
between the dynamic PET and the delayed static PET, 
and the results were shown in Fig. 6. The  SUVmean of PTs 
and mLNs derived from delayed static PET was remark-
ably linearly correlated with that from dynamic PET (PTs: 
R2 = 0.856, P < 0.001; mLNs: R2 = 0.798, P < 0.001). We 
also compared the  SUVmean of PTs assessed by the delayed 
PET between the F-DFM and S-DFM groups. The  SUVmean 
of PTs in the F-DFM group was statistically higher than 
that in the S-DFM group (9.94 ± 1.36 g/ml vs. 5.15 ± 1.89 g/
ml, P < 0.001). No significant difference was observed in 
the  SUVmean of mLNs between the two groups  (SUVmean of 
mLNs in the F-DFM and S-DFM groups: 5.92 ± 2.68 g/ml 
vs. 5.3 ± 2.0 g/ml, P = 0.508).

A total of 51 textural features were extracted from PTs by 
50–60-min PET imaging in the F-DFM and S-DFM groups. 

Fig. 2  The comparisons of Ki,  SUVmean, MTV, TLG, and intercept 
metrics for primary lung tumor (PT) between the F-DFM and S-DFM 
groups. The comparison of Ki,  SUVmean, and intercept was performed 

using the t-test, and the comparison of MTV and TLG was performed 
using the Mann–Whitney U test

Fig. 3  The comparisons of Ki 
and  SUVmean for primary lung 
tumor (PT) and metastatic 
lymph node (mLN) between 
the F-DFM and S-DFM groups. 
The t-test was used for each 
comparison; “***” indicates the 
P < 0.001, and “ns” indicates 
P > 0.05
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A significant difference was observed in textural patterns in 
PTs between the two groups (Supplementary Fig. 5). More 
specifically, PTs in the S-DFM group were more remarkably 
heterogeneous than those in the F-DFM group, and 9 of 13 
heterogeneity-related features were significantly different 
between the two groups (Supplementary Fig. 6).

Gene profiling and IHC staining

The targeted NGS of PTs was performed in 12 patients, 
including 7 in the F-DFM group and 5 in the S-DFM group. 
The detailed genetic mutations of 12 patients were shown 
in Supplementary Fig. 7. TP53 and PI3KCA accounted for 

the most common mutated genes. The mean tumor muta-
tional burden (TMB) was 8.4 mut/Mb for patients in the 
F-DFM group and 10.0 mut/Mb for those in the S-DFM 
group (P = 0.715).

The IHC staining of Ki67 (tumor cell proliferation), 
 CD3+ (T cell),  CD8+ (T cell),  CD68+ (macrophage), 
 CD163+ (macrophage), and CD34 (micro-vessel) was per-
formed in PT tissues of 12 patients, including 6 patients 
in the F-DFM group and 6 patients in the S-DFM group 
(Figs. 7 and 8). The results revealed higher expressions 
of  CD3+(75.2% ± 10.1% vs. 38.7% ± 11.1%, P < 0.001), 
 CD8+ (72.0% ± 13.1% vs. 31.5% ± 7.1%, P < 0.001), 
 CD68+(55.0% ± 15.3% vs. 23.5% ± 10.0%, P = 0.002), and 

Fig. 4  The dynamic 18F-FDG 
uptake patterns assessed by the 
60-min dynamic total-body PET 
scan for an LA-NSCLC patient 
in the F-DFM group. (a) Maxi-
mum intensity projection (MIP) 
of the total-body 18F-FDG PET 
of the patient in the F-DFM 
group. (b) Dynamic metabolic 
mean uptake curve for PTs 
(red) and mLNs (black) of the 
patient in the F-DFM group. 
(c) The snap MIP view of the 
dynamic 18F-FDG uptake in 
PTs (red box) at 5 min, 9 min, 
14 min, 19 min, 24 min, 29 min, 
38 min, 48 min, and 58 min, 
respectively

Fig. 5  The dynamic 18F-FDG 
uptake patterns assessed by the 
60-min dynamic total-body PET 
scan for an LA-NSCLC patient 
in the S-DFM group. (a) Maxi-
mum intensity projection (MIP) 
of the total-body 18F-FDG PET 
of the patient in the S-DFM 
group. (b) Dynamic metabolic 
mean uptake curve for PTs 
(red) and mLNs (black) of the 
patient in the S-DFM group. 
(c) The snap MIP view of the 
dynamic 18F-FDG uptake in 
PTs (red box) at 5 min, 9 min, 
14 min, 19 min, 24 min, 29 min, 
38 min, 48 min, and 58 min, 
respectively
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 CD163+ (62.8% ± 16.3% vs. 28.7% ± 14.1%, P = 0.003) in 
the F-DFM group compared to the S-DFM group. The pro-
liferative activity was examined by Ki67 (58.7% ± 13.4% vs. 
53.5% ± 20.7%, P = 0.619), and MVD was assessed by CD34 
(35.7% ± 16.0% vs. 37.5% ± 12.7%, P = 0.831), which were 
comparable between the two groups.

Discussion

The current study suggested that the pre-treatment dynamic 
total-body  [18F]FDG PET/CT imaging could stratify NSCLC 
patients into the F-DFM and S-DFM groups, based on Pat-
lak-Ki and  SUVmean of PTs. The PTs in the F-DFM group 
had significantly higher Patlak-Ki (P < 0.001) and  SUVmean 
(P < 0.001) than those in the S-DFM group. The texture 
analysis indicated that PTs in the S-DFM group were more 
heterogeneous than those in the F-DFM group. Higher T 
cells  (CD3+/CD8+) and macrophages  (CD68+/CD163+) 
infiltrations were observed in the F-DFM group. The study 
revealed the role of dynamic FDG uptake parameters in pre-
dicting the biological characteristics of NSCLC, supporting 
the hypothesis that total-body FDG PET/CT imaging could 
provide additional metabolic information for tumor hetero-
geneity evaluation and potentially guide risk stratification.

Cancer metabolism is profoundly different from normal 
cellular metabolism. The enhancement of glycolysis remains 
a cardinal metabolic alteration for tumor cells, and the exces-
sive glucose uptake can be detected by the  [18F]FDG PET 
[22]. Tumor metabolic heterogeneity could be regarded as 
a strong prognostic factor in different types of malignant 
tumors [23–26]. The current study indicated that PTs exhib-
ited more significant heterogeneity in terms of dynamic 

glucose uptake compared with mLNs, which confirmed that 
the degree of glycolysis enhancement varied, even within 
tumor lesions in one patient. The primary tumor had a larger 
tumor burden with a more complex microenvironment than 
the metastatic lymph node, which might have contributed to 
its higher metabolic heterogeneity. A recent study examined 
the genomic landscape of 40 PTs and 61 metastatic tumors 
(MTs) by whole-exome sequencing and found that the con-
cordance for the putative tumorigenic drivers was relatively 
high between PTs and MTs [27]. Of note, mLNs exhibited 
the lowest proportion of PTs-MTs shared alterations [27]. 
Jang et al. enrolled 52 patients with pharyngeal cancer who 
were treated with definitive chemoradiotherapy (CRT) [28]. 
The heterogeneity factor (HF) was defined as the derivative 
(dV/dT) of a volume-threshold function for PTs and mLNs. 
The results showed that HFs of PTs, rather than mLNs, were 
correlated with PET/CT parameters (MTV and TLG) and 
were predictive of response to radiotherapy and locoregional 
recurrence.

As we know, SUV is a simple semi-quantitative 
parameter for characterizing  [18F]FDG uptake. Thus, 
the classification of patients solely based on  SUVmean 
might be less reliable compared with the combination 
of Patlak-Ki (an absolute quantification parameter) and 
 SUVmean. To compare the performance of two classifi-
cation methods  (SUVmean vs. Patlak-Ki and  SUVmean), 
both  SUVmean derived from 40- to 60-min dynamic PET 
 (SUVmean-Dynamic) and  SUVmean from delayed static 
PET  (SUVmean-Delay) were calculated. The results 
indicated that the capacity to classify patients solely by 
 SUVmean-Dynamic/SUVmean-Delay was reduced in certain 
cases sharing similar SUV values in the marginal area 
between the F-DFM and S-DFM groups (Supplementary 

Fig. 6  The  SUVmean of PTs and mLNs derived from delayed static PET was remarkably linearly correlated with that from 50- to 60-min dynamic 
PET. [(a) PT, (b) mLN; blue points-F-DFM group, red points-S-DFM group]
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Fig. 7  The expressions of Ki67, CD3, CD8, CD34, CD68, and CD163 determined by immunohistochemistry (IHC) for primary tumors (PTs) in 
the F-DFM and S-DFM groups
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Fig. 8). By contrast, a clear boundary could be obtained 
between the F-DFM and S-DFM groups when combining 
Ki and  SUVmean-Dynamic, which demonstrated the advan-
tage of dynamic PET parameters in stratifying patients. 
The delayed static PET imaging did not provide enough 
information to differentiate patients between the F-DFM 
and S-DFM groups.

The higher Patlak-Ki and  SUVmean of PTs were observed 
in the F-DFM group, which indicated the higher capability 
of  [18F]FDG uptake over time. The tumor metabolic char-
acteristics examined by dynamic total-body PET could be 
different at the single-cell level, which might be influenced 
by the genetic background of tumor cells and the tumor 
microenvironment (TME) [29]. A recent study reported 
that diverse cell populations preferentially acquired dis-
tinct metabolites from a common pool of metabolites in the 
TME [30]. A significantly higher amount of glucose was 
consumed by tumor myeloid cells over tumor-infiltrating 
T cells or cancer cells on a per-cell basis, and tumor-infil-
trating immune cells were more active than those in the 
spleen [30]. Their results also suggested that glucose was 
not broadly limited and the TME-resident cells were capable 
of increasing glucose uptake in vivo when glutamine uptake 
was restricted [30]. Immune cells preferentially consumed a 
noticeably higher amount of glucose than cancer cells.

In this study, we examined the expressions of tumor-
infiltrating T cells and macrophages of PTs using IHC. The 
results indicated that the F-DFM group had higher expres-
sions of  CD3+/CD8+ T cells and  CD68+/CD163+ mac-
rophages than the S-DFM group, while Ki67 expression 
was comparable between the two groups. Hence, the higher 
values of  SUVmean and Patlak-Ki in the F-DFM group might 
result from the higher infiltrations of T cells  (CD3+/CD8+) 
and macrophages  (CD68+/CD163+) in the TME. In addition 
to TMB and PD-L1, multiple types of immune cells have 
been evaluated to predict the treatment response to immune 
checkpoint inhibitor (ICI) therapy in NSCLC [31–33]. The 
 CD8+ T cell infiltration was reported to be associated with 
the efficacy of ICI therapy [31, 34–36]. Liu et al. revealed 
an association between high levels of  CD68+PD-L1+ mac-
rophages and improved overall survival (OS) in NSCLC 
patients who were treated with ICI therapy [37]. Our find-
ings suggested that dynamic FDG PET could provide par-
ticular FDG metabolic information of TME, and F-DFM 
NSCLC patients might benefit from ICI therapy due to the 
high infiltrations of immune cells. In this sense, the dynamic 
FDG PET could be helpful for treatment decision-making 
and clinical trial design in NSCLC.

The genetic properties of tumors determined the 
aggressiveness and growth pattern, which might influence 

Fig. 8  The quantitation of Immunohistochemistry obtained by the 
image analysis for primary tumors (PTs) in 12 patients (6 patients 
in the F-DFM group vs. 6 patients in the S-DFM group). The results 

revealed higher expressions of  CD3+,  CD8+,  CD68+, and  CD163+ in 
the F-DFM group
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the FDG uptake ability of tumor cells. The relationship 
between static PET parameters and tumor genetic hetero-
geneity has been explored, but the results remained con-
troversial [38–41]. In several studies, no correlation was 
observed between PET parameters and TMB in NSCLC 
[40, 41]. Our study evaluated the association of dynamic 
FDG uptake characteristics with gene mutation patterns 
and TMB, and no significant correlation was found.

There were two reasons why the delayed static PET 
scan was performed in this study. Firstly, in previous 
studies which involved conventional PET, the addition 
of delayed PET was reported to raise the accuracy of 
diagnosis of metastases and staging of mediastinal node 
in patients with lung cancer [42, 43]. We assumed that 
the delayed static PET scan might be helpful in the 
detection of distant metastatic lesions in unresectable 
NSCLC patients. Secondly, we attempted to compare 
the metabolic characteristics of lesions between the 
dynamic PET and the delayed static PET, with the aim 
of exploring additional information for tumor heteroge-
neity evaluation. No additional metastatic lesions were 
detected with the delayed static PET imaging in this 
study. The results showed that the  SUVmean of PTs and 
mLNs derived from delayed static PET was remarkably 
linearly correlated with that from dynamic PET, which 
suggested that the delayed static PET did not provide 
additional metabolic information. Based on the results, 
the PET scan protocol would be optimized in subse-
quent studies.

There are some limitations to this work. First, only 
30 patients could be enrolled in the present study, and 
the results should be validated by a study with a larger 
sample size. Second, the amount of biopsy tissue sam-
ples might be insufficient, and the quality might not be 
high enough for pathological and molecular testing. IHC 
analysis was performed in only 12 PT samples in the cur-
rent study, and the differences between samples from PTs 
and mLNs were unable to be compared. Genetic testing 
was performed on only 12 patients; thus, the correlation 
between dynamic FDG PET and genetic properties should 
be further validated. Third, the association of Patlak-Ki 
and immune cells infiltration  (CD3+/CD8+ T cells and 
 CD68+/CD163+ macrophages of PTs) with treatment out-
comes needs to be explored in the future. Despite these 
limitations, the current study made a comprehensive 
description of the dynamic FDG uptake patterns of PTs 
and mLNs by the dynamic total-body PET, which could 
be helpful for a deeper insight into tumor heterogeneity. 
The correlation between dynamic FDG-uptake parameters 
and treatment response to ICI therapy will be reported in 
an observational study (NCT04654234) when the median 
follow-up time reaches 12 months.

Conclusions

The dynamic total-body  [18F]FDG PET/CT stratified 
NSCLC patients into the F-DFM and S-DFM groups, based 
on Patlak-Ki and  SUVmean of PTs. PTs in the F-DFM group 
seemed to be more homogenous in terms of the  [18F]FDG 
uptake than those in the S-DFM group, with higher  SUVmean 
and Patlak-Ki. The higher infiltrations of T cells and mac-
rophages were observed in the PTs for the F-DFM group, 
which suggested a potential benefit from immunotherapy.
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