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Abstract
Purpose  Advances in functional imaging allowed us to visualize brain glucose metabolism in vivo and non-invasively 
with [18F]fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) imaging. In the past decades, FDG-PET has 
been instrumental in the understanding of brain function in health and disease. The source of the FDG-PET signal has been 
attributed to neuronal uptake, with hypometabolism being considered as a direct index of neuronal dysfunction or death. 
However, other brain cells are also metabolically active, including astrocytes. Based on the astrocyte-neuron lactate shuttle 
hypothesis, the activation of the glutamate transporter 1 (GLT-1) acts as a trigger for glucose uptake by astrocytes. With this 
in mind, we investigated glucose utilization changes after pharmacologically downregulating GLT-1 with clozapine (CLO), 
an anti-psychotic drug.
Methods  Adult male Wistar rats (control, n = 14; CLO, n = 12) received CLO (25/35 mg kg−1) for 6 weeks. CLO effects 
were evaluated in vivo with FDG-PET and cortical tissue was used to evaluate glutamate uptake and GLT-1 and GLAST 
levels. CLO treatment effects were also assessed in cortical astrocyte cultures (glucose and glutamate uptake, GLT-1 and 
GLAST levels) and in cortical neuronal cultures (glucose uptake).
Results  CLO markedly reduced in vivo brain glucose metabolism in several brain areas, especially in the cortex. Ex vivo 
analyses demonstrated decreased cortical glutamate transport along with GLT-1 mRNA and protein downregulation. In 
astrocyte cultures, CLO decreased GLT-1 density as well as glutamate and glucose uptake. By contrast, in cortical neuronal 
cultures, CLO did not affect glucose uptake.
Conclusion  This work provides in vivo demonstration that GLT-1 downregulation induces astrocyte-dependent cortical 
FDG-PET hypometabolism—mimicking the hypometabolic signature seen in people developing dementia—and adds further 
evidence that astrocytes are key contributors of the FDG-PET signal.
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Introduction

Regulation of brain glucose metabolism is key for sup-
porting high-energy demands during neuronal firing and it 
involves multiple enzymes and transporters. Beyond neu-
rons, other brain cells are also metabolically active such as 
the astrocytes. Indeed, astrocytes are known for their highly 
glycolytic metabolism (Itoh et al. 2003; Bouzier-Sore et al. 
2006; Supplie et al. 2017)and positioning of their end-feet 

all around blood capillaries, which favors the uptake of glu-
cose from the bloodstream (Leino et al. 1997).

Astrocytes take up glucose, via the glucose transporter 
1 (GLUT1), and metabolize a substantial fraction into 
pyruvate through glycolysis. Then, pyruvate is converted 
to lactate, which is shuttled to feed neurons. This biochem-
ical model is termed the astrocyte-to-neuron lactate shuttle 
(ANLS), a widely debated theoretical framework (Pellerin 
and Magistretti 2012; Pellerin et al. 1998; Pellerin and 
Magistretti 1994). The ANLS model has been corrobo-
rated by a series of in vitro and in vivo studies (Pellerin 
and Magistretti 1994; Takahashi et al. 1995; Pellerin and 
Magistretti 1997; Schurr et al. 1999; Bouzier-Sore et al. 
2003; Nehlig et al. 2004; Barros et al. 2009; Chuquet et al. 
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2010; Bittner et al. 2011; Jakoby et al. 2014). Additionally, 
it was observed a neuronal preference for lactate oxida-
tion and a predominant glycolytic metabolism of glucose 
by astrocytes in cellular models (Itoh et al. 2003; Bouz-
ier-Sore et al. 2006). In vivo studies have also unraveled 
that reduced astrocytic glutamate transport diminishes 
astrocyte glucose uptake (Cholet et al. 2001; Voutsinos-
Porche et al. 2003). The glutamate transporter 1 (GLT-1) 
is the most abundant glutamate transporter in the mam-
malian brain, in which it has a dominant role in glutamate 
uptake (around 90%) (Danbolt 2001)and is predominantly 
located on astrocytes (Zhou and Danbolt 2013). Interest-
ingly, glutamate transport via GLT-1 is considered as a 
triggering signal for glucose uptake by astrocytes (Pellerin 
and Magistretti 1994), this biological process being vital 
for brain energetics. It is important to mention that there 
are reports challenging the ANLS concept (Dienel 2019), 
which makes this topic controversial and requiring further 
experimental evidence.

Based on the aforementioned data, the question whether 
astrocyte glucose metabolism contributes to functional 
imaging signals, such as for positron emission tomography 
(PET) imaging with [18F]fluoro-2-deoxyglucose (FDG) 
(Reivich et al. 1977; Phelps et al. 1979), has been raised. 
Specifically, in 1996, Pellerin and Magistretti put forward 
a hypothesis based on compelling evidence supporting the 
notion of astrocytes as contributors of FDG-PET signal 
(Magistretti and Pellerin 1996). In the following years, 
additional findings have corroborated this proposal (Mag-
istretti and Pellerin 1999; Bonvento et al. 2002; Figley 
and Stroman 2011). Still, for over 40 years, the FDG-PET 
signal has been used as an index of neuronal activity (Ses-
tini 2007). Recently, however, it has been demonstrated 
that targeting astrocytes alters the FDG-PET signal. More 
specifically, deletion of insulin receptors on astrocytes 
reduces FDG-PET signal (Garcia-Caceres et al. 2016), and 
activation of glutamate transport via GLT-1 on astrocytes 
causes widespread but graded increases in FDG-PET sig-
nal (Zimmer et al. 2017).

Recent important theoretical articles are already acknowl-
edging the role of astrocytes in the brain FDG-PET signal 
(Iaccarino 2017; Zetterberg and Bendlin 2021; Perani 2019; 
Chetelat et al. 2020). Still, whether a reduction of gluta-
mate uptake by astrocytes would cause in vivo FDG-PET 
hypometabolism—recapitulating what is seen in neurode-
generative disorders—remains unexplored. On the basis 
of the evidence presented above, we hypothesized that 
astrocyte GLT-1 downregulation would cause FDG-PET 
hypometabolism. To further test this hypothesis, we con-
ducted in vivo and in vitro pharmacological challenges 
with CLO, a well-known anti-psychotic drug that reduces 
GLT-1 density (Melone et al. 2001)and glutamate transport 

(Vallejo-Illarramendi et al. 2005), to assess its effects on 
cerebral FDG-PET signal in rats.

Materials and methods

Animals

Adult male Wistar rats, 90 days old, were maintained under 
a 12-h light–dark cycle (lights on at 7 A.M.), at a controlled 
room temperature (22 ± 1 °C) and with free access to food 
and water. Animals’ weight was measured once a week and 
volume of liquid ingestion was measured three times a week.

Pharmacological treatment

Rats were randomly divided into two groups: control 
and CLO. Rats in the CLO group received the drug 
CLO (Cristália, Itapira/Brazil) in free drinking water 
(25–35 mg kg−1 day−1) for 6 weeks, starting at postnatal 
day (PND) 91, until euthanasia. The CLO solution was 
prepared as previously described by Terry et al. (Terry 
et al. 2003). Treatment regimen, dose, and length of treat-
ment followed the procedure described by Melone et al. 
(Melone et al. 2001). CLO was selected for these experi-
ments because it specifically reduces GLT-1 (without 
affecting other glutamatergic transporters) (Melone et al. 
2003)and substantially crosses the BBB, allowing for oral 
administration (Cremers et al. 2012; Naheed and Green 
2001).

[18F]FDG‑microPET scanning

Rats were scanned longitudinally before treatment (Base-
line), at PND 90, and after 6 weeks of treatment (Follow-
up), at PND 136, as previously described (Bellaver et al. 
2019). Briefly, after overnight fasting, animals received 
an intravenous injection (0.4 mL) of FDG (mean ± s.d.: 
1.03 ± 0.07 mCi) into the tail vein. Then, each rat returned 
to its home cage for a 40-min period of awake uptake of 
FDG. After, they immediately underwent a 10-min static 
acquisition under anesthesia (2% isoflurane at 0.5 L/min 
oxygen flow) (see supplementary material for detailed 
methodology).

Metabolic networks

Cross-correlation maps were built as previously described 
(Bellaver et al. 2019), using a mask containing 14 volumes 
of interest (VOIs): left (L)-right (R) frontal cortex (FtC), 
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L-R temporoparietal cortex (TmPtC), L-R thalamus (Th), 
L-R hypothalamus (Ht), L-R striatum (St), L-R hippocam-
pus (Hip), and L-R cerebellum (Cer). No voxel-wise net-
work analysis was conducted due to rat brain size and PET 
limited resolution. Stable metabolic brain networks, using 
an innovative multiple sampling scheme (Schu 2021), were 
constructed by computing Pearson’s correlation coeffi-
cients based on 2000 bootstrap samples. Graph theoretical 
measures such as density, global efficiency, assortativity 
coefficient, average degree, and average clustering coef-
ficient were calculated for each of the bootstrap samples. 
Networks were corrected for multiple comparisons using 
the false discovery rate (P< 0.005) (Rubinov and Sporns 
2010).

Synaptosomal preparation and L‑[3H]glutamate 
(L‑[3H]Glut) potassium‑stimulated release

This procedure was performed as previously described 
(Almeida et al. 2017) using the whole cortex (left hemi-
sphere) from 137 to 140 PND rats (see supplementary 
material for detailed methodology).

Primary cortical astrocyte cultures

Newborn (1–2 days old) male Wistar rats’ cortices were 
aseptically resected out. The tissue was dissociated enzy-
matically—with trypsin 0.05% (Gibco®, Thermo Fisher Sci-
entific) and DNase 0.003% (Sigma-Aldrich, St. Louis, MO, 
USA)—and mechanically (Pasteur pipet). Samples were 
incubated for 15 min at 37 °C for enzymatic action, followed 
by the addition of 10% fetal bovine serum (FBS) and centrif-
ugation at 100 g for 5 min. Pellet was resuspended in HBSS 
(Gibco®) containing DNase 0.003% and centrifuged for 
7 min at 100 g. The cell pellet was resuspended in DMEM 
(Gibco®) supplemented with 10% FBS, 15 mM HEPES, 
14.3 mM NaHCO3, 1% Fungizone, and 0.04% gentamicin, 
and plated onto 24-well plates at a density of 3–5 × 105 cells/
cm2. Cells were cultured at 37 °C in an atmosphere with 5% 
CO2. The first medium exchange occurred 24 h after plating 
cells. The following medium changes occurred once every 
4 days. After cells reached confluence, the protocol followed 
Vallejo-Illarramendi et al. (Vallejo-Illarramendi et al. 2005). 
First, 0.2 mM dibutyryl-cAMP (dBcAMP) was added for 
6 days to induce GLT-1 expression. Subsequently, dBcAMP 
was removed and astrocytes were treated with 50 μM CLO 
(Sigma-Aldrich), in a medium supplemented with 1% FBS, 
for 48 h and used for immunofluorescence, western blot, or 
uptake procedures.

Primary cortical neuronal cultures

Neuronal cultures were prepared as previously described 
(Nunez 2008) with modifications. Newborn (0–1  day 
old) male Wistar rats’ cortices were aseptically resected 
out. Tissue was dissociated enzymatically—with trypsin 
0.05% (Gibco®) and DNase 0.006% (Sigma-Aldrich)—and 
mechanically (Pasteur pipet). Samples were incubated for 
20 min at 37 °C for enzymatic action and again mechani-
cally dissociated for 5 min. After, 20% FBS was added and 
samples were centrifuged at 150 g for 5 min. The pellet was 
resuspended in Neurobasal medium (Gibco®) supplemented 
with 0.5% B27 (Gibco®), 10 mM glutamine, and 0.02% pen-
icillin/streptomycin (10,000 U/mL—Gibco®). Cells were 
plated at a density of 3–5 × 105 cells/cm2 into 24-well plates 
pre-coated with poly-l-lysine and cultured at 37 °C in an 
atmosphere with 5% CO2. Half of the medium was replaced 
1 h after plating cells. Medium changes, also of half of the 
medium volume, occurred once every 4 days. After cells 
reached confluence, neurons were treated with 50 μM CLO 
(Sigma-Aldrich) for 48 h and used for immunofluorescence 
or uptake procedures.

Sodium‑dependent D‑[2,3‑3H]‑aspartate (D‑[3H]Asp) 
uptake

D-[3H]Asp is a substrate for the high-affinity sodium-
dependent glutamate transport system; therefore, its uptake 
was used as a proxy of glutamate uptake (Taxt and Storm-
Mathisen 1984; Davies and Johnston 1976). The sodium-
dependent D-[3H]Asp uptake was assessed in adult corti-
cal slices (137–140 PND rats) incubated with 100-μM 
l-glutamate and in primary cultured astrocytes (P1–2 rats) 
incubated with 10  μM (basal) or 100  μM (stimulated) 
l-glutamate. The procedures followed protocols previously 
described (Davies and Johnston 1976; Debernardi et al. 
1999) with modifications (see supplementary material for 
detailed methodology).

2‑Deoxy‑D‑[3H]glucose ([3H]2DG) uptake

[3H]2DG uptake was assessed in neuronal (P0–1 rats) and 
astrocyte (P1–2 rats) cultures incubated with 10 μM (basal) 
or 100 μM (stimulated) l-glutamate. The procedures fol-
lowed protocols previously described (Bellaver et al. 2019) 
with modifications (see supplementary material for detailed 
methodology).

SDS‑PAGE

The whole cortex (left hemisphere) from 137 to 140 PND 
rats or astrocyte cultures were analyzed by SDS-PAGE, 
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as previously described (Bellaver et  al. 2019). The fol-
lowing antibodies were used: GLT-1; glutamate-aspartate 
transporter(GLAST); Glucose transporter 1 (GLUT1); 
β-actin; and glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) (see supplementary material for detailed 
methodology).

RNA extraction and quantitative real‑time PCR 
(qRT‑PCR)

The whole cortex (right hemisphere) from 137 to 140 
PND rats was used for the qRT-PCR analysis on which the 

mRNAs of GLT-1 and GLAST were quantified as previously 
described (Bellaver et al. 2018) (see supplementary material 
for detailed methodology).

High‑performance liquid chromatography (HPLC) 
procedures

High-performance liquid chromatography (HPLC) proce-
dure was performed as previously described (Souza et al. 
2016) using cerebrospinal fluid (CSF) to quantify three 
amino acids: glutamate (Glut), aspartate (Asp), and glu-
tamine (Gln). Additionally, a HPLC with ultraviolet (UV) 

Fig. 1   Effects of CLO treatment on brain glucose metabolism 
assessed by [18F]FDG-microPET. Brain metabolic maps showing 
the mean standardized uptake value reference (SUVr) of the control 
(a) and CLO (b) groups at Baseline and after the treatment period. 
Voxel-wise images representing the percentage of change difference 
(c) and t-statistical maps (d) between Baseline and Follow-up of con-
trol and CLO groups. Brain mask showing the volumes of interest 
(VOIs) (e). Control and CLO group mean regional FDG SUVr values 
in the whole brain (f), frontal (g) and temporoparietal cortices (h), 

hippocampus (i), striatum (j), thalamus (k), hypothalamus (l), and 
cerebellum (m) at Baseline and Follow-up. Dynamic raster plots dis-
playing individual FDG SUVr regional means in the control (n) and 
CLO (o) groups. a–d Images are projected into a standard magnetic 
resonance imaging (MRI) in axial, sagittal, and coronal planes (con-
trol, n = 11; CLO, n = 13). Data represented as violin plots indicating 
the mean, interquartile range, and the minimum and maximum val-
ues. Two-way ANOVA with repeated measures, followed by Sidak’s

2254 European Journal of Nuclear Medicine and Molecular Imaging (2022) 49:2251–2264



1 3

detection method was applied to verify CLO presence 
and stability in the animals’ drinking solution (see sup-
plementary material for detailed methodology).

Behavioral analysis

At the end of the 6 weeks of treatment, animals were 
submitted to the open-field and the novel object recogni-
tion (NOR) tasks (see supplementary material for detailed 
methodology).

Results

CLO treatment causes brain glucose 
hypometabolism in vivo

The microPET analysis after CLO pharmacological inter-
vention showed a clear FDG SUVr reduction mainly in cor-
tical brain regions (Fig. 1a, b). Specifically, the CLO group 
(n = 13) presented a widespread FDG cortical hypometabo-
lism, ranging from 10 to 20% (Fig. 1c). By contrast, the 
control group (n = 11) presented only a few small clusters of 
glucose metabolism reduction, comprising values between 1 
and 6% (Fig. 1c). A voxel-wise t-statistical analysis showed 
a significant glucose hypometabolism mostly in the cortical 
regions of the CLO group, with a peak effect in the parietal 
cortex (peak, t(23) = 7.62, p < 0.0001; Fig. 1d). On the other 
side, the control group presented only negligible reductions 
in a few isolated voxels (Fig. 1d). The two-way ANOVA of 
the whole brain FDG mean SUVr showed significant time 
effect (p = 0.0029; F(1, 22) = 11.2; Fig. 1f) but no group 
(p = 0.86; F(1, 22) = 0.035) or interaction (p = 0.89; F(1, 
22) = 0.016), which indicates that time (Follow-up) affected 
the whole brain metabolism in both groups if compared to 
their own Baseline. A brain mask with 14 VOIs (Fig. 1e), 
based on the Paxinos and Watson Rat Brain Atlas, was used 
to obtain mean regional FDG SUVr values. In the regional 
analysis, a two-way ANOVA identified a significant effect 
of time and an interaction in the frontal cortex (time, 
p < 0.0001; interaction, p = 0.02; Fig. 1g), temporoparietal 
cortex (time, p < 0.0001; interaction, p = 0.003; Fig. 1h), 
and hippocampus (time, p < 0.0001; interaction, p = 0.04; 
Fig. 1l). The striatum (Fig. 1j) and thalamus (Fig. 1k) pre-
sented only an effect of time (striatum, p = 0.008; thalamus, 
p = 0.007). The hypothalamus (Fig.  1l) and cerebellum 
(Fig. 1m) showed no significant differences in the two-way 
ANOVA. Following the two-way ANOVA, Sidak’s multi-
ple comparisons test showed FDG hypometabolism in the 
frontal cortex (p < 0.0001; t(22) = 5.8), temporoparietal cor-
tex (p < 0.0001; t(22) = 6.6), and hippocampus (p < 0.0001; 
t(22) = 5.49) on the follow-up CLO group in comparison to 

its baseline. By contrast, no regional changes were found 
in the control group (Baseline vs. Follow-up). The indi-
vidual dynamic raster plot reinforces the observation that 
CLO-induced FDG hypometabolism is more pronounced 
in cortical areas, and that FDG metabolism remains stable 
in the control group (Fig. 1n, o). Furthermore, a multiple 
sampling scheme metabolic network analysis was per-
formed to identify brain reorganization patterns in response 
to CLO. In comparison to the control group (Fig. 2a), the 
CLO group showed multiple altered connections within the 
metabolic network, presenting a widespread hyposynchro-
nicity (p < 0.005, FDR-corrected, Fig. 2b). These findings 
were corroborated by consistent changes in graph measures, 
including reduced global efficiency (p < 0.0001, Fig. 2c), 
density (p < 0.0001, Fig. 2d), degree (p < 0.0001, Fig. 2e), 
and clustering coefficient (p < 0.0001, Fig. 2f). The assor-
tativity coefficient was not significantly different between 
groups (p = 0.31, Fig. 2g).

Cortical GLT‑1 and D‑[3H]Asp uptake are reduced 
after CLO treatment

The astrocyte glutamate transporter immunocontent analysis 
on the cortical tissue revealed a significant reduction, around 
18%, of GLT-1 levels (p = 0.0043; t(24) = 3.16, Fig. 3a, b) in 
the CLO group (control, n = 14; CLO n = 12), but no dif-
ferences on GLAST levels (p = 0.74; t(24) = 0.33; Fig. 3d, 
e). In addition, GLT-1 mRNA expression was also reduced 
(p = 0.025; t(13) = 2.53; control, n = 7 and CLO = 8; Fig. 3c). 
Consistently, GLAST expression was not altered (p = 0.27; 
t(13) = 1.15; Fig. 3f). Glutamatergic transport was also evalu-
ated by using a D-[3H]Asp uptake assay on fresh cortical 
brain slices. The CLO group (n = 5) showed a significant 
reduction (p = 0.048; t(9) = 2.27; Fig.  3g) of D-[3H]Asp 
uptake when compared to the control group (n = 6). In paral-
lel, potassium-stimulated L-[3H]Glut release was assessed in 
synaptosomal preparations and no differences were observed 
(p = 0.76; t(14) = 0.29; Fig. 3h). Finally, cerebrospinal fluid 
(CSF) levels of glutamate (p = 0.62; t(19) = 0.49), aspartate 
(p = 0.48; t(19) = 0.71), and glutamine (p = 0.19; t(11) = 1.38) 
were not altered as well (Fig.  3i–k). Furthermore, no 
changes in GLUT1 immunocontent, the glucose transporter 
expressed in astrocytes, were identified (p = 0.25; t(11) = 1.20; 
Supplementary Fig. 1a, b).

Effects of CLO on primary cultures of cortical 
astrocytes

To assess CLO-specific effects on astrocytes, we treated 
cortical astrocyte cultures with 50  M CLO for 48  h. 
Primary astrocyte cultures were immunostained with 
anti-GFAP (red) and DAPI (blue) (Fig. 4a). We found 
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a significant decrease of GLT-1 (~ 36%, p = 0.0019; 
t(7) = 4.81; Fig.  4b, c) and GLAST (~ 18%, p = 0.011; 
t(7) = 3.38; Fig. 4d, e) immunocontents in the CLO group 
(n = 8, per group). In parallel, the CLO group showed 
a reduction of [3H]D-Asp uptake in basal (p = 0.0005; 
t(5) = 7.97; Fig.  4f) and stimulated assays (p = 0.023; 
t(5) = 3.21; Fig. 4g). When comparing basal and stimulated 
[3H]D-Asp uptake from control and CLO groups (Fig. 4h), 
we identified significant effects of treatment (p = 0.0002; 

F(1, 24) = 18.91) and glutamate levels (p < 0.0001; F(1, 
24) = 48.14) but no interaction (p = 0.12; F(1, 24) = 2.49). 
Sidak’s multiple comparisons analysis demonstrated 
that the control group–stimulated [3H]D-Asp uptake was 
higher than the basal uptake for both control (p < 0.0001; 
t(8) = 5.36) and CLO groups (p = 0.005; t(8) = 5.45). In con-
trast, the CLO group–stimulated [3H]D-Asp uptake did not 
differ in comparison to the basal uptake (vs. basal control, 
p = 0.77; vs. basal CLO, p = 0.82) and was lower than the 
control group–stimulated [3H]D-Asp uptake (p = 0.003; 

Fig. 2   [18F]FDG derived metabolic networks graph measures. FDG 
derived metabolic networks: cross-correlation matrices (left), circular 
plots (middle), and brain maps (right) displaying inter-subject cross-
correlation region-to-region (VOIs) associations in control (a) and 
CLO (b) groups at Follow-up. Data presented as correlation values 
with FDR-corrected threshold at p < 0.05. Cross-correlation matrices 

graph measures of global efficiency (c), density (d), average degree 
(e), average clustering coefficient (f), and assortativity coefficient (g) 
(control, n = 11; CLO, n = 13). Data represented as violin plots indi-
cating the mean, interquartile range, and the minimum and maximum 
values. Unpaired two-tailed Student’s t test
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t(8) = 6.623). Also, results of [3H]2DG uptake revealed no 
differences for basal uptake (p = 0.6054; t(7) = 0.54; Fig. 4i) 
but a decrease of stimulated uptake for the CLO group 
(p = 0.0002; t(7) = 7.19; Fig. 4j). An analysis comparing 
[3H]2DG uptake in these four experimental conditions 
(Fig. 4k) showed effects of treatment (p < 0.0001; F(1, 
28) = 22.54), glutamate level (p = 0.0061; F(1, 28) = 8.79), 
and an interaction (p < 0.0001; F(1, 28) = 21.34). Sidak’s 
multiple comparisons analysis demonstrated that the 
control group–stimulated [3H]2DG uptake was higher 
than the control and CLO groups in the basal condition 

(p < 0.0001). Also, the CLO group–stimulated [3H]2DG 
uptake was reduced if compared to the stimulated con-
trol group (p < 0.0001). Furthermore, no changes in 
the GLUT1 immunocontent were identified (p = 0.71; 
t(3) = 0.39; Supplementary Fig. 1c, d).

Effects of CLO treatment on primary cultures 
of cortical neurons

Additionally, we evaluated the effect of CLO on neuronal 
cultures. Primary neuronal cultures were immunostained 

Fig. 3   Effects of CLO treatment on cortical glutamate transporter 
expression and activity, synaptosomal glutamate release, as well as 
glutamate, aspartate, and glutamine CSF levels. Cortical immuno-
content (normalized by the β-actin immunocontent) of the gluta-
mate transporters GLT-1 (a, b) and GLAST (d, e) in the control and 
CLO groups, after a 6-week treatment period (control, n = 14; CLO, 
n = 12). Cortical mRNA expression of GLT-1 (c) and GLAST (f) in 
the control and CLO groups, after a 6-week treatment period. PCR 
results are expressed as fold change in comparison to the control 

group (control, n = 7; CLO, n = 8). D-[3H]Asp uptake in cortical brain 
slices at the groups control and CLO (control, n = 6; CLO, n = 5) (g). 
L-[3H]Glut release from cortical synaptosomal preparations of con-
trol and CLO groups (n = 8 for each group) (h). Glutamate (control, 
n = 12; CLO, n = 9) (i). Aspartate (control, n = 12; CLO, n = 9) (j). 
Glutamine (control, n = 7; CLO, n = 6) (k) cerebrospinal fluid concen-
trations in control and CLO groups. Data represented as violin plots 
indicating the mean, interquartile range, and the minimum and maxi-
mum values. Unpaired two-tailed Student’s t test
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Fig. 4    Evaluation of CLO treatment effects on [3H]D-Asp and 
[3H]2DG uptake in cortical astrocyte cultures. Representative images 
of primary cortical astrocyte cultures stained with anti-GFAP (red) 
and DAPI (blue); × 200 magnification and scale bar = 50  µm (a). 
Immunocontent of glutamate transporters GLT-1 (b, c) and GLAST 
(d, e) in primary cortical astrocyte cultures (normalized by GAPDH 
immunoreactivity). Basal (10  µM glutamate) (n = 6 for each group) 
(f) and stimulated (100 µM glutamate) (g) [3H]D-Asp uptake in astro-
cyte cultures. Basal (10  µM glutamate) (i) and stimulated (100  µM 

glutamate) (j) [3H]2DG uptake in astrocyte cultures. Comparisons 
of [3H]D-Asp (h) and [3H]2DG (k) uptake results in both condi-
tions (basal and stimulated) for control and CLO groups. Uptake 
values expressed as percentage of control basal results (n = 8 for 
each group). Data represented as violin plots indicating the mean, 
interquartile range, and the minimum and maximum values. Paired 
two-tailed Student’s t test or two-way ANOVA; two-way ANOVA fol-
lowed by Sidak’s
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with anti-GFAP (red), anti-β-Tubulin III (green), and 
DAPI (blue) (Fig. 5a). We found no differences between 
the control and CLO groups for [3H]2DG uptake under 
basal (p = 0.70; t(4) = 0.40; Fig. 5b) and stimulated condi-
tions (p = 0.54; t(4) = 0.66; Fig. 5c). An analysis compar-
ing [3H]2DG uptake in these four experimental conditions 
(Fig. 5d) showed no effects of treatment (p = 0.7284; F(1, 

16) = 0.12), glutamate levels (p = 0.5407; F(1, 16) = 0.39), 
or interaction (p = 0.9787; F(1, 16) = 0.0007).

Behavioral effects and treatment measures

Total distance traveled (p = 0.17; t(26) = 1.42) and total 
immobile time (p = 0.13; t(26) = 1.56) during the open-
field task were not different between groups (control, 

Fig. 5   Evaluation of CLO treatment effects on [3H]2DG uptake in 
cortical neuron cultures. Representative images of the primary corti-
cal neuronal cultures stained with anti-GFAP (red), anti-β-Tubulin III 
(green), and DAPI (blue); × 100 magnification and scale bar = 100 µm 
(a). Basal (10 µM glutamate) (b) and stimulated (100 µM glutamate) 
(c) [3H]2DG uptake in neuronal cultures. Comparisons of [3H]2DG 

uptake results in both conditions (basal and stimulated) for control 
and CLO groups (d). Uptake values expressed as percentage of con-
trol basal results (n = 5 for each group). Data represented as violin 
plots indicating the mean, interquartile range, and the minimum and 
maximum values. Two-way ANOVA followed by Sidak’s
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n = 14; CLO, n= 12), therefore, suggesting no sedative side 
effects of CLO (Prut and Belzung 2003) (Supplementary 
Fig.2a–c). Analysis of the time spent exploring objects 
during the NOR task revealed that both groups (control, 
n = 7; CLO, n = 5) equally explored the two identical 
objects during the training session and spent more time 
exploring the new object during the test session (control, 
p = 0.0004; t(6) = 7.22; CLO, p = 0.0004; t(4) = 10.86), indi-
cating no impairment of short-term recognition memory 
(Supplementary Fig. 2d–f). Animals’ body weight was 
measured once a week during treatment. Results showed 
time effect, as animals gained weight due to age-depend-
ent normal body growth (p < 0.0001; F(7, 196) = 336.6; 
Supplementary Fig. 3a), but no group effect (p = 0.35; 
F(1, 28) = 0.89). The liquid intake showed an increase 
over time (p < 0.0001; F(11, 121) = 7.85; Supplementary 
Fig. 3b), and a lower volume intake for the CLO group 
(group effect, p = 0.036; F(1, 11) = 11.73), probably due 
to differences in the drinking water palatability. In future 
experiments, the addition of small quantities of a com-
pound such as sucrose, in order to make the drinking water 
containing the experimental drug more palatable, should 
be considered. Finally, a high-performance liquid chro-
matography (HPLC) analysis confirmed that the animals’ 
drinking solution preparation was yielding the expected 
concentration with high reproducibility, presenting a rela-
tive standard deviation (RSD) of 1.86% (Supplementary 
Fig. 3c). The experimental drinking solution also showed 
a high stability, with no noticeable modifications of CLO 
concentration in a 24-h period at room temperature (Sup-
plementary Fig. 3d).

Discussion

In this study, we demonstrated that CLO causes in vivo 
brain glucose hypometabolism and alters the brain meta-
bolic network. We also found that CLO decreases GLT-1 
immunocontent and mRNA expression along with functional 
changes, including a reduction in glutamate uptake in corti-
cal slices, and a decline in glucose and glutamate uptake in 
astrocyte cortical cultures. Importantly, no differences were 
found in cultures of cortical neurons.

Animals treated with CLO exhibited a significant wide-
spread reduction in FDG-PET signal in the cortex (~ 20%) 
and hippocampus. Consistently, those brain regions are the 
ones presenting a high content of GLT-1 (Lehre et al. 1995). 
Additionally, we found that CLO selectively reduced corti-
cal GLT-1 protein levels, but did not alter GLAST levels, 
confirming the effect originally seen by Melone et al. (Mel-
one et al. 2003). We also identified a reduction in cortical 
GLT-1 mRNA expression, suggesting that CLO may act at 

the transcriptional level. In parallel, CLO reduced GLT-1 
and GLAST protein levels in cortical astrocyte cultures. 
Quite importantly, we corroborated these findings with the 
functional reduction of astroglial glutamate transport, meas-
ured by D-[3H]Asp uptake, in cortical slices and astrocyte 
primary cultures. We did not find changes in synaptosomal 
glutamate release from cortical preparations, or in gluta-
mate, aspartate, and glutamine concentrations in the CSF, 
which suggests that the glutamate-glutamine recycling pro-
cess remains functional.

The in vitro evaluation using primary astrocyte cultures 
treated with CLO also showed a reduction of glucose uptake, 
while no difference was found in cultures of cortical neu-
rons. These results suggest that astrocytes, not neurons, 
are the main target cells responsible for the phenomenon 
observed in vivo, i.e., CLO-induced FDG-PET signal reduc-
tion. Importantly, the reduction of [3H]2DG uptake by CLO 
in cortical astrocyte cultures was only observed when stimu-
lated by glutamate. Astrocytes increase their glucose uptake 
in situations of neuronal activation (Pellerin and Magistretti 
2012), i.e., during high energetic demand. Accordingly, a 
similar outcome was also demonstrated in vivo in a two-
photon microscopy study in mice, which also showed that 
glucose uptake is elevated in astrocytes during activation 
but remains close to basal levels in neurons (Chuquet et al. 
2010). Our data showing that reducing GLT-1 expression 
decreases activity-dependent [3H]2DG accumulation is also 
in agreement with another study performed with GLT-1 
KO mice showing that invalidation of GLT-1 prevents the 
whisker-stimulated increase in [14C]-2-deoxyglucose accu-
mulation in the somatosensory cortex of developing animals 
(Voutsinos-Porche et al. 2003).

It is important to emphasize that the FDG-PET uptake 
phase in our experiments was conducted in freely moving 
animals and, thus, the FDG-PET signal here represents glu-
cose metabolism in an awake brain. Our present data should 
be also put in perspective with previous results obtained 
with a completely different drug. Ceftriaxone is an antibi-
otic that was shown to cause an increase in astrocyte GLT-1 
expression and activity (Rothstein et al. 2005). Treatment of 
primary cultures of cortical astrocytes with ceftriaxone was 
shown to enhance both glutamate transport and glutamate-
stimulated glucose uptake through its effect on GLT-1 (Zim-
mer et al. 2017). But quite strikingly, ceftriaxone increased 
brain FDG-PET signal in rats proportionately to the den-
sity of GLT-1 expression in different brain regions (Zim-
mer et al. 2017). These results are simply a mirror image of 
the data obtained with CLO. Altogether, results with CLO 
and ceftriaxone reinforce the notion that astrocytes, through 
glutamate-stimulated glucose uptake, represent an important 
source of the FDG-PET signal in vivo, as postulated exactly 
25 years ago (Magistretti and Pellerin 1996). Additionally, a 
recent study demonstrated that the modulation of microglial 
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cells also contributes to the FDG-PET signal (Xiang 2021). 
Since microglial cells account for less than 10% of brain 
cells in mammals, the microglia-induced effect on FDG-PET 
probably has the astrocytic and/or the neuronal compartment 
as the cellular source. In fact, it was previously demonstrated 
that Il-1α, IL-1β, and TNFα, classically secreted by activated 
microglia, enhance glucose uptake in astrocytes (Gavillet 
et al. 2008).

Besides its effects on glutamate transport presented 
above, it is also known that CLO interacts with serotonin, 
muscarinic, dopamine, and histamine receptors (Miyamoto 
et al. 2005; Stepnicki 2018). However, the direct contri-
bution of these neurotransmission systems to brain ener-
getics is small (Sibson et al. 1998; Scremin and Jenden 
1993). Therefore, it is very unlikely that changes in glu-
cose uptake result from these interactions. In fact, there 
are several studies showing that brain energy metabolism 
is driven predominantly by glutamatergic and, to a minor 
extent, GABAergic systems (for review, see (Rothman 
et al. 1999; Rothman et al. 2003)), with contributions of 
other neurotransmitters being so small that it can be dis-
regarded in the overall scenario. However, we could not 
ignore the possibility of a modulatory effect on neuronal 
metabolism. To rule out a direct effect on neuronal energy 
metabolism, we tested CLO impact on neuronal cortical 
cultures under resting and stimulated conditions. Clearly, 
CLO did not change neuronal glucose metabolism in both 
situations, thus, strengthening the conclusion of astrocytes 
being at the origin of the observed hypometabolism. It is 
important to mention that cortical FDG-PET hypometabo-
lism is a signature of neurodegenerative disorders such as 
Alzheimer’s disease and frontotemporal dementia, which 
is interpreted as an index of neurodegeneration (Chetelat 
et al. 2020). Since CLO does not induce neuronal death 
(Chen and Nasrallah 2019; Lundberg 2020; Bastianetto 
et al. 2006; Stanisavljevic et al. 2019), one could argue we 
recapitulated cortical FDG-PET hypometabolism seen in 
people with dementia by only reducing glutamate transport 
in astrocytes.

A potential limitation to this conclusion would pertain 
to behavioral changes such as sedation or freezing that 
could have contributed to the effects observed with CLO 
and might jeopardize our interpretation of the cellular ori-
gin of the FDG-PET signal (Berti et al. 2014). However, 
we did not observe changes either in the open-field task or 
in a more complex behavioral task such as the NOR. Thus, 
it seems that CLO-induced FDG hypometabolism is not 
related to major behavioral changes.

In summary, our results provide microPET evidence 
that a treatment with CLO causes a reduction in FDG-PET 
signal. Primary culture data indicate that astrocytes, not 
neurons, are the cells responsible for this phenomenon. 
These results corroborate the notion that the FDG-PET 

signal might reflect not only neuronal activity but also 
astrocyte metabolism. These findings reinforce the need 
for a renewed interpretation of FDG-PET data in brain 
imaging studies. Finally, from a clinical perspective, CLO 
is an important anti-psychotic drug widely used in patients 
with schizophrenia who are either intolerant or refractory 
to classical neuroleptics (Conley and Kelly 2001). CLO 
mechanisms of action are yet not fully understood; there-
fore, the effect on brain energetics observed in our study 
might be of importance and should be better studied in this 
perspective. As a matter of fact, a FDG-PET hypometabo-
lism in the frontal cortex of CLO-responsive patients has 
been reported a few years ago (Cohen et al. 1997; Molina 
et al. 2007; Molina et al. 2005). We believe this phenom-
enon deserves further investigation in clinical research.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00259-​022-​05682-3.
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