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Abstract
The approval of 223RaCl2 for cancer therapy in 2013 has heralded a resurgence of interest in the development of 
α-particle emitting radiopharmaceuticals. In the last decade, over a dozen α-emitting radiopharmaceuticals have 
entered clinical trials, spawned by strong preclinical studies. In this article, we explore the potential role of α-particle 
therapy in cancer treatment. We begin by providing a background for the basic principles of therapy with α-emitters, 
and we explore recent breakthroughs in therapy with α-emitting radionuclides, including conjugates with small mol-
ecules and antibodies. Finally, we discuss some outstanding challenges to the clinical adoption of α-therapies and 
potential strategies to address them.

Introduction

There has been a resurgence of interest in radiopharmaceuti-
cal therapy (RPT) for cancer treatment, with three RPTs—
[177Lu]Lu-DOTATATE (NCT01578239),  [131I]Iobenguane 
(NCT00874614), and 223RaCl2 (NCT00699751)—recently 
demonstrating overall survival benefit and receiving FDA 
approval [1–3]. Treament with  [177Lu]Lu-PSMA-617 was 
compared to standard of care in the phase III VISION trial 
in men with metastatic castration-resistance prostate can-
cer (mCRPC) and demonstrated an overall survival benefit 
[4]. Over a dozen more agents are currently in clinical trials, 
including radioconjugates of small molecules, antibodies, and 
nanoparticles [5]. These conjugates have high tumor specific-
ity and potency, unlike many traditional chemotherapeutics. 
Recent advances, built upon decades of preclinical studies, 
have demonstrated the therapeutic efficacy of α-emitting radi-
onuclides, leading to the first FDA approval of an α-particle 
therapeutic, 223RaCl2, for bone-limited mCRPC in 2013. 
The success of 223RaCl2 has reinspired further research into 

α-particle-emitting radioconjugates using radionuclides such 
as 225Ac, 212Pb, 227Th, 213Bi, and 211At. Herein, we introduce 
the premise of molecular radiotherapy, detailing the features 
that make α-emitting nuclides ideal for this application.

The basic principle of using targeted radiation for cancer 
treatment is simple: deliver cytotoxic ionizing radiation that 
causes single-strand and double-strand breaks in the DNA of a 
cancer cell, and subsequent cell death, while limiting damage 
to healthy tissues [6]. However, this concept has proven diffi-
cult in application, and even clinically approved radiopharma-
ceutical therapies have faced an uphill battle for widespread 
clinical implementation. Radiotherapy has been employed 
successfully for over a century with the first external beam 
radiation therapy being developed shortly after the discovery 
of the X-ray [7]. While effective at improving outcomes for 
patients with various types of cancers at early and oligometa-
static stages, external radiation cannot definitively treat widely 
disseminated disease. In contrast, parenterally administered 
radionuclides can be selectively targeted to cancerous cells, 
delivering therapeutic radiation doses to numerous sites of 
metastases. Molecular radiotherapy can be reduced to two 
main components that must be considered: the choice of bio-
molecule used as the tumor-targeting vector, and the emission: 
typically, α-particle, β−-particle, or Auger electrons. By care-
fully selecting and optimizing these components, researchers 
can develop RPT to improve the outcomes of cancer patients. 
In this article, we focus on the development of α-particle radi-
opharmaceuticals, description of their properties, suitability 
for incorporation into radioconjugates, and key advances 
in the field of α-RPT.
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Physical properties and anticancer 
mechanisms of radiotherapeutics

The decay characteristics of α-emitting radionuclides, 
namely their impressive cytotoxic potential and no known 
mechanism of cellular resistance, make them compelling 
for RPT. It is estimated that several hundred β− traversals 
through the nucleus are required to induce cell death, while 
less than ten α-decays can achieve the same result [8]. This 
incredible efficacy arises from the higher linear energy trans-
fer (LET) of α-particles compared to β− -particles. Auger 
emitters have high LET and shorter range than either α- or 
β−-particles, requiring internalization and localization to the 
nucleus to have a therapeutic effect [9]. α-particles deposit 
all their energy over a distance of a few cell diameters, 
whereas β−-particles may pass completely through cells 
without interacting with cellular components and without 
depositing any energy within a cell, as shown in Fig. 1. The 
anticancer mechanism of α-particles also supports their 
use for RPT. DNA damage by α-particles is multi-faceted 
and includes indirect damage via reactive oxygen species 
(ROS) or direct damage with resulting double-strand DNA 
breaks, DNA cross-linking, and complex chromosomal rear-
rangement [10]. The propensity of α-particles to cause cata-
strophic double-strand DNA breaks is a well-documented 
signature therapeutic effect [11, 12]. Conversely, β−-particles 
cause mostly single-strand DNA breaks. Unsurprisingly, 
double-strand breaks are more challenging to repair than 
single-strand breaks, and the more induced, the higher the 
probability of cell kill [13]. Additionally, recent studies show 
that the cytotoxic effects of α-particles can activate anti-
tumor immune responses, further increasing their potency 
beyond the initial cytotoxic insult [14]. Finally, α-particles 
have a penetration depth through tissue of only 40–100 µm, 
much shorter than the up to 12-mm penetration depth of 
β−-particles. If one successfully localizes an α-emitter to 

the tumor via a targeting vector, the shorter range can theo-
retically result in less collateral damage to healthy tissues, 
increasing the therapeutic index [15]. However, this shorter 
range limits the “cross-fire” effect of α-particles, which is 
advantageous in β−-particle therapies.

The cytotoxicity of α-emitters renders them less sus-
ceptible to the development of resistance than traditional 
chemotherapeutics or even β−-emitters [16, 17]. Recent 
clinical studies have demonstrated that α-emitting radio-
conjugates can be used successfully as a salvage therapy 
after failure of β−-emitting RPTs. For instance, in patients 
with neuroendocrine cancers refractory to treatment with the 
β−-emitting  [177Lu]Lu-DOTATATE, subsequent treatment 
with  [225Ac]Ac-DOTATATE induced an antitumor response 
in some patients [18]. Similar results were observed when 
prostate cancer patients refractory to treatment with  [177Lu]
Lu-PSMA-617 were treated with  [225Ac]Ac-PSMA-617 [19, 
20]. In both the PSMA and DOTATATE examples, sim-
ply switching to the α-emitter, while keeping the targeting 
ligand constant, overcame resistance and improved response 
in some patients. Although randomized controlled trials are 
needed to definitively conclude a benefit, these studies sug-
gest that α-particle therapy represents at least a promising 
salvage treatment following β−-therapy.

In addition to the observed lack of resistance to α ther-
apies, the anticancer mechanisms of α-emitters have also 
been investigated in vitro [17, 21]. Although these stud-
ies are complicated by the hazards associated with long-
lived α-emitters and the challenges of accurately estimating 
absorbed radiation doses on cellular and subcellular levels, 
several key insights have been gained into α-particle toxic-
ity and resistance. One recent preclinical study showed that 
the α-emitter 223RaCl2 exhibited 10 × more potency than the 
γ-emitter 137Cs, which primarily induces cell death via the 
generation of ROS [17]. Further experimentation demon-
strated that α-therapy was not cross-resistant with 137Cs. 
Cells with very high resistance to γ-radiation remained 

Fig. 1  Relative LET and path 
lengths of the three classes of 
therapeutic radionuclides
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sensitive to α-emissions. Mutations in cellular antioxidant 
response proteins Nrf2 and KEAP1 greatly increased the 
effectiveness of α-therapy indicating their presence may 
represent biomarkers for α-RPT. The same gain-of-function 
Nrf2 mutations conferred resistance to γ-radiation. Another 
study explored the effectiveness of the α-emitter 223Ra in cell 
lines with varying mutations that affect DNA repair path-
ways [22]. This study found that cell lines with mutations 
in BRCA2 or ATM were especially sensitive to α-radiation, 
and suggests that inhibition of DNA-damage repair pathways 
could augment treatment response. In addition to causing 
double-strand DNA breaks, α-emitters have been shown to 
induce cell-cycle arrest and inhibit DNA synthesis in vivo 
[23]. A follow-up study demonstrated that the combina-
tion of the same α-therapy with gemcitabine could prevent 
G2-arrest and increase cell death [24].

A unique advantage of most radioconjugates, includ-
ing α-emitters, is their natural pairing with complementary 
diagnostic imaging. One direct benefit of this “theranostic” 
approach resides in optimal patient selection and subse-
quent monitoring of patients following RPT. Patients may 
be first injected with a diagnostic molecule, such as  [68 Ga]
Ga-DOTATATE, to assess disease status prior to treatment 
with an α-emitter DOTATATE conjugate, for example. In 
some cases, the same element can be used for both diagnosis 
and therapy, for example the β−-emitter 212Pb (in vivo gen-
erator of α-emitter 212Bi) is used for therapy and its matched 
element 203Pb is useful for diagnostic purposes via SPECT 
imaging [25]. This approach allows for monitoring of the 
radioconjugates’ biodistribution as well as real-time tracking 
of the patients’ treatment response. Finally, some α-emitting 
nuclides (or their daughters) may be imaged directly. Several 
recent studies have focused on SPECT imaging of X-ray 
and γ-emissions of 225Ac, 227Th, 223Ra, and their daughters 
[26–28]. The broader application of this approach remains 
uncertain due to the inherently low sensitivity of SPECT 
and the low activities needed for RPT. The use of partner 
β+-emitting isotopes having biodistribution patterns at least 

partially similar to α-emitters (e.g., 18F and 223Ra) may be 
helpful and warrant study [29, 30].

Hundreds of α-emitting radionuclides are theoretically 
accessible, but only a few have suitable half-lives and real-
istic production to make them potentially useful for clini-
cal RPT. These radionuclides are 227Th, 223Ra, 225Ac, 212Pb, 
211At, 149 Tb, and 213Bi. All have unique properties that make 
them advantageous for combination with different target-
ing moieties. Detailed information on the physical prop-
erties and relevant information for these commonly used 
α-emitting nuclides are presented in Table 1. Broadly, these 
radionuclides may be categorized according to half-life, with 
227Th, 225Ac, and 223Ra having half-lives > 10 days, while 
212Pb, 211At 149 Tb, and 213Bi all have half-lives < 12 h.

Conventionally and optimally, the half-life of the isotope 
is matched to the half-life of the biomolecule to which they 
are coupled. Accordingly, the short half-life radioisotopes 
are considered better partners for small molecules, and long-
lived isotopes are considered better partners for antibodies, 
which have long biological half-lives (Table 1). However, 
preclinical and clinical studies have shown that 225Ac radio-
conjugates with small molecules are also therapeutically 
effective, if inefficient.

223RaCl2: first‑in‑class α‑particle RPT

Unconjugated radionuclides, such as 131I, are some of the 
oldest and most successful RPTs. These therapies rely on 
the radionuclide’s intrinsic localization to specific cancerous 
cells. The only “free” α-emitter to have clinical or preclinical 
success is 223Ra. Although naturally occurring radium was 
first used therapeutically over a century ago [32], 223RaCl2 
only gained FDA approval in 2013 [3, 33, 34]. 223Ra local-
izes naturally to newly forming bone, including sites of 
metastases, due to its chemical similarity to  Ca2+. 223Ra 
improved overall survival in patients with bone-limited 
mCRPC with an acceptable toxicity profile. Clinical trials 

Table 1  α-emitting nuclides and their physical properties

Nuclide Half-life Decays per atom Imageable emissions Notable daughters Diagnostic partners Source

227Th 18.7 days 5α, 2β− 84, 95, 236 270 keV γ-rays 223Ra (11 d  t1/2)
219Rn (gas)

111In, 89Zr 227Ac generator

223Ra 11.4 days 4α, 2β− 84, 95, 270 keV γ-rays 219Rn (gas) 18F, 99mTc 227Ac generator
225Ac 9.9 days 4α, 2β− 218, 440 keV γ-rays (from 

213Bi daughter)
213Bi (45 m  t1/2) 111In 229Th generator, accelerator

212Pb 10.6 h 1α, 2β− 440 keV γ-ray 213Bi (45 m  t1/2) 203Pb 224Ra generator
211At 7.2 h 1α, 1EC  ~ 85 keV X-ray 207Bi (32 y  t1/2) 124I, 123I α-Particle cyclotron
149 Tb 4.1 h 0.17α, 0.83β+ Multiple parent and daughter 

emissions
145Eu (5.9 d  t1/2)
149Gd (9.3 d  t1/2)

149 Tb (positron and 
gamma emis-
sions)

Proton spallation, other 
methods [31]

213Bi 46 min 1α, 2β− 440 keV γ-ray None 68 Ga 225Ac generator
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are ongoing to explore additional applications of 223RaCl2 
as a cancer therapeutic.

Despite its clinical approval and current use, several ques-
tions must be answered to optimize the efficacy of 223RaCl2, 
and to understand and mitigate associated adverse events 
sufficiently. Several studies focusing on 223RaCl2 are summa-
rized in Table 2. Exploiting γ-emissions of 223Ra for imaging 
using SPECT is possible, though at the expense of long scan 
times. Treatment combinations of 223Ra with standard-of-
care chemotherapy are being explored in a phase I/IIa trial. 
This trial looks to define the safety and efficacy combin-
ing 223Ra and docetaxel (NCT03574571) in patients with 
mCRPC [35]. The phase II RAVENS trial (NCT04037358) 
is evaluating whether 223RaCl2 might improve progression-
free survival in men with oligometastic prostate cancer 
receiving stereotactic ablative radiotherapy [36]. Such 
studies are critical in determining which α-emitter-drug 
combinations are beneficial, or just as importantly, harmful 
[37]. For example, a recent combination study investigat-
ing the addition of 223Ra to abiraterone acetate and pred-
nisone therapy in mCRPC patients unexpectedly reported 
more fractures in the patients treated with the investiga-
tional arm compared with the placebo (NCT02043678) [38]. 
Long-term sequelae of 223RaCl2 treatment are incompletely 

understood. An observational clinical study (NCT04256993) 
is investigating long-term efficacy and side effects in a large 
cohort of patients, focusing on the incidence of bone frac-
tures in patients treated with 223RaCl2. Collectively, results 
from these trials can help guide 223RaCl2 treatment, improve 
patient selection, and mitigate untoward effects. Despite 
223Ra’s effectiveness as a therapeutic drug, the potential for 
expanding its use in targeted radiotherapy conjugates is lim-
ited due to a lack of available in vivo compatible chelators. 
In a recent study, Abou et al. reported on stable 223Ra chela-
tion in vivo, which may facilitate the development of new 
223Ra-based conjugates using tumor-targeted vectors [39].

α‑Emitter conjugates to small molecules 
and antibodies

Several properties outlined in the previous sections make 
α-emitters promising for development of conjugated RPT 
agents. The natural pairing of radioactive groups with can-
cer-targeting molecules has long been recognized. Much 
of the groundwork for therapeutic radioconjugates may be 
established using radiodiagnostics [40–44]. Unlike con-
ventional chemotherapeutics, which must interact directly 

Table 2  Categories of alpha-RPT, their properties, and relevant clinical studies

mCRCP, metastatic castration-resistant prostate cancer; SSTR, somatostatin receptor; NET, neuroendocrine tumor; MSLN, mesothelin; IGF-1R, 
insulin-like growth-factor 1 receptor
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with a target biomolecule (e.g., DNA, microtubules), 
RPT agents can induce cell death from outside the cell. 
This property is advantageous for target-based therapies. 
Cleavable linkers or cellular uptake and degradation are 
not necessary to induce cell death, unlike traditional small-
molecule and antibody-based treatments. However, cellu-
lar uptake and retention is highly advantageous for RPTs. 
Cell uptake prevents daughter redistribution, and increased 
proximity to the cell nucleus can lead to higher cytotoxic-
ity. Another potential advantage of radioconjugates, rela-
tive to many targeted drugs, is that they are cytocidal. This 
feature can transform an unlabeled targeted agent that does 
not have much of a therapeutic effect to a radiolabeled one 
that does [45]. Furthermore, efficient tumor cell kill can 
help mitigate development of resistance via compensatory 
changes (e.g., decreased availability or expression of target 
molecules, selection for clones with resistant mutations) 
following therapy.

Thus far, small-molecule radioconjugates have enjoyed 
the greatest clinical success, and the small-molecule 
conjugates that are currently clinically approved use β−-
emitting nuclides, likely because these conjugates are 
easier to develop and more widely available than their 
α-emitting counterparts. However, as discussed in the pre-
vious section, α-particle-based therapies are also being 
explored. Somatostatin receptor (SSTR)–targeting ligands 
have been conjugated to DOTA or DOTA-derivative che-
lators to treat SSTR-expressing neuroendocrine tumors 
[46, 47]. Several α-emitting radionuclides have been 
investigated preclinically in SSTR-targeting conjugates, 
including 225Ac, 213Bi, and 212Pb. Preclinical investiga-
tion of  [225Ac]Ac-DOTATOC showed that this conjugate 
has marked antitumor activity in vivo [48]. The related 
conjugate  [225Ac]Ac-DOTATATE has been investigated 
clinically in patients who progressed or had stable disease 
following treatment with  [177Lu]Lu-DOTATATE [18, 49]. 
Short-term results from this phase I trial indicate that this 
conjugate is well-tolerated. Early efficacy data reported 
1 patient of 53 in the study with complete remission, 41 
patients with partial remission, and 9 patients showing sta-
ble disease. A retrospective clinical evaluation of  [213Bi]
Bi-DOTATOC in 8 patients showed that this conjugate is 
very well-tolerated and exhibited a promising antitumor 
response [50]. Finally, the related compound  [212Pb]Pb-
DOTAMTATE has shown preclinical efficacy for  SSTR+ 
tumor treatment [51], and a phase I trial of this conjugate 
is currently underway (NCT03466216). Notably, unlike 
the other studies mentioned, this trial focuses on patients 
naive to therapy with 177Lu- or 90Y-labeled DOTATATE. 
Preliminary results indicate that the conjugate is well-
tolerated and has a promising efficacy signal with two 
patients exhibiting complete response and one with a par-
tial response [52].

In addition to SSTR-targeting conjugates, several stud-
ies have focused on PSMA-targeting α-particle RPTs [53]. 
Chelates of 213Bi, 212Pb, and 225Ac have been conjugated to 
PSMA-targeting ligands.  [225Ac]Ac-PSMA-617 has demon-
strated promising effectiveness with complete remission for 
2 out of 2 patients with late-stage mCRPC as reported in a 
small retrospective first-in-human study [19]. Importantly, 
a prospective phase 1 trial of this conjugate is currently 
underway (NCT04597411). One prospective cohort study 
compared 28 mCRPC patients of whom half were refractory 
to  [177Lu]Lu-PSMA-617 treatment, whereas the other half 
were RPT-naïve [20]. Patients in both groups showed objec-
tive response to treatment. The dose was well-tolerated, sug-
gesting that  [225Ac]Ac-PSMA-617 may be a good candidate 
for both front-line and second-line treatment of mCRPC. 
212Pb and 213Bi have also been investigated with PSMA-617 
and other PSMA-targeting molecules. Several studies have 
shown promising preclinical results in vivo using 212Pb, but 
no clinical data has yet been collected [54]. A case report 
of one patient with mCRPC who exhibited cancer progres-
sion demonstrated remarkable radiographic and biochemi-
cal response after treatment with  [213Bi]Bi-PSMA-617 [55]. 
These reports are helpful in providing bioplausibility and 
feasibility of more systematic clinical evaluation of such 
agents, but the short half-life and difficulty in distribution 
of 213Bi represent significant hurdles to further clinical 
development.

Antibody-based radioconjugates have been explored to 
augment the inherent limited therapeutic effect of tumor tar-
get-specific antibodies. Many antibody therapies currently in 
the clinic are unconjugated relying upon antibody-dependent 
cellular cytotoxicity (ADCC) to induce cell death [56]. How-
ever, ADCC alone may be insufficient for tumor eradication. 
This limitation has spurred a renewed excitement for anti-
body–drug and antibody-radionuclide conjugates. Currently, 
two antibody-based RPTs are FDA-approved. Both thera-
peutics use β−-emitters conjugated to antibodies targeting 
the B-cell lymphoma biomarker CD20. However, the first 
approved radioconjugate,  [131I]I-Tositumomab (Bexxar®) 
is no longer in production, and the second conjugate,  [90Y]
Y-Ibritumomab (Zevalin®), has seen decreased year-over-
year utilization [57–60]. Despite demonstrating durable 
complete responses in patients with B-cell malignancies, 
these agents were not broadly adopted clinically. This out-
come reflects broader structural barriers to RPTs within the 
practice of medicine, particularly in the USA. In addition, 
the non-radioactive CD20-specific antibody, rituximab, has 
the same indication as the radioconjugates and fits more 
neatly with existing clinical workflows.

Two α-emitting antibody conjugates targeting the leu-
kemia biomarker CD33 have been clinically investigated. 
The first paired 213Bi with anti-CD33. The clinical stud-
ies showed that the conjugate induced remission in most 
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patients [61, 62]. Furthermore, in vitro studies of  [213Bi]
Bi-anti-CD33 showed this conjugate was not cross-resistant 
with cells resistant to β−- and γ-radiation [63]. However, 
the short half-life of this isotope  (t1/2 = 46 min) and difficul-
ties in production and cost led to a shift to  [225Ac]Ac-anti-
CD33 [64]. This second-generation CD33-targeting radio-
conjugate is currently in clinical trials (NCT02575963), and 
preliminary findings indicate it is well-tolerated and exhibits 
anti-leukemic activity [65, 66]. Despite the logistic and eco-
nomic difficulties of implementing the  [213Bi]Bi-anti-CD33 
conjugate, other antibody conjugates of 213Bi have entered 
clinical trials, and preliminary results indicate that these 
are well-tolerated in patients. In fact, the conjugate  [213Bi]
Bi-cDTPA-9.2.27, which targets chondroitin sulfate pro-
teoglycan 4 (a.k.a NG2) overexpressed in melanomas, has 
proven to be tolerable at doses of up to 450 mCi (16.7 GBq) 
and shows activity in patients with melanoma [67]. Another 
213Bi-antibody conjugate targeting EGFR has recently been 
investigated in a pilot feasibility prospective clinical study 
for the treatment of high grade carcinoma in situ of the blad-
der [68]. The RPT induced complete remission in three of 
12 patients with no observed adverse effects and warrants 
further study.

Several clinical studies have also investigated 211At-
labeled antibodies for RPT [69]. Notably, an older study of 
a 211At-labeled antitenascin antibody administered intrac-
ranially to patients bearing brain tumors demonstrated a 
favorable treatment response with minimal toxicity [70]. 
More recently, a 12-year follow-up of a dose-finding study 
in ovarian cancer patients treated with 211At-labeled anti-
body fragment (F(ab’)2) targeting SLC34A2, a cell surface 
glycoprotein, was reported [71]. The conjugate exhibited low 
toxicity and demonstrated a therapeutic response in some 
patients. Other clinical trials evaluating 211At-labeled anti-
bodies focusing on multiple myeloma, recurrent, refractory 
acute lymphocytic leukemia, and myelodysplastic disorders 
are currently in progress (NCT04466475, NCT03670966).

The long-lived α-emitter 227Th has emerged as another 
option to pair with antibodies due to its ease of chelation 
and relatively high availability [72]. Preclinical studies of 
PSMA-targeting antibody conjugates with 227Th have been 
promising, and a phase I clinical trial of one conjugate is 
ongoing (NCT03724747) [73]. Preclinical investigation 
using this conjugate showed increased tumor uptake relative 
to healthy tissue, as well as dose-dependent tumor inhibi-
tion in both subcutaneous tumors and a metastatic model. 
Notably, the study showed potential synergy between the 
PSMA-targeted 227Th RPT in conjunction with androgen 
receptor antagonists. 227Th-antibody conjugates targeting 
mesothelin (NCT03507452) and CD22 (NCT02581878) are 
also in clinical trials [73, 74]. A known challenge of intact 
antibody-based radioimmunoconjugates is hematologic 
toxicity in already heavily pretreated patients, which may 

limit their translational potential. While true for both α- and 
β−- emitters, it may be more prominent in β−-emitting anti-
body radioconjugates due to the longer path length. Efforts 
to overcome these challenges include pre-targeting strategies 
and dose fractionation [75].

The growing body of research indicates that α-emitters 
can make safe, effective therapeutics when conjugated to 
appropriate targeting molecules. Although no α-emitting 
radioconjugates have received clinical approval, their high 
potency and tunable molecular footprint make them excel-
lent partners for targeting antibodies or small molecules. 
Based on convention, t 213Bi and 212Pb may pair best with 
rapidly cleared smaller molecules, whereas 225Ac and 227Th 
may be better suited for antibodies, which clear much more 
slowly. Despite its relatively long half-life, 225Ac has proven 
effective in both small-molecule and antibody conjugates, 
but its high toxicity due to its long half-life and daughter 
nuclide redistribution remains a concern.

A clinical perspective: potential 
and challenges for α‑based RPT

Currently, there is no consensus on the proper dose, timing, 
administration route, or ideal chemotherapeutic combina-
tions with RPTs—and the best approach will likely be dif-
ferent for each RPT and disease presentation. Any of these 
variables can have a profound impact on the ultimate success 
of the therapy. Guidelines should be established, if possi-
ble, and commonalities may emerge across the various RPT 
agents as a class.

Studies have shown that administering several smaller 
doses of the RPT over an extended period of time (fractiona-
tion) can increase the treatments’ effectiveness and decrease 
the off-target radiation toxicity [45, 76, 77]. This approach 
is intuitive, as most anticancer therapeutics are administered 
in multiple cycles to increase tolerability and minimize side 
effects while maintaining efficacy. External beam radia-
tion is similarly administered. Potential challenges, how-
ever, include the logistics inherent to a multi-dose regimen. 
Many radionuclides, and α-emitters in particular, are rela-
tively scarce and are typically produced on a strict schedule. 
Thus, receiving frequent, regular shipments of radionuclides 
for patient treatment on a clinical use schedule can be chal-
lenging, especially for those with shorter half-lives. While 
having a six-cycle regimen is feasible for long-lived agents, 
such as 223RaCl2, which has already been FDA-approved and 
enjoys commercial/clinical success, it is critical that radio-
nuclide supply is able to meet the demand for clinical trials 
of new α-emitting RPTs.

The administration route of RPTs can also have a pro-
found impact on the treatment. While intravenous (IV) 
administration is common, it may not be ideal in all cases, 
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especially for tumors within enclosed compartments. For 
example, injection of radioconjugates intraperitoneally (IP) 
or intracranially for tumors located in these regions may 
increase the tumor-absorbed dose relative to the off-target 
dose. In one notable, though small, clinical study, patients 
were treated with a  [212Pb]Pb-trastuzumab conjugate via IP 
administration [78, 79]. The radioimmunoconjugate showed 
confinement to the peritoneal cavity, with only 6% of the 
conjugate observed elsewhere. Another study showed that 
a 213Bi-labeled radioconjugate targeting the NK-1 receptor 
was well-tolerated and effective in treating glioblastoma 
when administered intracranially [80, 81].

Further considerations for α-emitter-based RPTs include 
the potential for synergistic pairings with traditional chemo-
therapy or other targeted therapies. Because clinical studies 
of α-based RPTs are still few, ideal partners have not yet 
been established, although several promising combinations 
are being tested [82, 83]. In theory, RPTs should synergize 
with any agents that increase their uptake or the tumor’s 
susceptibility to DNA damage, such as platinum-based drugs 
and taxanes. Preclinical studies have shown that these agents 
may augment response to α-therapies [84, 85]. Pairing RPTs 
with novel radiosensitizers, such as PARP inhibitors, can 
greatly improve their effectiveness [86]. Others have also 
shown that RPTs combine well with anti-angiogenic drugs 
and therapeutic antibodies [84]. Further analysis and care-
ful experimentation are needed to identify ideal treatment 
partners, which may vary widely depending on the type, tar-
get expression profile, and stage of the cancer to be treated. 
In addition, high-quality, randomized controlled studies are 
critical to identify specific patient populations to achieve 
the greatest benefit from RPT treatment and provide clear 
treatment indications.

The future of α‑therapy

α-particle-based RPT represents a compelling therapeutic 
modality for disseminated cancers. Combination therapies 
and innovative dosing strategies have emerged recently that 
may greatly improve upon the prior iterations of α-RPTs. 
Also, as α-emitting radionuclide production and distribu-
tion capacity increases, investigators can correspondingly 
increase our collective knowledge of this currently under-
explored field.

As mentioned earlier, one of the greatest potential clinical 
uses of α-based RPT is as a salvage or second-line therapy in 
patients with disease refractory to other treatment. α-therapy 
has demonstrated ability to overcome cancer resistance. Its 
distinct mechanism of cellular toxicity and indifference to 
hypoxia or drug-transporter overexpression make it ideal 
for use in cancers with resistance to traditional treatments. 
Furthermore, α-emitting conjugates can also be used in 

combination with β−-emitters partnered with the same tar-
geting motif or as salvage therapy following treatment fail-
ure with the β−-emitting conjugate. Additionally, α-therapy 
could be combined with external beam radiation to dose-
escalate therapy to gross disease, while molecular RPT can 
address disseminated macroscopic or microscopic disease 
[87, 88]. This approach is particularly compelling in the set-
ting of oligometastatic disease [36]. Finally, combination 
with standard-of-care anticancer treatments (e.g., chemo-
therapy, anti-angiogenic therapy, kinase inhibitors, immune 
checkpoint blockade) or exploratory agents (e.g., DNA 
repair pathway inhibitors) must be properly investigated for 
use in conjunction with α-RPT in order to find synergistic 
pairings, while remaining mindful of overlapping toxicities.

 Pre-targeting strategies may also enhance the RPT par-
adigm and preclinical results have shown effective 225Ac 
therapy using this approach [89]. Typically, the tumor-tar-
geting moiety is administered, allowed to bind to the target 
with the excess cleared from the body prior to administration 
of the fast-clearing radioactive component, which can bind 
to the tumor-targeting moiety in vivo using several estab-
lished methods [75, 90]. Pre-targeting has been evaluated 
in humans and has been shown to reduce the overall non-tar-
get radiation load on the patient while maintaining the high 
tumor radiation dose of traditional antibody therapy [91].

Another potential avenue for expansion of the current 
α-RPT is the development of imaging methods that allow 
for visualization of the treatment. 225Ac and 223Ra both 
have characteristic photon emissions that may be imaged 
via SPECT during their decays, which can faciliate accurate 
absorbed dose estimates. While several recent studies have 
focused on imaging these nuclides in vivo, the relatively low 
administered activities of the nuclides and the long imag-
ing times required for SPECT may ultimately make clini-
cal imaging difficult. Perhaps an alternative strategy is to 
partner α-emitting nuclides with congeners or other isotopes 
for imaging. For instance, 211At may be combined with 124I 
(PET) or 123I (SPECT) for diagnostics imaging, and 212Pb 
may be partnered with 203Pb for SPECT. The α-emitting 
149 Tb might offer another interesting option since it can be 
imaged by PET [92]. The difficult production and long-lived 
daughters of this nuclide have hindered clinical translation to 
date; however, improved production methods may increase 
the availability of 149 Tb in the near future [31].

In addition to the importance of overcoming technical 
challenges, it is absolutely critical that we test the most 
favorable agents in prospective, randomized controlled tri-
als for definitive evaluation. Anecdotal and small single-
institution series are important to demonstrate feasibility 
and bioplausibility; however, such studies are insufficient to 
move the field forward. Fortunately, as level I evidence from 
RCTs accumulate for β−-emitting RPTs, we can use these as 
templates for testing α-emitting RPTs. In addition, while it is 
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intuitive that personalized dosimetry in patients treated with 
RPTs might prove beneficial for patient safety and therapeu-
tic efficacy, as with external beam radiotherapy, prospective 
studies in patients are needed to test this hypothesis [93].

The improving quality and quantity of radionuclide 
production, combined with increasingly available tools 
to identify tumor-selective targets using next-generation 
sequencing, enable us to engineer diverse molecules spe-
cific to cancer targets of interest. These efforts have been 
further facilitated by the development of new radiochelates 
for alpha-emitting nuclides, which may provide safer, more 
easily manufactured conjugates. In addition, the marked 
ability of targeted α-emitting agents to effectively kill cells, 
which may be enhanced with strategic drug combinations, 
coupled with no known mechanisms of resistance all sug-
gest a promising future of α-particle RPT. Now that these 
advances are in place, it is up to our community of multi-
disciplinary investigators to do the hard work to realize the 
full potential of this modality and expand the cancer therapy 
armamentarium for patients.
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