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Abstract
Purpose Deep learning is an emerging reconstruction method for positron emission tomography (PET), which can tackle 
complex PET corrections in an integrated procedure. This paper optimizes the direct PET reconstruction from sinogram on 
a long axial field of view (LAFOV) PET.
Methods This paper proposes a novel deep learning architecture to reduce the biases during direct reconstruction from 
sinograms to images. This architecture is based on an encoder-decoder network, where the perceptual loss is used with pre-
trained convolutional layers. It is trained and tested on data of 80 patients acquired from recent Siemens Biograph Vision 
Quadra long axial FOV (LAFOV) PET/CT. The patients are randomly split into a training dataset of 60 patients, a validation 
dataset of 10 patients, and a test dataset of 10 patients. The 3D sinograms are converted into 2D sinogram slices and used 
as input to the network. In addition, the vendor reconstructed images are considered as ground truths. Finally, the proposed 
method is compared with DeepPET, a benchmark deep learning method for PET reconstruction.
Results Compared with DeepPET, the proposed network significantly reduces the root-mean-squared error (NRMSE) from 
0.63 to 0.6 (p < 0.01) and increases the structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) from 0.93 
to 0.95 (p < 0.01) and from 82.02 to 82.36 (p < 0.01), respectively. The reconstruction time is approximately 10 s per patient, 
which is shortened by 23 times compared with the conventional method. The errors of mean standardized uptake values 
(SUVmean) for lesions between ground truth and the predicted result are reduced from 33.5 to 18.7% (p = 0.03). In addition, 
the error of max SUV is reduced from 32.7 to 21.8% (p = 0.02).
Conclusion The results demonstrate the feasibility of using deep learning to reconstruct images with acceptable image 
quality and short reconstruction time. It is shown that the proposed method can improve the quality of deep learning-based 
reconstructed images without additional CT images for attenuation and scattering corrections. This study demonstrated the 
feasibility of deep learning to rapidly reconstruct images without additional CT images for complex corrections from actual 
clinical measurements on LAFOV PET. Despite improving the current development, AI-based reconstruction does not work 
appropriately for untrained scenarios due to limited extrapolation capability and cannot completely replace conventional 
reconstruction currently.
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I Introduction

With the development of positron emission tomography 
(PET) instrumentation, the axial field of view continually 
increases, leading to the new area of long axial field of 
view (LAFOV) PET or total-body PET. Compared with 
the current clinically standard of care axial field of view 
(FOV), PET system has a range of 26 cm, and the long-
axial FOV-PET systems have larger solid angle coverage 
and longer axial FOV. In addition, a large anatomical 
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region can be covered with one single bed position. Con-
sequently, a large factor can significantly reduce the total 
PET acquisition time due to the increased sensitivity 
[1–3].

Several image reconstruction algorithms have been 
proposed to reconstruct tomographic images using pro-
jection data. For instance, conventional methods can 
solve a mapping function from measurement space to 
image space based on physical principles. The clini-
cally developed methods include the analytical and 
iterative methods. The analytical methods, such as the 
filtered back projection (FBP) [4], can achieve fast 
image reconstruction. However, the obtained images 
have a high level of noise. The iterative methods, such 
as the maximum-likelihood expectation–maximization 
(MLEM) [5] and ordered-subset expectation maximiza-
tion (OSEM) [6] with iteratively back-projecting and 
forward-projecting, are clinically accepted standards. 
The iterative methods can give reconstructed images 
with the low noise level and satisfactory contrast. How-
ever, the iterative process is time-consuming. Moreo-
ver, in order to correctly perform attenuation, a com-
puted tomography (CT) or magnetic resonance (MR) 
image is used to estimate the attenuation. In recent 
years, neural networks have been used for tomographic 
image reconstruction to achieve higher quality results 
with sparse information and short reconstruction time 
[7, 8]. Deep learning-based methods have also been 
applied. For instance, a deep learning method is pro-
posed for noise reduction in order to allow low-dose 
PET imaging protocols [9–11]. A neural network is 
integrated into the iterative process to speed up the 
convergence speed and improve the reconstruction 
quality [12, 13]. A neural network is trained to convert 
directly from projection to image data. For the direct 
method, an automated method that uses the transform 
by manifold approximation (AUTOMAP) to learn the 
relationship between sensor domain and image domain 
is proposed [14]. This method mainly tackles the MR 
image reconstruction, while PET system application 
is also achievable [14]. A deep encoder-decoder net-
work, referred to as DeepPET, is used for the direct 
reconstruction of PET images. PET images and projec-
tion data simulated based on XCAT digital phantom 
are used to train the network [15]. Kandarpa et al. [16] 
propose a double U-Net to learn the sinogram-to-image 
transformation, while the deep-learning pipeline con-
sists of denoising, image reconstruction, and super-res-
olution segments. William et al. [17] propose a Direct-
PET network to achieve full-size neural network PET 
reconstruction from histo-images data. The XCT-based 
attenuation maps are used as additional input for cor-
rections. The reconstruction from histo-images using 

a U-net network is also proposed, where a CT-based 
attenuation is required [18].

The LAFOV of total-body PET increases the prob-
ability of LOR detection in order to increase the sensitiv-
ity. However, the high obliqueness of the LORs between 
distant rings suffers from the parallax error [1] and intro-
duces large heterogeneity in the image quality [19, 20]. 
The increased Compton scattering and ratio between 
multiple over single scattered photons is another critical 
bottleneck for the reconstruction of LAFOV PET [21]. 
The fraction of multiple scatters changes in LAFOV PET 
[22] heterogeneously. The fractions of random events 
also depend on the difference of rings in LAFOV PET 
[20]. The correction of heterogeneity of random and mul-
tiple scattered events makes the reconstruction more dif-
ficult than in the conventional scanners.

This paper explores the application of the encoder-
decoder network to long-axial FOV PET reconstruction 
using clinical patient data. The study focuses on achieving 
an end-to-end PET reconstruction directly from the detector 
to the image domain. In addition, an attenuation correction 
is integrated into the training process.

II Material and methods

Patients and imaging

Clinical patient list mode data are collected using Biograph 
Vision Quadra (Siemens Healthineers) at the University of 
Bern, Switzerland. This system has a FOV of 106 cm. Pre-
liminary assessments of this scanner’s characteristics reveal 
a sensitivity of 174 cps/kBq and a time of flight (TOF) reso-
lution of 219 ps in ultra-high sensitivity mode [23].

The selected patients are injected with 18F-FDG and 
undergo a PET/CT examination, including 80 cases 
(median age, 66  years; age range, 27–83  years; 36 
females; BMI, 25.40 ± 4.70 kg/m2) of patients. In all the 
cases, the subjects fast for more than 4 h and have blood 
glucose less than 200 mg/dl. All the patients are injected 
with 18F-FDG with an uptake time of 90 min ± 10%. The 
patients without complete PET/CT scan images from 
above head to below thigh, and those with poor image 
quality because of movement, are excluded from the 
study. The 80 patients are randomly split into a training 
dataset of 60 patients (median age, 67 years; age range, 
27–83 years; 26 females; BMI, 25.43 ± 4.71 kg/m2), a 
validation dataset of 10 patients (median age, 62 years; 
age range, 58–75 years; 5 females; BMI, 26.72 ± 5.96 kg/
m2), and a test dataset of 10 patients (median age, 
67  years; age range, 40–81  years; 5 females; BMI, 
23.92 ± 2.11 kg/m2). Note that this study is performed 
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following the requirements of the respective local ethics 
committees in Switzerland (Req-2021–00,517).

Data pre‑processing

List-mode data obtained from the scanner is recon-
structed using a dedicated software prototype (e7-tools, 
Siemens Healthineers) with CT-based attenuation cor-
rection. As performed in our clinical routine, the PET 
images were reconstructed using PSF-TOF with 4 itera-
tions and 5 subsets [23]. The 3D sinograms are converted 
into 2-dimensional (2D) slices using single-slice rebin-
ning (SSRB) [4]. A stack of 2D sinograms is created by 
placing detected events on the plane, perpendicular to the 
scanner axis (z) and lying in the middle of the line con-
necting the two detectors of the event. The image matrix 
size of 2D image volumes is 440 × 440 with dimensions 
of 1.65  mm × 1.65  mm. A total of 644 2D sinogram 
slices are obtained for each patient, corresponding to 644 
reconstructed images.

The input dataset of the network is the 2D sinogram 
slices, and the reconstructed images from e7-tools are used 
as training targets. Several images of the starting and end-
ing positions of each patient’s data have a low count, and 
therefore they are excluded from the study. Each patient 
retains 599 sets of data (2D sinogram and reconstructed 
image). Finally, 60 patients and 10 patients are respectively 

designated for training validation, while 10 patients are con-
sidered for testing.

Deep neural network structure

An encoder-decoder network is developed for direct image 
reconstruction. It comprises two parts: image transform and 
perceptual loss networks [24] (cf. Figure 1).

The structure of the proposed training network is based 
on DeepPET [15]. The network consists of the encoder, 
transformation, and decoder parts (cf. Figure 1, Supple-
mental Fig. 1, 2) [25]. In addition, 31 convolution blocks 
and one single convolution layer are involved. Each con-
volution block includes a convolution layer used to extract 
features, a batch normalization (BN) layer used to speed   
up the training and network convergence, and a rectified 
linear unit (ReLU) activation function. In the decoder and 
transformation part, the convolution filter for the first two 
blocks has a size of 7 × 7, that of the following two blocks 
is of 5 × 5 size, while the others have a size of 3 × 3. The 
number of extracted features increases from 32 to 1024. 
The convolution layer decreases the widths and lengths of 
the feature maps with a kernel stride of 2. In the decoder 
part, the convolution filter has a size of 3 × 3, and the fea-
ture maps are enlarged by upsampling layers. The output 
layer is a convolution layer with one feature. The 2D sino-
gram slices are resized to 288 × 269 and used as inputs of 
the network. The outputs of the image transform network 

Fig. 1  The network used in this paper. It includes two parts: image transform network and perceptual loss network. The detailed structures of 
image transform network and perceptual loss network are provided in supplemental Fig. 1, 2
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are reconstructed images that are put in the perceptual 
loss network. Finally, this network comprises 64,544,865 
parameters.

The perceptual loss network uses the first 3 convolution 
blocks of VGG19 [26] (cf. Supplemental Fig. 2). The VGG net-
work uses the accumulation of multiple small-scale convolution 
kernels (3 × 3) rather than large-scale convolution kernels. This 
establishment can form multiple non-linear layers to increase 
the depth of the network and achieve complex feature learning. 
The convolution blocks in VGG19 include a convolution layer 
followed by a ReLU activation function. The sizes of the feature 
maps are reduced by pooling layers. The first 3 convolutional 
blocks of VGG19 are shallow networks in convolutional neural 
networks. The features extracted by the first three convolutional 
blocks are similar to the input and contain more information, 
such as color, texture, and edge. It can be sufficient to capture 
the features while remaining robust. In addition, the depth of 
the three convolutional blocks ensures a sufficient area of recep-
tive field for better reconstruction of structural details. Another 
consideration of the choice of the first three blocks follows the 
study of perceptual loss [24]. It has shown that the reconstruc-
tion with more than three layers can preserve image content and 
overall spatial structure while losing color, texture, and exact 
shape. Another study for PET image fine-tuning found that the 
features extracted from deeper layers could reduce the quality of 
the prediction images [9]. The weights of the VGG19 network 
pre-trained on the ImageNet database (image-net.org) are used. 
The outputs of the first 3 pooling layers are extracted and used 
as feature reconstruction loss:

where VGG(x)i represents the output of the i-th pooling 
layer in VGG19 with the input of ground truth, VGG(y)i 
denotes the output of the i-th pooling layer in VGG19 with 
the input of predict image from image transform network.

The other two parts, which are the mean square error 
(MSE) loss (cf. Equation (2)) and structural similarity 
(SSIM) loss [27] (cf. Equation (3)), are also involved in 
the loss function.

where x is the ground truth, y represents the predicted image 
of the image transform network, and n denotes the total num-
ber of image pixels.
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The total loss function is expressed as:

Network training and test procedure

The network is implemented using TensorFlow [28]; the 
training of the network is performed using a GPU (Tesla 
V100-PCIe-16 GB, NVIDIA) and tested using GeForce 
RTX 2080 Ti (NVIDIA). The Adam optimization method 
[29] is used as an optimizer with a learning rate of  10−4. All 
the images in the training dataset (35,940 2D sinogram and 
reconstructed images) are used as input to the network with 
a batch size of 50 and trained with 300 epochs. The trained 
network is tested on 10 patients’ data (5590 2D sinograms 
and reconstructed images).

The network is tested with three noise levels for the input 
sinograms. Frames of shorter width (1/10 and 1/20) are used 
to generate sinograms of different noise levels. The sino-
grams are processed by SSRB and used as the input to the 
network. The outputs are compared with the reconstruction 
results of sinograms histogrammed using complete list-mode 
PET data to evaluate the influence of the noise level of the 
input sinograms on the AI-based reconstruction results.

Image quality evaluation

The image quality evaluation is processed with the structural 
similarity index (SSIM), normalized root-mean-squared 
error (NRMSE), and peak signal-to-noise ratio (PSNR) 
[27], computed on the regions of the body. SSIM is an index 
used to measure the similarity of two images. The mean, 
standard deviation, and covariance estimate the brightness, 
contrast, and structural similarity, respectively. The values 
range between 0 and 1. More precisely, a value closer to 1 
indicates that the output image is more similar to the target 
image. The SSIMs are computed as

NRMSE is calculated based on the mean square error 
(MSE):
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where x is the average value of all the pixels in the ground 
truth image, x represents the ground truth image, and y 
denotes the predicted image of the network.

The PSNR is computed as

where MAXI is the maximum value of the reconstructed 
image.

Clinical evaluation

The results on the test dataset are further evaluated by 2 
nuclear medicine physicians. For each patient, a typical 
lesion is selected and manually delineated. Among the 10 
patients, 1 patient is proved to have no lesion. The mean 
standardized uptake values (SUVmean) and max standard-
ized uptake values (SUVmax) are measured of the tracer in 
the selected lesions. The relative errors between the ground 
truth and DeepPET results and relative errors between the 
proposed method are calculated and compared. The 3D sino-
gram data are also reconstructed using the FBP method for 
comparison, and example visualization and statistics of the 
comparison are processed.

III Results

We have trained the networks 3 times with random initiali-
zation weights. The obtained final loss curves are shown in 
Fig. 2. The MSE is used as loss of DeepPET. The perspec-
tive loss, shown as Eq. (6), is used for the proposed network. 
We can see that the losses drop significantly at the first 50 
epochs of training, and the loss curves of the validation set 
stop decreasing after the network has been trained for 300 
epochs. Therefore, we stopped network training at that point 
to prevent overfitting.

The average time cost of this work and DeepPET for pre-
dicting 1 patient (644 images) are both 14 s, including 7 s 
for the data preparation process (SSRB) and 7 s for network 
prediction NVIDIA GeForce RTX 2080 Ti. The research 
prototype software (e7-tools, Siemens Healthineers) recon-
structed a single patient’s images using approximately 200 s 
for PSFTOF and 320 s for FBPTOF. The time costs of the 
methods are then compared (cf. Figure 3).
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√
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x
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�
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√
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�

Network test results

As network selection criterion, the MSEs of 10 validation 
sets for the DeepPET network and the network proposed in 
this study are 9.21 and 7.63. For 10 test cases, the predicted 
images of the network proposed in this work and DeepPET 
are shown in Fig. 4, along with the ground truth and input 
sinogram. Figure 6 presents the image quality evaluation 
results (NRMSE, PSNR, and SSIM) obtained by the pro-
posed network for ten test patients. The same patients’ data 
are also tested using DeepPET. The average results of ten 
patients are shown in Table 1.

The input images and reconstruction results from dif-
ferent body areas are shown in Fig. 4. It can be seen that 
a strong similarity exists between the results obtained by 
the proposed method and the ground truth. Especially in 
the regions where the tracer uptake is high such as the 
head, chest, and heart, the results obtained by the proposed 
method are coherent with the reference values. Point-like 
high uptake positions exist in the pelvic cavity, legs, and 
other areas. However, the proposed network can also accu-
rately restore them. In addition, it can be observed that there 
are some slight structural differences at the edge regions of 
some structures, such as the details of the brain and the edge 
of the heart, that are manifested in the blur of the edges. This 
is mainly due to the fact that the true value image is directly 

Fig. 2  Loss curves of the network training
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reconstructed from the 3D sinogram, and the 2D sinograms 
are the input used for prediction in the proposed method. 
Some information is lost when the 3D sinogram is converted 
to a 2D sinogram, and errors are introduced. Compared with 
the test results obtained by the original DeepPET structure 
network, the image structure restoration and detail restora-
tion are improved, which demonstrates the efficiency of the 
perceptual loss network introduction.

The quantitative results statistics are shown in 
Fig. 6, and the uncertainties are listed in supplemen-
tal Table 2. It is shown that the SSIM of the original 
DeepPET structure prediction result compared with 
the true value is 0.95 ± 0.02, and the network has a 2% 
improvement in SSIM (which is close to 1) after the 
perceptual loss structure is introduced. In addition, it 
can be observed that the proposed network increases 
the  s ignal - to-noise  ra t io  f rom 82.02 ± 0 .90 to 
82.36 ± 0.87, which represents a slight improvement. 
Moreover, the NRMSE decreases from 0.63 ± 0.06 to 
0.60 ± 0.06, which indicates that the reconstructed 
image is closer to the true value. The quantitative 
results obtained by the two networks are statically 
analyzed with paired t test, and they all show a sig-
nificant improvement.

It can be seen from Fig. 5 that the AI-based recon-
struction is robust with noises in the sinograms. The 
imaging quality matrices (green cross and red point in 
Fig. 6) of our results from noisy sinograms are at the 
same level as the original sinograms. This finding is con-
sistent with the existing studies [17], which demonstrated 
that the neural network produced images using a half-
count sinogram nearly equivalent to full-count data. As 
a comparison, we reconstructed with sinogram of 1/10 
and 1/20 width by FBP methods and compared the results 
with the AI-based results as shown in Fig. 1 (Supple-
mental Fig. 3, Table 3). With counts decreasing to 1/10 
and 1/20, the SSIM decreases by 1.5% and 2.4% for the 
AI-based method, NRMSE increases by 2.7% and 3.6%, 
and PSNR decreases by 0.2% and 0.4%, which are much 
better than the FBP method. For the FBP method, the 
SSIM decreases by 10.6% and 14.7%, NRMSE increases 

by 71.4% and 95.4%, and PSNR decreases by 3.8% and 
5.5%. The AI-based reconstruction is less sensitive to the 
count statistics than FBP reconstruction. The deep learn-
ing reconstructed images using a low-count sinogram 
are very similar to the results of full-count data. This is 
because the convolutional neural network can extract the 
features of the input data from a larger space, reducing 
the noise caused by the low count input. The mechanism 
is that the convolutional layer can extract the features 
of the input data from a larger space, reducing the noise 
caused by the low count input.

Clinical evaluation results

The mean standardized uptake values (SUVmean) and 
max standardized uptake values (SUVmax) of the tracer 
uptake are measured in a region of interest of lesions (cf. 
Figure 7) for the test sets (median age, 67 years; age range, 
40–81 years; 5 females; BMI, 23.85 ± 2.38 kg/m2). The 
relative errors between the ground truth, DeepPET, and the 
proposed method are calculated (cf. Table 2). It can be seen 
from the comparison for smaller lesions, such as lesions 1 
and 6, that the reconstruction results obtained by the pro-
posed method are closer to the ground truth value. For larger 
lesions, such as lesions 3 and 7, the recovery performed by 
the proposed method and DeepPET on SUVmax is slightly 
worse. However, by comparing the shape and contour of 
the lesion, it can be seen that the results obtained by the 
proposed method are more similar to the ground truth. The 
two reconstruction results do not contain enough details for 
some cases, and lesion 8 is not significantly separated. In 
addition, the proposed method shows superior performance 
in anatomical structure with non-intensive uptaken. For 
instance, in the same layer of lesion 7, it better displays the 
non-uptaken area in the liver, which is not clearly shown by 
DeepPET results. In general, compared with DeepPET, the 
SUVmean and SUVmax of lesions obtained by the proposed 
method are closer to the ground truths. This indicates that 
the obtained prediction results can provide a better clinical 
reference at the lesion level. The currently trained network 
and DeepPET both have a possible degradation of small 

Fig. 3  Comparison of time cost 
for reconstruction of 1 patient’s 
data. The data preparation pro-
cess of this work and DeepPET 
for 1 patient costs about 14 s, 
and the prediction takes about 
7 s. The e7-tools use about 
200 s with PSFTOF and 320 s 
with FBPTOF
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lesions such as lesion 2. Compared with the results obtained 
by the AI methods, the FBP method generates more accurate 
SUVmean and SUVmax for some lesions, such as lesions 6, 
7, and 8. However, as expected, the noise level of the FBP 
reconstruction results is higher.

IV Discussion

This study follows the mainstream of AI development for 
PET reconstruction. It focuses on the direct reconstruc-
tion from sinogram data. In contrast to most of the existing 

Fig. 4  Test set reconstruction results using DeepPET and the proposed method. Left to right: PET sinogram, ground truth, the results of Deep-
PET, and the proposed network. The images are labeled with SSIM, NRMSE, and PSNR relative ground truth
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studies on sinogram data from phantom-based simulation 
[15] or anthropomorphic simulation by projecting real 
patient data [30], the training and test in this study are 
directly performed on real PET measurements. In addition, a 
critical concern for AI development is its reproducibility and 
extensibility to complexity in real applications [31]. Com-
pared with the development on simulated sinogram data, 
the development on real measurement data in this study can 
better tackle the challenges of physical and physiological 
complexity. It also enhances the translational potential of 
data-driven methods.

An advanced LAFOV PET scanner is used to develop 
and test the AI-based direct reconstruction from Sinogram 
data. Although conversion of 2D sinogram data of LAFOV 
PET led to loss of information, the preliminary results 
demonstrate that the deep neural network can reconstruct 
PET images with corrections of attenuation and scattering 
directly from sinogram data without requiring the CT input. 
The ground truth data used for training are reconstructed 
PET images with corrections of attenuation and scattering. 
This potential of AI in complex reconstruction with different 
corrections may benefit the reconstruction of LAFOV PET, 
considering the increased complexity in its reconstruction 
[21]. Although the current study does not consider all the 
challenging issues, such as the larger and heterogenous solid 
angles in LAFOV PET reconstruction, the advantage of the 
AI methods may deal with the complexity and heterogeneity, 
which encourages the development of this technology. At 
this stage, the AI-based reconstruction may be less advanced 
and accurate than the physics-based reconstruction. Further 
improvements of the input sinogram and training data with 
more accurate corrections may enhance the performance of 
this data-driven approach in LAFOV PET reconstruction. In 
addition, it may eventually reach or outperform the physics-
based reconstruction.

Due to a large number of LORs received in LAFOV 
PET, the storage and processing of the acquisition data are 
daunting [21, 22]. For instance, the 106-cm LAFOV sys-
tem has roughly 10 times data to process, compared with 
a SAFOV PET system. However, when using more oblique 
LORs, there could be a 40-fold increase [22]. In fact, the 
prompts count rate peaks at 10 million events, a few orders 
of magnitude larger than for a traditional PET scanner 

[21]. The conventional PET reconstruction algorithms 
are inefficient in processing the vast data of LAFOV PET 
reconstruction. Although the presented test is performed 
on sinogram data for reconstruction, the results demon-
strate that deep learning can significantly shorten (up to 
36 times) the reconstruction time for whole-body imaging, 
compared with a conventional iterative algorithm. This 
potential in accelerating the computational speed may 
bring advantages for the practice of LAFOV PET in the 
clinical routine.

Based on the lesion demarcation, overall image quality, 
and visually assessed signal-to-noise ratio, the proposed 
method improves image quality more than the traditional 
DeepPET approach. In addition, the semiquantitative meas-
urement method is used. The obtained results are shown in 
Table 2. This paper estimates a series of lesions located in 
different organs such as the rib, muscle, mediastinum, and 
retroperitoneal space soft tissue (cf. Figure 7). Lesions 1 and 
2 both present a lesion located in the rib, where the image 
obtained by the proposed method shows a better-outlined 
shape than the traditional DeepPET, which is easily mis-
diagnosed to be located in the sternum. Considering the 
purpose of optimizing the reconstruction, the outputs show 
a satisfying performance in presenting the morphological 
character of the primary lesion with elevator uptake values. 
The lack of structure details leads to misdiagnosis in the 
location and conceals some small lesions in worse cases. 
This may be due to the limited training cases. The use of 
more varied and larger capacity training sets can improve 
the prediction’s accuracy. Compared with the actual recon-
struction, the currently developed AI-based reconstruction 
can generally recover the primary anatomy of patients simi-
lar to the trained ones. It can generally maintain contrasts 
and quantitative relations. As we can see from Fig. 7, no 
artifacts of attenuation or scatter have been observed in the 
AI-reconstructed images. The AI-reconstructed images 
look generally smoother than the actual reconstruction. It 
may miss the lesions in complex anatomy contexts, such as 
ribs, intercostal spaces, and supra-/sub-clavicular area (e.g., 
lesion 2, 8). For the quantitative analysis of the lesions, our 
network led to missing 2 lesions, reduced SUV values for 4 
lesions, and increased SUV values for 3 lesions, while the 
DeepPET led to missing 2 lesions, reduced SUV values for 
5, and increased SUV values for 2 lesions. Although our 
network has lower biases than the DeepPET, the AI-based 
reconstruction methods are still suboptimal and remain in 
the early research stage. They are not able to replace conven-
tional reconstruction. Nevertheless, with the proof of con-
cept in this study, it is expected that further development of 
AI-based reconstruction with a more extensive and diverse 
training dataset may overcome the limitations and improve 
the performance. Eventually, the AI-derived results may 
recapitulate or outperform the conventional reconstruction.

Table 1  Quality evaluation results of the test database, NRMSE, 
PSNR, and SSIM. The quantitative results of the two networks were 
statically analyzed with paired t test

This work DeepPET Paired t test

NRMSE 0.60 ± 0.04 0.63 ± 0.04  − 6.9 (p < 0.01)
PSNR 82.36 ± 0.87 82.02 ± 0.90 7.1 (p < 0.01)
SSIM 0.95 ± 0.02 0.93 ± 0.03 7.3 (p < 0.01)
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The proportion of female cases is 43%, 50%, and 50% 
in the training, test, and validation datasets. We compared 
the test results of the 10 test cases, including 5 males and 

5 females. The NRMSEs, PSNRs, and SSIMs of different 
gender are calculated, and the one-way analysis of variance 
is processed. It can be observed from Table 3 that all the p 

Fig. 5  Comparison between the reconstruction results of the sino-
gram generated with full frames, with frames of 1/10 width and with 
frames of 1/20 width. Left to right: sinogram generated with full 

frames, results of sinograms generated with full frames, with frames 
of 1/10 width and with frames of 1/20 width
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values of NRMSE, PSNR, and SSIM were over 0.05, which 
indicates no significant gender bias for the trained network 
in this study.

One limitation of this study is the conversion of 3D sino-
grams to 2D sinograms, where certain noises are introduced, 
and part of the spatial information in the axial direction is 
lost [32, 33]. This results in information loss for LAFOV 
PET and hampers the throughput of image reconstruction. 
This was due to the large memory requirements of 3D sino-
grams and our limited GPU memory. The memory required 
for the processing of one patient can reach 19 Gb, and it 
is almost impossible to train a 3D network on hundreds of 
patients with the current GPU capacities in most research 
institutes. Consequently, a compromise is made to focus on 
reconstructing 2D sinograms after transformation. With the 
anticipated increase of computational capacity, exploring 3D 
AI-based reconstruction can be feasible in the future. Never-
theless, our results demonstrate that AI-based reconstruction 
can somehow overcome the limitation of 2D sinograms and 
is relatively robust with information loss. We believe that the 
current development of 2D AI-based reconstruction on real 

clinical data can move an important step forward toward the 
breakthrough of AI technology in PET image reconstruction.

We tested the trained network with NEMA International 
Electrotechnical Commission (IEC) body phantom [34] 
and patients with extreme anatomies and found that the 
network trained on regular clinical data failed in extreme 
situations. It is known that deep learning is a data-driven 
method, and the performance of deep learning models 
depends heavily on the knowledge established from the 
training data [35–37]. Although the AI-based reconstruc-
tion methods have several advantages over conventional 
reconstruction methods, they have limited extrapolation 
capability and cannot be suitable for untrained scenarios 
such as physical phantom and extreme anatomy cases in 
this study. It is a long way to replace traditional recon-
struction methods with AI-based methods. Although this 
study focused on developing and evaluating regular clini-
cal data, it is expected that the developed methodology 
will work for these extreme situations provided sufficient 
relevant training data can be prepared in future works.

Fig. 6  The image quality evaluation results of this work for ten test 
patients: including root-mean-squared error (NRMSE), peak signal-
to-noise ratio (PSNR), and structural similarity index (SSIM). (This 

work—results of sinograms generated with full frames, this work_
n1—sinogram generated with frames of 1/10 width, this work_n2—
sinogram generated with frames of 1/20 width)
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Fig. 7  The mean standardized uptake values (SUVmean) and max standardized uptake values (SUVmax) are measured of the tracer in lesions
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This study uses sinograms and reconstructed images with 
attenuation and scatter corrections as train data sets. Given 
the appropriate supervision of these reconstructed images 
with attenuation and scatter corrections, it is assumed that 
the deep neural network can learn the complex principles of 
reconstruction with attenuation and scatter correction, but 
the underlying mechanism is not clear. The black-box nature 
of the AI-based reconstruction methods is a critical limita-
tion [38], and further interpretation of AI-based methodol-
ogy can be an important direction for future research.

V Conclusion

This paper proposes a network structure combining the 
encoding–decoding and perceptual loss structure to improve 
the direct PET image reconstruction from projection data. 
This is the first AI-based reconstruction method tested on 
real clinical data from a LAFOV PET to the best of our 
knowledge. The preliminary results demonstrate that the 
improvement of deep learning architecture can improve 
the performance of AI-based reconstruction. In response 
to the challenge of real data training, the perceptual loss 
network structure is used to optimize the neural network. 
The pre-trained VGG network extracts the feature map from 
the predicted images and ground truth. The perceptual loss 
is added to the loss function calculation, improving the 

training efficiency and network effect. The comparison of 
the prediction results demonstrates that the similarity of the 
reconstructed image structure and the signal-to-noise ratio 
is improved. This is because the perceptual loss function can 
calculate the distance between the predicted image and the 
target image from the feature level but not from the pixel 
level. Therefore, the structure of the image can be better 
reconstructed in a larger area [24].

Despite the limitations of the AI-based methods, the 
end-to-end reconstruction process from the sinogram data 
demonstrates the potential of deep learning to learn complex 
reconstruction principles such as projection, normalization, 
attenuation correction, and scattering correction, for exam-
ple. The current research results reveal the possibility and 
advantages of AI methods for PET image reconstruction, 
but it should be acknowledged that reconstruction accuracy 
cannot fully meet the clinical requirements. In future work, 
further optimization and development of AI-based recon-
struction may provide an efficient solution for complex PET 
reconstruction such as LAFOV PET.
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Table 2  The mean standardized 
uptake values (SUVmean) 
errors and max standardized 
uptake values (SUVmax) errors 
between ground truth and 
results of DeepPET, this work, 
and FBP for lesions from test 
cases

Lesions SUVmean relative errors SUVmax relative errors

DeepPET This work FBP DeepPET This work FBP

Lesion_1  − 53.0%  − 2.9% 37.40%  − 41.8%  − 6.4% 36.75%
Lesion_2  − 81.3%  − 77.0% 0.00%  − 83.3%  − 80.3% 0.00%
Lesion_3 5.4% 2.1% 8.28% 8.6% 12.1% 10.93%
Lesion_4  − 9.1%  − 8.7% 72.62% 7.2% 0.9% 0.00%
Lesion_5  − 11.7%  − 2.6% 2.22%  − 11.8% 4.5% 18.16%
Lesion_6  − 8.7% 2.0% 6.05%  − 14.0%  − 5.0% 3.74%
Lesion_7  − 27.6%  − 16.8% 2.26%  − 35.1%  − 29.7% 2.53%
Lesion_8  − 67.7%  − 43.3% 2.91%  − 72.2%  − 48.1% 1.18%
Lesion_9  − 37.1%  − 13.0% 27.74%  − 20.1%  − 9.4% 28.89%
Average 33.5% 18.7% 19.94% 32.7% 21.8% 14.26%
Paired t test p = 0.03 p = 0.02

Table 3  The one-way analysis of variance for gender biased

Female Male p value

NRMSE 0.59 0.62 0.51
PSNR 82.42 82.31 0.86
SSIM 0.96 0.94 0.25
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