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In the current issue of the European Journal of Nuclear 
Medicine and Molecular Imaging (EJNMMI), Yoo et al. 
[1] reported that  [64Cu][Cu(ATSM-FITC)] positron emis-
sion tomography (PET) could accurately detect hydrogen 
sulfide  (H2S) in brain pathophysiology, opening a new hori-
zon for detecting neuroinflammation by mapping  H2S level. 
In the below paragraphs, we first would like to introduce 
several targets and associated tracers used for detecting neu-
roinflammation and then the theranostic potential of  [64Cu]
Cu-ATSM in preclinical and clinical settings. At the end of 
the manuscript, we will highlight the findings and potential 
applications of  [64Cu][Cu(ATSM-FITC)] reported by Yoo 
et al. By introducing the background and the most recent 
proceedings, readers may get a balanced understanding of 
the relevant information.

Brief introduction of neuroinflammation 
and associated tracers

Neuroinflammation is a key biological process in response 
to cell infection or injury that involves all the cells present 
within the central nervous system (CNS), including micro-
glia, astrocytes, neurons, and macroglia [2–4]. Neuroinflam-
mation often refers to the activation of the neuroimmune 
cells microglia and astrocytes. These glia cells provided pro-
inflammatory and anti-inflammatory functionality and are 
involved in neurodegeneration, such as Alzheimer’s disease 
(AD), Parkinson’s disease (PD), and multiple sclerosis (MS), 

and psychiatric disorders, such as major depression disorder 
(MDD), schizophrenia and psychosis, and substance use. 
PET can visualize, characterize, and measure neuroinflam-
mation in the brain by targeting different biomarkers from 
macrophages to angiogenesis [5].

The most common neuroinflammatory target is the 
18 kDa translocator protein (TSPO), formerly known as 
peripheral benzodiazepine receptor (PBR) [6–8]. Several 
radiotracers were developed to quantify TSPO expression, 
such as the first-generation R-[11C]PK11195. However, 
R-[11C]PK11195 displayed low specific binding [9, 10]. Two 
second-generation tracers  ([18F)DPA-714 and  [11C]PBR28) 
showed about 1.5- and 5-folds higher affinity than R-[11C]
PK11195 [11].  [18F]GE-180 is a so-called third-generation 
TSPO tracer with an even higher binding affinity, which pro-
vides a higher target-to-background ratio compared to these 
tracers [12–14]. With the development of these tracers, we 
can measure both activated microglia and astroglia reflecting 
by TSPO in AD, MS, and even depression.

There is increased TSPO expression in the frontotemporal 
cortex and slightly higher in the neocortex of patients with 
AD compared to that in healthy controls [4]. More recently, 
microglial activation was observed to propagate in Braak 
stages jointly as tau pathology by the  [11C]PBR28 PET study 
[15]. Most PET studies also indicated elevated TSPO bind-
ing in the anterior cingulate cortex or prefrontal cortex in 
participants with major depressive disorders [3]. MS is the 
most common neuroinflammatory disease which caused 
nontraumatic disability. As shown in Fig. 1, MS displayed 
increased TSPO expression in white matter lesions identified 
with magnetic resonance imaging (MRI); it was observed in 
both relapsing–remitting MS and secondary progressive MS 
[12, 16–18]. These TSPO binding patterns in white matter 
lesions are indistinguishable on MRI, which suggests that 
TSPO PET can detect pathophysiological heterogeneity of 
MS to which MRI is not sensitive or specific [4]. Further-
more, non-lesional white matter and gray matter in patients 
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with MS also showed greater TSPO binding than that in 
age-matched healthy controls.

But there were several limitations for TSPO as a bio-
marker of neuroinflammation. Firstly, the expression of 
TSPO by astrocytes and in the vascular endothelium was 
not neglected other than its expression in the brain by micro-
glia. Secondly, TSPO PET is sensitive to polymorphism 
(rs6971) in the TSPO gene, which generated high-affinity 
binders (two copies of the major allele), mixed-affinity bind-
ers (heterozygous allele), and low-affinity binders (two cop-
ies of the rare allele). It means different PET signals could 
be produced by individuals with the same TSPO density 
but different genotypes. Thirdly, the lack of a true refer-
ence region requires kinetic modeling through the use of 
the metabolite-corrected arterial input function for accurate 
measurement of its density. These shortcomings limited the 
application of TSPO PET, especially the quantification of 
TSPO. More importantly, TSPO PET was found to reflect 
the density of inflammatory cells rather than their activation 
in humans, because its expression in human myeloid cells 
is related to different phenomena. Therefore, TSPO PET 
can reflect activated microglia in rodents but not in humans, 
which means the interpretation of TSPO PET data requires 
revision [19]. Therefore, more neuroimmune imaging bio-
markers are necessary to overcome the limitation of TSPO 
PET. Novel inflammatory targets, including P2X7, P2Y12, 
colony-stimulating factor 1 receptor (CSF1R), monoamine 
oxidase B (MAO-B), cyclooxygenase isoenzymes COX-1, 
and COX-2, were validated in human diseases.

Purinergic receptors were classified as P1 and P2 recep-
tors. P2 receptors are further subdivided into P2X and P2Y 
receptors; seven P2X receptors and eight P2Y receptors 
were identified. Among them, P2X7 and P2Y12 are the 
most promising targets for imaging neuroinflammation. The 
P2X7 receptor is expressed on immune cells such as mono-
cytes, macrophages, and microglia. However, the P2Y12 
receptor is only expressed on microglia but not on periph-
eral macrophages in the brain [20]. Some P2X7 tracers 

were developed and evaluated in humans, such as  [11C]
GSK1482160,  [11C]JNJ-54173717, and  [18F]JNJ-64413739. 
Although P2X7 PET displayed excellent results in MS, the 
application in other diseases is still not successful. P2X7 
PET demonstrated no difference between amyotrophic 
lateral sclerosis (ALS) and controls and between PD and 
controls [21, 22]. For the P2Y12 receptor, several radiotrac-
ers were developed, but currently, no tracer can cross the 
blood–brain barrier (BBB) [23]. Therefore, the development 
of the brain penetrating P2Y12R PET tracer is still urgent.

CSF1R is another promising neuroinflammatory bio-
marker which predominantly expressed by microglia in the 
CNS. Its expression in other cells, such as neurons, is lim-
ited. It was also reported to involve in neurodegeneration 
and psychiatric disorders. CSF1R was used as a therapeutic 
target in various autoimmune disorders and cancers. Muta-
tions in the CSF1R gene causing an autosomal dominant 
disease of hereditary diffuse leukoencephalopathy with 
spheroids (HDLS) also emphasized its significance [24, 
25]. However, suitable CSF1R radiotracers are not available 
now.  [11C]CPPC and  [11C]GW2580 are the most promis-
ing ones investigated in inflammatory animal models [26, 
27]. An autoradiography study also confirmed the increased 
(75–99%) radiotracer binding in the AD brain by  [11C]CPPC 
[27]. The major issue of  [11C]CPPC is that the sensitivity 
is not adequate to detect the low density of CSF1R in the 
healthy brain.

MAO-B is located both in neurons and astrocytes and 
overexpressed under pathological conditions associated 
with astrocytosis. MAO-B is considered a good biomarker 
of astrocytes and displayed a significant role in the treatment 
and diagnosis of neurodegenerative and other brain disorders 
[28]. PET imaging of MAO-B could provide opportunities 
for the quantification of astrocytosis. The first generation of 
MAO-B tracer of L-[11C]deprenyl was originally developed 
in the 1980s [29]. Recently, a novel MAO-B tracer,  [18F]
SMBT-1, was developed from the tau tracer,  [18F]THK-5351 
[30, 31].  [18F]SMBT-1 displayed high binding affinity and 

Fig. 1  Representative  [18F]
DPA-714 PET in a 28-year-
old female patient with MS. 
T2-weighted MR (left) and 
TSPO PET (right) images were 
provided by the PET center, 
Huashan Hospital
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selectivity to MAO-B and reversible kinetics. It is also valu-
able to measure astrocytosis in AD patients.

COX is essential in the synthesis process of pro-inflam-
matory prostanoids, and their release as inflammatory medi-
ators is significant to neuroinflammation. COX-1 is mainly 
localized in microglia, contributing to pro-inflammatory 
responses, while COX-2 is also expressed in neurons. COX-2 
is quickly and dramatically upregulated by inflammation. 
Therefore, COXs were used as the biomarkers for the treat-
ment and diagnosis of chronic inflammatory diseases, such 
as pain, fever, arthritis, and neurodegeneration. Two selec-
tive tracers were validated in human volunteers,  [11C]PS13 
for COX-1 and  [11C]MC1 for COX-2.  [11C]PS13 displayed 
the highest uptake in the hippocampus and occipital cortex, 
followed by the pericentral cortex and adjacent neocorti-
ces in the brain [32]. Physiological COX-1 expression in 
these regions was confirmed by COX-1 mRNA expression 
in the healthy human brain.  [11C]MC1 was investigated in 
patients with rheumatoid arthritis, and increased binding in 
the affected joints was observed.  [11C]MC1 also found no 
detectable binding in the brain of healthy volunteers. How-
ever, patients with rheumatoid arthritis displayed elevated 
brain uptake, in an order of neocortex, subcortical gray mat-
ter, and cerebellum [33]. The ability of  [11C]MC1 in the 
measurement of COX-2 expression was also validated in the 
rhesus monkey brain and periphery after lipopolysaccharide 
injection [33].

Although tremendous targets were investigated as neuro-
inflammatory biomarkers, most of them targeted glia cells. 
The shortcomings of these targets and associated tracers 
also limited their applications. Therefore, discovery of new 
targets and development of new tracers are also necessary. 
Although traditionally known as a toxic gas, accumulating 

evidence supports that hydrogen sulfide  (H2S) plays impor-
tant roles in CNS diseases and traumatic brain injury 
[34–37]. Measurement of  H2S levels in the brain could be a 
new strategy to monitor the CNS diseases.

Cu‑ATSM in imaging cancers 
and neurodegenerative diseases

The copper II glyoxal bis(4-methyl-3-thiosemicarbazone) 
(Cu(II)-GTSM) (Fig. 2a) can deliver exogenously bound 
Cu directly into cells and activate pathways where Cu is a 
key cofactor. Copper II diacetyl-bis(4-methyl-3-thiosemicar-
bazone) (Cu(II)-ATSM) (Fig. 2b) is a biosimilar and only 
releases the exogenously bound Cu under hypoxic condi-
tions. Both Cu-ATSM and ATSM are quickly cleared from 
the circulation with corresponding half-lives  (T1/2) of 21.5 
and 22.4 min, respectively [38]. The BBB is a highly selec-
tive gateway regulating the influx and efflux of molecules 
from the systemic circulation into the brain and in the 
reverse direction. Cu(II)-ATSM has enhanced permeability 
and can penetrate the BBB [39].

Both the properties and species of Cu affect the cellular 
uptake [40, 41]. Although the full mechanisms underlying 
the uptake of Cu-ATSM remain to be elucidated, the pro-
posed mechanisms are shown in Fig. 3. One potential mech-
anism is the penetration of Cu(II)-ATSM into mitochondria 
and reduction of Cu(II) to Cu(I), leading to irreversible 
retention of metal or radiometal in the hypoxic cells [42, 43]. 
More recently, Yoshii et al. found that uptake of Cu-ATSM 
not only reflects hypoxia but also indicates the over-reduced 
intracellular states caused by mitochondrial dysfunction 
[44]. In normoxic cells, the Cu(I)-ATSM compound is 

Fig. 2  Chemical structures of a 
Cu(GTSM), b Cu( ATSM), and 
c Cu(ATSM-FITC)
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rapidly re-oxidized into Cu(II)-ATSM by molecular oxygen 
and washed out from the cells [45, 46]. Another potential 
mechanism is the disassociation of Cu(II) from copper(II) 
complexes and the reduction of Cu(II) to Cu(I) by reduc-
tases in the circulation or tumor microenvironment. Hypoxic 
tumor cells have increased expression of copper transporter 
1 (CTR-1) which mediates the transportation of Cu(I) into 
tumor cells [47].

When labeled with Cu isotopes (60Cu [half-life, 0.395 h; 
β+-decay, 92.5%; electron capture, 7.5%], 62Cu [half-life, 
0.16 h; β+-decay, 98%; electron capture, 2%], and 64Cu [half-
life, 12.7 h; β+-decay, 17.4%; β−-decay, 38.5%; electron 
capture, 43%]), they can be used for tumor hypoxia imag-
ing and blood perfusion visualization. In 1996, Fujibayashi 
et al. reported that  [62Cu]Cu-ATSM had high brain and 
heart uptake but was quickly washed out from these tissues. 
Moreover,  [62Cu]Cu-ATSM had significantly increased heart 
uptake under hypoxic conditions [48]. This was followed by 
a translational study in 2000 reporting the safety profiles, 
rapid clearance from circulation, and accumulation of the 
tracer in the tumors within minutes [49]. Meanwhile, Lewis 
et al. elucidated that uptake of Cu-ATSM was dependent 
on tissue oxygen pressure and thus validated the value in 
imaging hypoxia [50, 51]. In non-small cell lung cancers 
(NSCLCs), the uptake patterns of  [62Cu]Cu-ATSM and 
18F-FDG differed in squamous cell carcinoma (SCC) and 
adenocarcinomas [52]. Similarly, in a recent study includ-
ing 30 patients with head-and-neck cancers, Okazawa and 
co-authors demonstrated that high accumulation of  [62Cu]
Cu-ATSM in the periphery and intense uptake of 18F-FDG 
in the center were seen in SCCs. In comparison, the uptake 

patterns of the two tracers in adenocarcinomas were homo-
geneous [53]. Ikawa et al. reported that PET imaging with 
 [62Cu]Cu-ATSM could visualize the regional oxidative stress 
in a patient with mitochondrial myopathy, encephalopathy, 
lactic acidosis, and stroke-like episodes (MELAS) [54]. Oxi-
dative stress and mitochondrial dysfunction may contribute 
to the pathogenesis of PD. The same group then elucidated 
the uptake patterns of  [62Cu]Cu-ATSM in patients with PD, 
reporting a higher accumulation of  [62Cu]Cu-ATSM in the 
striata of the PD patients than that in the controls [55]. In 
patients with cerebrovascular disease, the information of 
dynamic  [62Cu]Cu-ATSM correlated well with that of 15O 
tracers in assessing cerebral blood flow and oxygen extrac-
tion fraction [56].  [62Cu]Cu-ATSM uptake was significantly 
higher in grade IV than in grade III gliomas and correlated 
well with HIF-1α expression [57]. In addition to probing 
hypoxia, Dehdashti et al. further reported that the tumor-to-
muscle activity ratio of  [60Cu]Cu-ATSM could predict the 
treatment responsiveness in NSCLCs and cervical cancers 
[58, 59].

Compared to 60Cu or 62Cu-labeled agents, 64Cu-labeled 
agents are longer-lived radiopharmaceuticals that will facili-
tate shipping to multiple centers for multi-center clinical 
trials. In particular, β− decay (38.5%) and Auger electron 
emission of 64Cu open the possibility of therapeutic appli-
cations with  [64Cu]Cu-ATSM under proper conditions [60, 
61].  [64Cu]Cu-ATSM largely accumulated around the outer 
rim of tumor masses where hypoxic but active tumor cells 
resided [62]. Granted as an Investigational New Drug by the 
US Food and Drug Administration, a head-to-head com-
parison of  [60Cu]Cu-ATSM and  [64Cu]Cu-ATSM showed 

Fig. 3  Mechanisms mediating 
cellular uptake of retention of 
Cu-ATSM under normal and 
hypoxic conditions. Cu(II)-
ATSM readily penetrates cells 
due to its low molecular weight, 
high membrane permeability, 
and low redox potential. In over-
reduced cells such as when cells 
are under hypoxic conditions, 
the Cu(II) in Cu(II)-ATSM 
is reduced to Cu(I), which is 
released from the ATSM and 
trapped inside the cells. Another 
recently proposed mechanism 
accounting for the deposition of 
the tracers is the formation and 
deposition of CuS when there is 
an increased level of  H2S in the 
CNS [1]
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a significant uptake correlation of the two tracers in 10 
patients with uterine cervical cancers. It is notable that 
 [64Cu]Cu-ATSM PET images had better tumor-to-back-
ground ratios than that of  [60Cu]Cu-ATSM [63]. Moreover, 
among several radiotracers for imaging tumor hypoxia, 
 [64Cu]Cu-ATSM has potential advantages over others in 
several aspects.  [64Cu]Cu-ATSM may have enhanced BBB 
penetration over  [18F]FAZA which is cleared from the uri-
nary system [64, 65].  [64Cu]Cu-ATSM had higher uptake 
in the hypoxia tissues and more rapid washout in normoxic 
cells than  [18F]fluoromisonidazole  ([18F]FMISO), the latter 
requiring at least 2-h equilibrium before scanning is com-
menced [39, 45, 66]. However, Little et al. found that  [18F]
FMISO but not  [64Cu]Cu-ATSM or  [64Cu]Cu-ATSE identi-
fied hypoxic regions in acute ischemic stroke models [66], 
validating the negative results previously reported [67]. So 
far, nitroimidazole-derived tracers, such as  [18F]FMISO and 
the sugar-coupled tracer  [18F]FAZA, are still the prime con-
tenders in imaging hypoxia [68].

[64Cu]Cu-ATSM is currently in clinical trials for imag-
ing tumor hypoxia in locally advanced rectum cancer 
(NCT03951337) and bulky tumors (NCT04875871). Auto-
mated cyclotron production and synthesis of  [64Cu]Cu-
ATSM with a commercially available synthesis module 
(GE Tracerlab™ FX2 N) has been reported by Liu et al. 
[69]. Multiple administration of  [64Cu]Cu-ATSM may result 
in liver toxicity [70, 71]. Administration of penicillamine, 
a heavy metal chelator, could reduce radiation absorption 
doses in critical organs such as the liver and small intestine 
[72]. Different formulations of  [64Cu]Cu-ATSM have been 
developed and validated by two research groups for diag-
nostic and theranostic applications, respectively [38, 63]. 
The potential risk associated with the chemical impurities 
from  [64Cu]Cu-ATSM degradation is negligible, even in a 
therapeutic dose of  [64Cu]Cu-ATSM [73]. PET imaging with 
 [64Cu]Cu-ATSM may provide clinically relevant information 
about tumor oxygenation (hypoxia) and value in predicting 

therapeutic responses and survival in patients with solid 
tumors [74]. While most of the clinical trials are planned to 
image tumor hypoxia and predict the therapeutic responses 
of  [64Cu]Cu-ATSM, there are also clinical studies evaluat-
ing the safety profiles and preliminary efficacies of Cu(II)
ATSM in patients with PD or amyotrophic lateral sclerosis/
motor neuron disease. The information on several finished 
and ongoing clinical trials is summarized in Table 1. Mean-
while,  [64Cu]Cu-ATSM is fully exploited as a theranostic 
agent in Japan. Therefore, uncovering mechanisms other 
than the well-recognized radiobiological effects may help 
understand the therapeutic effects [75, 76].

[64Cu]Cu‑ATSM‑FITC is an emerging agent 
sensing hydrogen sulfide

As mentioned above, accumulating evidence indicates that 
 H2S plays important roles in the pathogenesis of a range 
of brain tissues [77]. A recent study elucidated that Cu(II)-
ATSM, but not Cu(II)-GTSM, enhanced P-glycoprotein (P-gp) 
expression and may further contribute to the clearance of amy-
loid beta (Aβ) from the brain [78]. How to noninvasively and 
reliably detect endogenous level  H2S remains a challenge. In 
the long run to develop probes for sensing  H2S levels, both 
radioactive and non-radioactive probes have been developed 
[79]. Radioactive probes have advantages over fluorescent 
probes in terms of detection sensitivity, penetration ability, 
and high consistency. In the recent work published in the EJN-
MMI [1], Yoo et al. exquisitely developed  [64Cu]Cu-ATSM-
FITC (Fig. 2c) based on the bis(thiosemicarbazone) backbone. 
The tracer penetrated BBB and accumulated exceptionally 
(> 9%ID/g) high in the mice brain, due to the lipophilicity of 
the radiotracer with a  D7.4 value of ~ 1.70.  [64Cu]Cu-ATSM-
FITC reacts with  H2S instantly to immobilize gaseous  H2S 
into an insoluble copper sulfide  ([64Cu]CuS) precipitate. 
While  [64Cu]Cu-ATSM-FITC has no fluorescence signal due 

Table 1  Registered clinical trials using  [64Cu]Cu-ATSM or Cu(II)ATSM

Tracer/agent Cancer types Application purposes Status Registration number

[64Cu]Cu-ATSM Rectum cancer Predict response of neoadjuvant therapies Ongoing NCT03951337
[64Cu]Cu-ATSM Bulky tumors (≥ 6 cm) Imaging of tumor hypoxia Ongoing NCT04875871
[61Cu]Cu-ATSM Solid tumors Imaging of tumor hypoxia Terminated NCT00585117
[64Cu]Cu-ATSM Glioblastoma Predict response of radiotherapy and chemotherapy Terminated NCT02329795
[64Cu]Cu-ATSM Cervical cancer Predict chemoradiotherapy response and progression-free 

survival
Terminated NCT00794339

[64Cu]Cu-ATSM Non-small cell lung cancer Imaging of tumor hypoxia and predicting chemotherapy 
response

Withdrawn NCT01006226

Cu(II)ATSM Parkinson’s disease Confirm tolerability and assess preliminary efficacy Completed NCT03204929
Cu(II)ATSM Amyotrophic lateral 

sclerosis/motor neuron 
disease

Dose acceleration and preliminary efficacy evaluation Completed NCT02870634
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to fluorescence quenching by Cu(II), the released ATSM-FITC 
ligand emits fluorescence. Elegant in vitro cell studies and 
in vivo PET imaging studies validated that uptake of  [64Cu]Cu-
ATSM-FITC was  H2S-dependent. Furthermore, the authors 
reported that  [64Cu]Cu-ATSM-FITC had higher uptake in 
lipopolysaccharide-induced neuroinflammation models.

The preclinical promise can potentially be translated into 
clinical reality to detect brain diseases [80–83]. Initial studies 
have shown the diffuse uptake of  [62Cu]Cu-ATSM in healthy 
controls and neurological diseases [54, 55]. Since  [64Cu]Cu-
ATSM can delineate ischemic and hypoxic changes [84] as 
well as over-reduced intracellular states caused by mitochon-
drial dysfunction [44, 54], the net signal of  [64Cu]Cu-ATSM 
or  [64Cu]Cu-ATSM-FITC contributed by  H2S should be care-
fully interpreted. Sequential use of  [64Cu]Cu-ATSM (or  [64Cu]
Cu-ATSM-FITC) and tracers reflecting hypoxia or blood flow 
may better address clinical challenges. Furthermore, the role 
of CTR-1 in mediating the uptake of 64Cu-labeled radioligands 
should be carefully examined. From a diagnostic perspective, 
understanding mechanisms accounting for  [64Cu]Cu-ATSM 
uptake is essential to fully interpret the imaging findings and 
find the application scenarios. Visualization of  H2S levels in 
neurological diseases is attractive. As the authors mentioned, 
 [64Cu]Cu-ATSM-FITC may help diagnose various diseases 
such as traumatic brain injury, stroke, encephalitis, and neu-
rodegenerative diseases (e.g., PD and AD) [1]. Besides that, 
 [64Cu]Cu-ATSM-FITC and other similar probes can also be 
used to detect cardiovascular diseases such as myocardium 
infarct and atherosclerosis [79, 85]. Further translation studies 
are needed to fill the gaps and address the clinical value.
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