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Abstract
Purpose To develop and externally validate models incorporating a PET radiomics signature (R-signature) obtained by the 
cross-combination method for predicting the survival of patients with diffuse large B-cell lymphoma (DLBCL).
Methods A total of 383 patients with DLBCL from two medical centres between 2011 and 2019 were included. The cross-
combination method was used on three types of PET radiomics features from the training cohort to generate 49 feature 
selection-classification candidates based on 7 different machine learning models. The R-signature was then built by selecting 
the optimal candidates based on their progression-free survival (PFS) and overall survival (OS). Cox regression analysis 
was used to develop the survival prediction models. The calibration, discrimination, and clinical utility of the models were 
assessed and externally validated.
Results The R-signatures determined by 12 and 31 radiomics features were significantly associated with PFS and OS, respec-
tively (P<0.05). The combined models that incorporated R-signatures, metabolic metrics, and clinical risk factors exhibited 
significant prognostic superiority over the clinical models, PET-based models, and the National Comprehensive Cancer 
Network International Prognostic Index in terms of both PFS (C-index: 0.801 vs. 0.732 vs. 0.785 vs. 0.720, respectively) and 
OS (C-index: 0.807 vs. 0.740 vs. 0.773 vs. 0.726, respectively). For external validation, the C-indices were 0.758 vs. 0.621 
vs. 0.732 vs. 0.673 and 0.794 vs. 0.696 vs. 0.781 vs. 0.708 in the PFS and OS analyses, respectively. The calibration curves 
showed good consistency, and the decision curve analysis supported the clinical utility of the combined model.
Conclusion The R-signature could be used as a survival predictor for DLBCL, and its combination with clinical factors may 
allow for accurate risk stratification.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon type of lymphoma [1]. As a remarkably heterogeneous 
disease, DLBCL is known for its considerable variation in 
clinical behaviour, response to therapy, and prognosis [2]. 
Chemoimmunotherapy with R-CHOP (rituximab, cyclo-
phosphamide, doxorubicin, vincristine, and prednisone) 
therapy is now used as the standard therapy for DLBCL [3]. 
However, 30-50% of patients ultimately relapse and die as 
a result of the disease [4, 5]. Therefore, an accurate identi-
fication of patients who will not respond well to standard 
regimens at diagnosis is needed to guide new therapeutic 
strategies. The International Prognostic Index (IPI) and its 
successor (NCCN-IPI) are prognostic scoring systems that 
predict survival. However, it is difficult to accurately identify 
DLBCL patients who are likely to relapse, especially those 
with a poor long-term prognosis, to individualize therapy 
[6–8].

Volume metabolic parameters derived from [18F]-FDG 
PET/CT, such as metabolic tumour volume(MTV) and total 
lesion glycolysis (TLG), are powerful indices for assessing 
tumour burden and risk stratification in DLBCL patients 
[9–13]. However, these metabolic parameters are limited 
in their ability to reflect tumour heterogeneity, which ulti-
mately limits their contribution to predicting cancer progres-
sion, therapeutic resistance, and survival outcomes [14, 15]. 
Machine learning advancements have enabled clinicians to 
use radiomics to extract implicit features from images to 
assess intratumoural biological heterogeneity and assist in 
clinical outcome prediction [16, 17]. Several studies [18–23] 
have explored the prognostic value of PET/CT radiomics in 
lymphoma, including Hodgkin lymphoma (HL), nasal-type 
extranodal natural killer/T cell lymphoma (ENKTL), mantle 
cell lymphoma (MCL), and DLBCL. In general, these stud-
ies used one machine learning model to select and develop 
radiomic signatures, e.g. the multilayer perceptron neural 
network combined with logistic regression analysis [19], the 
least absolute shrinkage and selection operator regression 
(LASSO) model [20, 22], and the logistic regression model 
[23]. However, there is no model that works well for all 
kinds of data. To address this limitation, cross-combinations 
of classification and selection methods based on radiomics 
features have recently appeared and have proven effective 
in improving classification and diagnostic performance [24, 
25]. However, it is still unknown whether these methods can 
be applied to radiomic images for DLBCL. In this paper, we 
explored the PET radiomics features using a cross-combi-
nation of machine learning models to assess risk in DLBCL 
patients. Furthermore, we established and externally vali-
dated models for predicting survival outcome in routine 
clinical practice, allowing for its clinical translation.

Materials and methods

Patient data collection

A total of 273 patients from Nanjing Drum Tower Hospi-
tal, the Affiliated Hospital of Nanjing University Medical 
School, were included as the training cohort. To examine the 
general applicability of nomograms, an independent exter-
nal validation cohort of 110 patients from Jiangsu Province 
Hospital, the First Affiliated Hospital of Nanjing Medical 
University, was included. Ethical approval was obtained for 
this retrospective analysis, and the requirement for written 
consent from patients was waived. The workflow of patient 
selection is shown in Fig. 1. The inclusion criteria were as 
follows: (I) pathologically confirmed DLBCL, (II) pretreat-
ment [18F]-FDG PET/CT scan was performed, and (III) 
treatment with R-CHOP-like regimens with curative intent 
was carried out. Patients with incomplete medical data, 
those lost to follow-up, and those with a previous history of 
cancer were excluded. Clinical data (sex, age, B symptoms, 
Eastern Cooperative Oncology Group performance status 
(ECOG PS), NCCN-IPI index, lactate dehydrogenase (LDH) 
level, Ann Arbor stage, and immunohistochemistry result) 
were obtained from medical records. Participants were 
divided into two groups: those with a low/low-intermediate 
risk (NCCN-IPI of <4) and those with a high-intermediate/
high risk (NCCN-IPI of ≥4) [8]. The follow-up data were 
obtained through electronic medical records and telephone 
interviews. Progression-free survival (PFS) and overall 
survival (OS) were chosen as endpoints for evaluating the 
prognosis of DLBCL patients. PFS was calculated as the 
time between diagnosis and the first relapse, progression, 
death from any cause, or last follow-up. OS was calculated 
as the time between diagnosis and death from any cause or 
last follow-up.

PET/CT Scanning Protocol

All patients underwent PET/CT scans with one of the fol-
lowing systems: Gemini GXL (Philips Corp, Netherlands) 
for the training cohort and Biograph 16 PET/CT scanner 
(Siemens Health care, Erlangen, Germany) for the external 
validation cohort, based on standard clinical scanning pro-
tocols. All patients fasted for at least 6 hours before scans, 
resulting in blood glucose levels under 8.7 mmol/L. After 
6 hours of fasting (no oral or intravenous fluids contain-
ing sugar or dextrose), 185–370 MBq of [18F]-FDG (5.18 
MBq/kg) was administered intravenously. Each patient was 
weighed to determine the standardized uptake value (SUV) 
prior to each scan. Whole-body PET/CT scans (from the 
base of the skull to the upper thigh) were performed 60 
minutes after the radiopharmaceutical injection. Emission 
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data were acquired for 2 minutes in each bed position. CT 
acquisition data were used for attenuation correction, and 
corrected PET images were reconstructed using ordered-
subset expectation maximization (OSEM). Images were 
reconstructed with standard 4 × 4 × 4  mm3 voxels using 3 
iterations of 33 subsets.

VOI drawing and radiomics processing

PET images were uploaded to 3D Slicer software (version 
4.8.0; http:// www. slicer. org). The Grow-Cut algorithm in 3D 
Slicer was used to semiautomatically generate the volume of 
interest (VOI). Two physicians manually adjusted the VOI 
to ensure that the measurement was reliable. If there was a 
discrepancy, the VOIs were reviewed and determined by a 
senior nuclear medical scientist. The 3 largest lesions were 
chosen as the targets for radiomic feature extraction. For the 
three largest VOIs, we summed the radiomic size and shape 
features, while all other features were averaged for each 
VOI [26]. Feature extraction was performed based on PET 
images by the built-in open-source PyRadiomics package 
(http:// www. radio mics. io/ pyrad iomics. html) in 3D Slicer. 
Before feature extraction, we preprocessed the PET images, 
including resampling all images to a voxel size of 1×1×1 
 mm3 using bilinear interpolation and discretization with a 

fixed bin count of 128, as recommended by [27]. To obtain 
the comprehensive radiomics features, we converted the 
original PET images into wavelet and Laplacian of Gauss-
ian (LoG) images with wavelet transforms and LoG trans-
forms, respectively. Then, three types of radiomics features 
were extracted from the original, wavelet and LoG images: 
(I) first-order statistics, (II) shape features and (III) texture 
features. The full list of characteristics is provided in Sup-
plementary Table 1. The workflow of our radiomic analysis 
is shown in Fig. 2.

In addition, the conventional metabolic parameters, 
including the SUVmax, MTV, and TLG, were calculated by 
volume viewer software on a dedicated workstation (Com-
passView 5.0, Philips Corp., Amsterdam, the Netherlands). 
Regions of interest (ROIs) were manually placed to cover the 
lesion, and the maximal SUV (SUVmax) value was recorded 
for each lesion in the PET images of the patients. For each 
PET dataset, the SUVmax was defined as the highest SUV 
among all hypermetabolic tumour foci. The MTV was deter-
mined by drawing a circular ROI that included all involved 
lesions in the axial, coronal, and sagittal PET images. The 
voxel boundaries were produced automatically with the 41% 
SUVmax threshold method recommended by the European 
Association of Nuclear Medicine [28]. The total metabolic 
tumour volume (TMTV) was obtained by summing the 
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Fig. 1  Flow chart of participant selection
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MTV of all lesions. The TLG was calculated as the sum of 
the product of the SUVmean and MTV of all lesions (TLG 
= sum of [SUVmean × MTV]).

Radiomics feature selection and signature 
construction

First, all extracted radiomics features were harmonized using 
z scores. The interobserver repeatability of each radiomic 
feature was evaluated in 50 randomly chosen patients using 
the intraclass correlation coefficient (ICC) method, and fea-
tures with an ICC greater than 0.75 were selected.

Then, we calculated the effective and robust R-signature 
based on the cross-combination method of seven machine 
learning models. Specifically, we choose seven classical 
machine learning models: support vector machines (SVMs), 
gradient boosting decision trees (GBDTs), extreme gradi-
ent boosting (XGBoost), random forest (RF), light gradi-
ent boosting machines (LGB), the least absolute shrinkage 
and selection operator (LASSO), and logistic regression 
(Logistic). The SVM [29] maps the input samples to points 
in high-dimensional space to maximize the gap between two 
categories. The GBDT [30] is a robust prediction model that 
consists of a series of weak decision trees. The XGBoost 
method extends GBDTs [31] in terms of structure and train-
ing strategy for more efficient predictions. Furthermore, the 
LGB [32] outperforms XGBoost in terms of accuracy and 
operation speed due to its tree structure and optimization 
algorithm. The RF method [33] consists of a large number of 
individual decision trees that operate as an ensemble. Each 
individual tree in the RF produces a class prediction, and the 
class with the most votes becomes the model’s prediction. 

LASSO [34] is a classical regression analysis method that 
performs both feature selection and regularization, with fea-
tures with nonzero coefficients viewed as useful features. 
Logistic regression [35] combines linear regression and acti-
vation functions to estimate the probability of a certain class.

These seven models acted as feature selection and clas-
sification models for predicting the PFS and OS. The feature 
selection models were used to select the most significant 
radiomics features, and the classification models were used 
to construct an R-signature based on the selected features. 
In previous works, LASSO was generally used, as it pro-
duced a simpler and more interpretable format than the other 
models. However, the effectiveness of LASSO has not been 
thoroughly considered. In this paper, we generated a set of 
feature selection-classification candidates with cross-com-
binations of the seven machine learning models, such as 
LASSO-SVM, LGB-XGBoost and Logistic-RF. Then, the 
R-signature was built by the optimal candidate. The optimal 
candidate was determined with tenfold cross-validation in 
four steps (see Supplementary Fig. 1): (I) the samples were 
split into 10 groups of approximately equal size. One group 
was used for validation, and the remaining 9 groups were 
used for training. This process was repeated 10 times, with 
different groups used for validation each time. Considering 
that our samples came from two medical centres, in the split 
procedure, we ensured that the cohorts retained the same 
proportion of sample sources as the original dataset. (II) 
Given a training cohort, we trained a feature selection model 
with all PET radiomics features for predicting the PFS/OS 
to obtain the corresponding feature weights. Based on the 
feature weights, we trained a feature classification model by 
recursively considering the subsets of the radiomics features. 
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(III) We identified the feature subset with the largest AUC 
value as containing the most important features, and the 
corresponding feature selection-classification model was 
identified as the optimal candidate. The R-signature was the 
prediction result of the optimal classification model. (IV) 
Based on the optimal candidate, we calculated the AUC of 
each validation cohort and outputted the average AUC of all 
10 validation cohorts.

Development and validation of the models

Univariate and multivariate Cox regression analyses were 
used to select the potential independent prognostic factors 
of PFS and OS in the training cohort. All the significant 
clinical factors (age, LDH, B symptoms, ECOG, Ann Arbor 
stage, extranodal involvement, bulky disease) in the uni-
variate analysis were included in the multivariate analysis. 
Independent predictors (age, Ann Abor stage, bulky disease) 
were used to build the clinical model. Then, all statistically 
significant PET factors (SUVmax, TMTV, TLG, R-signa-
ture) in the univariate analysis were included in the multivar-
iate analysis. The independent predictors (SUVmax, TMTV, 
R-signature) were used to build a combined PET-based 
model. After that, we assembled the models by combining 
all the independent clinical and PET predictors to build the 
combined model. Calibration curves were used to assess the 
models. To quantify the discrimination performance of the 
models, the Harrell concordance index (C-index) and the 
time-dependent area under the ROC curve (tdROC) were 
calculated. The performance of the models was also exter-
nally tested in the independent validation cohort with the 
formula and cut-off values derived from the training cohort.

Clinical benefit analysis based on the models

To estimate the clinical utility of the models, decision curve 
analysis (DCA) was performed by calculating the net ben-
efits for a range of threshold probabilities in the training 
cohort and validation cohort.

Statistical analysis

All statistical tests were performed using SPSS 22.0 (IBM 
Corp., Armonk, NY, USA) and R statistical software (ver-
sion 4.0.2). A P value less than 0.05 was considered sta-
tistically significant. The difference in the related clinical 
information between the training and validation cohorts 
was assessed using χ2 tests or Mann–Whitney U tests, as 
appropriate. We determined the optimal threshold of the 
R-signature based on the receiver operating characteristic 
(ROC) curve. Cox regression analysis was used to analyse 
the potential independent predictors and build the models. 
The survival conditions were evaluated by the Kaplan–Meier 

method and compared by log-rank tests. The calibration 
curves, C-index, tdAUC and DCA were calculated for the 
models in the training and validation cohorts.

Results

Patient characteristics

The baseline characteristics of the included patients in the 
training and validation cohorts are summarized in Table 1. 
No statistically significant (P < 0.05) difference was 
observed between the two cohorts. A total of 14 partici-
pants had SUVmean values in the liver<1.3 (training cohort: 
n=3; validation cohort: n=2) or ≥3.0 (training cohort: n=5; 
validation cohort: n=4). The median follow-up times for the 
training and validation cohorts were 35.0 and 23.5 months, 
respectively. Of the participants who experienced disease 
relapse or progression in the training cohort, 103 and 76 
died, respectively, and the 1-year, 3-year, and 5-year PFS 
and 1-year, 3-year, and 5-year OS rates were 77.3%, 66.1%, 
and 54.6% and 85.7%, 76.3%, and 66.8%, respectively. Of 
the participants who experienced disease relapse or progres-
sion in the validation cohort, 33 and 25 died, respectively, 
and the 1-year, 3-year, and 5-year PFS and 1-year, 3-year, 
and 5-year OS rates were 83.5%, 67.9%, and 63.4% and 
88.9%, 74.1%, and 71.9%, respectively.

Radiomics feature selection and R‑signature 
construction

In the first step of reproducible feature selection, we 
excluded features with ICCs less than 0.75, and 274 features 
with high reproducibility were selected for further analysis. 
Based on the results of the feature extraction-classification 
models, we determined 12 radiomic features for constructing 
the R-signaturePFS for the SVM-SVM model (AUC=0.757) 
and 31 radiomic features for constructing the R-signatureOS 
for the XGBoost-XGBoost model (AUC=0.762) (Fig. 3 and 
Supplementary Tables 2 and 3). The optimal cut-off val-
ues of the R-signatures were 0.386 for PFS and 0.268 for 
OS. Using these cut-offs, the risk groups identified by the 
R-signatures showed distinct OS and PFS outcomes in both 
the training and validation cohorts (Fig. 3).

Univariate and multivariate analysis results

The differences in the clinical characteristics between the 
dichotomized R-signaturePFS and R-signatureOS groups are 
shown in Table 2.

For the clinical variables, we performed univariate and 
multivariate Cox regression analyses to identify the inde-
pendent factors associated with survival. We identified age 
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(HR=2.460, P<0.001; HR=2.810, P<0.001), Ann Abor 
stage (HR=3.139, P<0.001; HR=3.105, P<0.001) and 
bulky disease (HR=1.518, P=0.043; HR=1.631, P=0.041) 
as independent risk factors for PFS and OS (Table 3).

For the PET variables, univariate and multivariate Cox 
regression analyses showed that the R-signature (HR=5.024, 
P<0.001; HR=4.054, P<0.001), SUVmax (HR=2.027, 
P=0.001; HR=2.005, P=0.004) and TMTV (HR=2.265, 

Table 1  Demographics and 
clinical characteristics of the 
study population

F, female; M, male; LDH, lactate dehydrogenase; ECOG PS, Eastern Cooperative Oncology Group perfor-
mance status; NCCN-IPI, National Comprehensive Cancer Network International Prognostic Index; GCB, 
germinal centre B cell; SUVmax, maximum standardized uptake value; TMTV, total metabolic tumour vol-
ume; TLG, total lesion glycolysis
# median (range)
* p value derived from Mann–Whitney U test. The other p value was derived from the χ2 test

Characteristic Training cohort
(n = 273)

External validation cohort
(n = 110)

P value

Gender
  Female 124(45.4%) 55(50.0%) 0.331
  Male 149(54.6%) 55(50.0%)

Age (year)
  <60 156(57.1%) 59(53.6%) 0.440
  ≥60 117(42.9%) 51(46.4%)

LDH
  normal 151(55.3%) 80(72.7%) 0.360
  elevated (>271 U/L) 122(44.7%) 30(27.3%)

B symptoms
  no 172(63.0%) 70(63.6%) 0.552
  yes 101(37.0%) 40(36.4%)

ECOG PS
  0-1 184(67.4%) 98(89.1%) 0.131
  ≥2 89(32.6%) 12(10.9%)

Ann Abor stage
  I-II 100 (36.6%) 65 (59.1%) 0.583
  III-IV 173 (63.4%) 45 (40.9%)

Extranodal involvement
  0–1 137 (50.2%) 80(72.7%) 0.726
  ≥2 136 (49.8%) 30(27.3%)

NCCN-IPI
  0-3 138 (50.5%) 68(61.8%) 0.241
  ≥4 135 (49.5%) 42(38.2%)

Bulky disease
  no 197 (72.2%) 88 (80.0%) 0.813
  yes 76 (27.8%) 22 (20.0%)

Pathological type
  GCB 150 (54.9%) 47 (42.7%) 0.170
  non-GCB 123 (45.1%) 63 (57.3%)
   SUVmax# 19.6 (3.5-46.4) 19.9 (4.5-47.5) 0.871*

  <22.5 182 (66.7%) 67 (60.9%) 0.836
  ≥22.5 91 (33.3%) 43 (39.1%)
  TMTV  (cm3)# 264.3 (25.0-2255.7) 224.0 (18.4-4323.6) 0.102*

  <314.0 202 (74.0%) 87 (79.1%) 0.586
  ≥314.0 71 (26.0%) 23 (20.9%)
   TLG# 2293.9 (84.7-15787.4) 2362.9 (88.9-19958.4) 0.088*

  <2088.3 181 (66.3%) 78 (70.9%) 0.655
  ≥2088.3 92 (33.7%) 32 (29.1%)
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P<0.001; HR=1.789, P=0.036) were independent risk fac-
tors for PFS and OS (Table 3).

Assessment and validation of models built 
for predicting PFS and OS

The independent clinical (age, Ann Abor stage, and bulky 
disease) and PET (R-signature, TMTV and SUVmax) 
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strating the selected features to build R-signaturePFS (b) and R-signa-

tureOS (d). Kaplan–Meier plots for patients stratified by risk classifi-
cation according to R-signatures for patients in the training (e, f) and 
validation (g, h) cohorts

Table 2  Comparison of the 
R-signature with the patient 
clinical data and PET metabolic 
parameters in the training 
cohort

LDH, lactate dehydrogenase; ECOG PS, Eastern Cooperative Oncology Group performance status; NCCN-
IPI, National Comprehensive Cancer Network International  Prognostic Index; GCB, germinal centre B 
cell; SUVmax, maximum standardized uptake value; TMTV, total metabolic tumour volume; TLG, total 
lesion glycolysis
* P < 0.05

Patient data R-signaturePFS R-signatureOS

Low
(n = 128)

High
(n = 145)

P value* Low
(n = 198)

High
(n = 75)

P value*

Sex, F/M 64/64 60/85 0.180 91/107 33/42 0.787
Age,<60/≥60 80/48 76/69 0.111 118/80 38/37 0.218
LDH level, normal/elevated 95/33 56/89 <0.001 131/67 20/55 <0.001
B symptoms, no/yes 92/36 80/65 0.006 138/60 34/41 <0.001
ECOG PS, 0–1/≥2 91/37 87/58 0.007 144/54 40/35 0.004
Ann Abor stage, I-II/III-IV 71/57 29/116 <0.001 92/106 8/67 <0.001
Extranodal involvement 85/43 52/93 <0.001 113/85 24/51 <0.001
NCCN-IPI,0-3/≥4 91/37 47/98 <0.001 124/74 14/61 <0.001
Bulky disease, no/yes 106/22 91/54 <0.001 153/45 44/31 0.004
Pathological type, GCB/non-GCB 68/60 82/63 0.626 111/87 39/36 0.587
SUVmax, low/high 87/41 95/50 0.701 133/65 50/25 1.000
TMTV, low/high 115/13 87/58 <0.001 173/25 29/46 <0.001
TLG, low/high 111/17 70/75 <0.001 161/37 20/55 <0.001
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predictors that were significant in the multivariate analysis 
were used to build the combined models for predicting the 
PFS and OS rates (Fig. 4 and Table 4). Individual clini-
cal models and PET-based models were also constructed 
(Table 4).

For PFS, the C-indices of the combined model in the 
training and validation cohorts were 0.801 (95% CI: 0.745-
0.848) and 0.758 (95% CI: 0.618-0.795), respectively; 
these values were superior to those of the clinical model 
(C-index: 0.732, 95% CI: 0.679-0.785 in the training cohort, 
and C-index: 0.621, 95% CI: 0.512-0.731 in the valida-
tion cohort), PET-based model (C-index: 0.785, 95% CI: 

0.734-0.835 in the training cohort, and C-index: 0.732, 95% 
CI: 0.642-0.823 in the validation cohort) and NCCN-IPI 
model (C-index: 0.720, 95% CI: 0.668-0.772 in the train-
ing cohort, and C-index: 0.673, 95% CI: 0.584-0.763 in the 
validation cohort) (Table 5).

For OS, the C-indices of the combined model in the 
training and validation cohorts were 0.807 (95% CI: 0.736-
0.854) and 0.794 (95% CI: 0.668-0.881); these values were 
superior to those of the clinical model (C-index: 0.740, 
95% CI: 0.680-0.800 in the training cohort, and C-index: 
0.696, 95% CI: 0.584-0.807 in the validation cohort), PET-
based model (C-index: 0.773, 95% CI: 0.713-0.833 in the 

Table 3  Univariate and multivariate analyses of factors predictive of progression-free survival and overall survival in the training cohort

CI, confidence interval; SE, standard error; HR, hazard ratio; LDH, lactate dehydrogenase; ECOG PS, Eastern Cooperative Oncology Group per-
formance status; NCCN-IPI, National Comprehensive Cancer Network International Prognostic Index; GCB, germinal centre B cell; SUVmax, 
maximum standardized uptake value; TMTV, total metabolic tumour volume; TLG, total lesion glycolysis
* P < 0.05

Category Variables Progression-free survival Overall survival

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR(95% CI) P value* HR(95% CI) P value* HR(95% CI) P value* HR(95% CI) P value*

Clinical pre-
dictors

Sex, F/M 0.765 (0.518-
1.130)

0.179 - - 0.738 (0.469-
1.161)

0.189 - -

Age,<60/≥60 2.551 (1.709-
3.808)

<0.001 2.460 (1.645-
3.679)

<0.001 2.928 (1.809-
4.740)

<0.001 2.810 (1.732-
4.560)

<0.001

LDH level, 
normal/
elevated

1.644 (1.113-
2.248)

0.012 - - 1.729 (1.095-
2.729)

0.019 - -

B symptoms, 
no/yes

1.556 (1.054-
2.298)

0.026 - - 1.508 (0.956-
2.378)

0.077 - -

ECOG PS, 
0-1/≥2

1.827 (1.234-
2.706)

0.003 - - 1.728 (1.092-
2.735)

0.020 - -

Ann Abor 
stage, I-II/
III-IV

3.463 (2.054-
5.840)

<0.001 3.139 (1.857-
5.307)

<0.001 3.529 (1.900-
6.553)

<0.001 3.105 (1.668-
5.780)

<0.001

Extranodal 
involvement

1.863 (1.243-
2.792)

0.003 - - 1.519 (0.956-
2.414)

0.077 - -

Bulky disease, 
no/yes

1.733 (1.160-
2.589)

0.007 1.518 (1.014-
2.273)

0.043 1.786 (1.121-
2.845)

0.015 1.631 (1.019-
2.608)

0.041

Pathological 
type, GCB/
non-GCB

1.216 (0.826-
1.792)

0.332 - - 1.270 (0.809-
1.996)

0.299 - -

PET predictors SUVmax, low/
high

1.713 (1.154-
2.543)

0.008 2.027 (1.349-
3.044)

0.001 1.736 (1.099-
2.744)

0.018 2.005 (1.256-
3.200)

0.004

TMTV, low/
high

3.182 (2.153-
4.703)

<0.001 2.265 (1.501-
3.419)

<0.001 3.402 (2.161-
5.357)

<0.001 1.789 (1.038-
3.200)

0.036

TLG, low/high 3.087 (2.088-
4.563)

<0.001 - - 3.795 (2.386-
6.036)

<0.001 - -

R-signaturePFS, 
low/high

8.037 (3.304-
19.551)

<0.001 5.024 (2.892-
8.728)

<0.001 - - - -

R-signatureOS, 
low/high

- - - - 5.347 (3.355-
8.522)

<0.001 4.054 (2.337-
7.031)

<0.001

NCCN-IPI NCCN-
IPI,0-3/≥4

3.091 (2.009-
4.756)

<0.001 - - 2.969 (1.793-
4.918)

<0.001 - -
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training cohort, and C-index: 0.781, 95% CI: 0.697-0.902 
in the validation cohort) and NCCN-IPI model (C-index: 
0.726, 95% CI: 0.665-0.786 in the training cohort, and 
C-index: 0.708, 95% CI: 0.610-0.805 in the validation 
cohort) (Table 5).
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Fig. 4  a The combined model for predicting PFS. b, d  Calibration 
curves of the model for predicting PFS in the training and valida-
tion cohorts at the 1-year, 3-year, and 5-year time points. c, e Time-
dependent area under the ROC curve of the models for predicting 
PFS in the training and validation cohorts. f The combined model for 

predicting OS. g, i Calibration curves of the models for predicting OS 
in the training and validation cohorts at the 1-year, 3-year, and 5-year 
time points. h, j  Time-dependent area under the ROC curve of the 
models for predicting OS in the training and validation cohorts

Table 4  The survival-prediction models included in this study

CI, confidence interval; HR, hazard ratio; NCCN-IPI, National Com-
prehensive Cancer Network International Prognostic Index; SUVmax, 
maximum standardized uptake value; TMTV, total metabolic tumour 
volume

Models Included variables

Combined Model Age, Ann Abor stage, Bulky 
disease, SUVmax, TMTV, 
R-signature

Clinical model Age, Ann Abor stage, Bulky disease
PET based model SUVmax, TMTV, R-signature
NCCN-IPI NCCN-IPI

Table 5  The Harrell’s C-index results in the training and validation 
cohorts

CI, confidence interval; HR, hazard ratio

Training cohort External validation 
cohort

C-index 95% CI C-index 95% CI

Progression-free survival
  Combined model 0.801 0.745-0.848 0.758 0.618-0.795
  Clinical model 0.732 0.679-0.785 0.621 0.512-0.731
  PET based model 0.785 0.734-0.835 0.732 0.642-0.823
  NCCN-IPI 0.720 0.668-0.772 0.673 0.584-0.763

Overall survival
  Combined model 0.807 0.736-0.854 0.794 0.668-0.881
  Clinical model 0.740 0.680-0.800 0.696 0.584-0.807
  PET based model 0.773 0.713-0.833 0.781 0.697-0.902
  NCCN-IPI 0.726 0.665-0.786 0.708 0.610-0.805
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The calibration curves for predicting the probability of 
PFS and OS at 1, 3, or 5 years for each model after 1000 
bootstrap replicates are shown in Fig. 4. The calibration 
curves showed satisfactory agreement between the estima-
tions and actual observations in the training and validation 
cohorts for the combined models.

Performance analysis of the combined models 
in clinical use

The decision curve analyses for the combined models are 
presented in Fig. 5. The decision curve analysis showed 
that the combined models had a higher overall net benefit 
than the clinical models, PET-based models, and NCCN-IPI 
across most of the risk thresholds in both the training and 
validation cohorts for PFS and OS.

Outcome according to R‑signature in the subgroups 
of the NCCN‑IPI model

To confirm the added prognostic value of radiomics fea-
tures to the NCCN-IPI, we evaluated the prognostic value 
of R-signatures in low/low-intermediate risk (NCCN-IPI 

of <4) and high-intermediate/high (NCCN-IPI of ≥4) 
groups.

For the training cohort, in the low/low-intermediate risk 
group (n=138), patients with a low R-signature had a bet-
ter survival rate (92.3% for PFS and 89.5% for OS) than 
those with a high R-signature (51.1% for PFS and 35.7% 
for OS), and the P values were both <0.001. In the high-
intermediate/high risk group (n=135), patients with a low 
R-signature had a better survival rate (75.7% for PFS and 
77.0% for OS) than those with a high R-signature (34.7% 
for PFS and 39.3% for OS), and the P values were both 
0.001 (Fig. 6 and Table 6).

For the validation cohort, in the low/low-intermediate 
risk group (n=68), patients with a low R-signature had a 
better survival rate (97.4% for PFS and 96.2% for OS) than 
those with a high R-signature (55.2% for PFS and 56.3% 
for OS), and the P values were both statistically significant 
(<0.001). In the high-intermediate/high risk group (n=42), 
patients with a low R-signature had a better survival rate 
(75.0% for PFS and 83.3% for OS) than those with a high 
R-signature (36.4% for PFS and 33.3% for OS), and the P 
values were 0.031 and 0.007 (Fig. 6 and Table 6).

Fig. 5  Decision curve analysis 
for the models in the training (a, 
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Discussion

Our study analysed PET radiomics features to predict sur-
vival outcomes in DLBCL patients. The results of this study 
indicated that combined models that integrated R-signatures 
calculated by radiomics features extracted from pretreatment 
[18F]-FDG PET using machine learning methods could be 
used as a preoperative tool for individualized prognosis pre-
diction treatment guidance in patients with DLBCL.

Accurately predicting the prognosis of patients is of 
great importance for optimizing DLBCL treatment strate-
gies. Several studies have attempted to assess the predictive 
value of radiomics information from PET images in DLBCL 
[21–23]. Aide et el. recruited 132 patients with DLBCL to 
evaluate the ability of pretreatment PET radiomics fea-
tures to predict prognosis and found that LZLGE was the 
only independent predictor of 2-year event-free survival 
(HR=2.84, P=0.01) with ROC analysis accuracy (area under 
curve=0.76) [21]. Lue KH et el. extracted 80 PET-based 
radiomics features from 171 patients with DLBCL and found 
that  RLNGLRLM was independently associated with PFS 
(HR=15.7, P=0.007) and OS (HR=8.64, P=0.040) [22]. 
Eertink et al. found that PET radiomics features extracted 
from the largest lesion of DLBCL patients were able to pre-
dict the 2-year time to progression (area under curve=0.67) 

[23]. Consistent with previous studies, the R-signatures con-
sisting of PET radiomics features identified with machine 
learning in the present study were independently associ-
ated with PFS (HR=4.15, P<0.001) and OS (HR=4.029, 
P<0.001). Both our study and previous studies support the 
viewpoint that pivotal radiomics feature data extracted from 
PET images could help predict clinical outcomes in patients 
with DLBCL. The underlying cause might be explained by 
the hypothesis that radiomics features are strongly correlated 
with tumour heterogeneity [36–38], which is a prognostic 
determinant of patient survival [39–41].

Recently, machine learning models have attracted great 
attention in both research and industry because they can 
automatically detect inherent patterns in data distribu-
tion [42]. With advancements in machine learning, differ-
ent machine learning models, such as random forest (RF) 
and support vector machines (SVMs), have been utilized 
to extract data features. These methods differ from each 
other in terms of structure, optimization algorithm, scale, 
and performance in different datasets. For example, SVMs 
are more suitable than logistic regression for large datasets 
[43]. However, most existing works have only focused on 
a single method for feature selection and R-signature con-
struction, and few comparisons have been performed with 
other machine learning methods to assess robustness and 
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NCCN-IPI (score: 4,5/6-8) in relation to R-signaturePFS for PFS strati-

fication in the training (a, b) and validation (c, d) cohorts. e-h. Low/
low-intermediate NCCN-IPI (score: 0,1/2,3) and high-intermediate/
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stratification in the training (e, f) and validation (g, h) cohorts
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efficiency. The cross-combination of feature selection-clas-
sification models has shown great efficiency and robustness 
in clinical practice [24, 25]. Thus, we developed a cross-
combination approach for determining the optimal feature 
selection-classification pair based on AUC results. As shown 
in Fig. 3, the AUC used by the LASSO method for pre-
dicting OS was poor (0.696). Therefore, we chose the most 
powerful selection-classification pair from 49 possible com-
binations. The SVM-SVM model had an AUC of 0.757 for 
predicting PFS, and the XGBoost-XGBoost model had an 
AUC of 0.762 for predicting OS. In addition, we found that 
the selected features (see Fig. 3) were mainly texture features 
with the wavelet and LoG filtering algorithms, indicating 
that these features have better discrimination than shape and 
first-order features.

[18F]-FDG PET results can be used as a measure of cel-
lular glucose metabolism to provide biological information 
about tumours. Our study demonstrated that the metabolic 
parameter TMTV was an independent predictor of PFS 
(HR=1.90, P=0.003), and  SUVmax was found to be an inde-
pendent predictor of both PFS (HR=2.03, P=0.001) and OS 
(HR=1.77, P=0.015). These results were consistent with 
previous studies [44–47]. To apply these results in clinical 
practice, we developed user-friendly predictive combined 
models that incorporated the R-signature, metabolic metrics 
 (SUVmax and TMTV), and clinical risk factors (age, stage 
and bulky disease), and we compared the predictive perfor-
mance of the models with clinical, PET-based, and NCCN-
IPI prognostic models. The study found that the combined 
models had satisfactory agreement with the calibration curve 
and exhibited significant prognostic superiority over other 
models in terms of C-indices and tdAUCs.

To confirm the combined model’s risk discrimination, 
we compared the clinical utility of the combined model 
with that of other models (such as the clinical model, PET-
based model and NCCN-IPI model). The DCA demon-
strated that the combined models were superior to the other 
models across most of the range of reasonable threshold 
probabilities, thus suggesting that they are more suitable 
for estimating individual survival. Consistent with previ-
ous studies [6–8], our results showed that the NCCN-IPI 
might be improved for identifying high-risk groups for 
which novel treatment approaches are most needed (Sup-
plementary Fig. 2 and Supplementary Table 4). The possible 
additional predictive value of the combined R-signature and 
the NCCN-IPI model was explored in this study. The results 
showed that the addition of the R-signature to the NCCN-
IPI model yielded a better stratification for DLBCL patients 
in both high-intermediate/high risk (NCCN-IPI of ≥4) and 
low/low-intermediate risk (NCCN-IPI of <4) groups, in 
both the training and validation cohorts. Interestingly, sev-
eral studies have shown that the TMTV also had additive 
prognostic value in patients in the NCCN-IPI subgroup [48, Ta
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49]. In agreement with the work of Eertink et al. [23], our 
results support further exploration of combining radiomics 
features with clinical predictors to more accurately identify 
high-risk patients. To uncover the potential additional prog-
nostic value of these radiomics features, these results may 
contribute to better understanding of the clinically beneficial 
effects of these parameters with machine learning methods.

One of the limitations of our study was its retrospective 
nature. Additionally, the biological features of DLBCL, 
including the double expressor, double hit, and genomic 
prognostic factors, were not investigated in this study. Fur-
thermore, the SUVmean of the liver was outside the normal 
range in a small portion of our patients (n=14). Accord-
ing to the quality control (QC) criteria described by EANM 
guidelines, the SUVmean of the liver should be between 
1.3 and 3.0. Moreover, given the low number of progression 
or death events in the NCCN-IPI categories, conclusions 
about the additional predictive value of the R-signature to 
the NCCN-IPI model should be interpreted with caution, 
and larger cohorts are needed in the future. In addition, 
we used only the 3 largest lesions as targets for radiomic 
feature calculation in the present study. To date, there is 
no consensus on the tumour segmentation method for radi-
omic feature calculation in patients with DLBCL. Due to 
the high distribution variability of nodal and/or extranodal 
lesions with heterogeneous volumes and variable metabolic 
activity, lymphoma segmentation is more challenging than 
that of primary tumour lesions. Therefore, we proposed 
a concise tumour segmentation approach for the assess-
ment of radiomics features that may be easier to apply in 
clinical settings. Finally, the 3D slicer and the growth cut 
algorithm applied in the present study have not been clini-
cally approved. Although the development of PyRadiomics 
is involved in the standardization effort of the IBSI (The 
Image Biomarker Standardization Initiative) team, there 
are still some differences between PyRadiomics-based fea-
ture extraction and IBSI-recommended feature extraction. 
The main differences are due to grey value discretization, 
resampling (grid alignment, grey value rounding, and mask 
resampling), resegmentation, and kurtosis calculation. All of 
these differences may alter the extrapolation of our results to 
other clinical practices. The main strengths of our study are 
the homogeneity of the included patients (de novo DLBCL 
histology and R-CHOP-like regimens as standard treatment) 
and the use of an external validation method that supports 
the general applicability of the models.

Conclusion

The R-signature obtained with the cross-combination 
method could be used as a survival predictor for patients 
with DLBCL. Furthermore, the combined models that 

incorporate R-signature metabolic metrics and clinical risk 
factors may allow for accurate risk stratification and indi-
vidualized management of DLBCL patients.
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