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Abstract
Background Artificial intelligence (AI) algorithms based on deep convolutional networks have demonstrated remarkable success
for image transformation tasks. State-of-the-art results have been achieved by generative adversarial networks (GANs) and
training approaches which do not require paired data. Recently, these techniques have been applied in the medical field for
cross-domain image translation.
Purpose This study investigated deep learning transformation in medical imaging. It was motivated to identify generalizable
methods which would satisfy the simultaneous requirements of quality and anatomical accuracy across the entire human body.
Specifically, whole-body MR patient data acquired on a PET/MR system were used to generate synthetic CT image volumes. The
capacity of these synthetic CT data for use in PET attenuation correction (AC) was evaluated and compared to current MR-based
attenuation correction (MR-AC) methods, which typically use multiphase Dixon sequences to segment various tissue types.
Materials and methods This work aimed to investigate the technical performance of a GAN system for general MR-to-CT
volumetric transformation and to evaluate the performance of the generated images for PET AC. A dataset comprising matched,
same-day PET/MR and PET/CT patient scans was used for validation.
Results A combination of training techniques was used to produce synthetic images which were of high-quality and anatomically
accurate. Higher correlation was found between the values of mu maps calculated directly from CT data and those derived from
the synthetic CT images than those from the default segmented Dixon approach. Over the entire body, the total amounts of
reconstructed PET activities were similar between the two MR-AC methods, but the synthetic CT method yielded higher
accuracy for quantifying the tracer uptake in specific regions.
Conclusion The findings reported here demonstrate the feasibility of this technique and its potential to improve certain aspects of
attenuation correction for PET/MR systems. Moreover, this work may have larger implications for establishing generalized
methods for inter-modality, whole-body transformation in medical imaging. Unsupervised deep learning techniques can produce
high-quality synthetic images, but additional constraints may be needed to maintain medical integrity in the generated data.
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Background

Recently, artificial intelligence (AI) algorithms based on deep
convolutional networks have demonstrated remarkable success
for cross-domain image translation, with some of the most im-
pressive results having been produced by systems comprising
generative adversarial networks (GANs). Initial work in this field
involved natural photographic images, but applications specific
to medical imaging emerged soon thereafter [1–3].

This study investigated deep learning transformation for
whole-body, medical imaging — demonstrated here for PET/
MR applications. Specifically, MR data were used to generate
synthetic CT image volumes, which were then used for PET
attenuation correction (AC). This approach offers potential ad-
vantages over the current default AC methods, which typically
use multiphase Dixon sequences to segment various tissue types.
Although many improvements have been seen over the last
years, Dixon segmentation-based AC is still prone to a variety
of errors including inaccurate attenuation values, tissue misclas-
sification and incomplete or misregistered bone atlases.

The idea to use deep learning to improve PET AC has been
investigated previously by several different groups with nota-
ble progress. One early study used a small population of sub-
jects to train a network to translate MR-to-CT images in a
supervised fashion using various loss objectives [4]. This
work reported promising results and was specific to the pelvis.
Another group used a similar training approach to successfully
estimate maps of the attenuatingmu values (mumaps) directly
from the non-attenuation corrected (NAC) PET images [5]—
this approach is interesting because it not affected by misreg-
istration errors between the PET and an accompanying anat-
omy image. Another recent work [6] also employed a super-
vised training approach with paired training data for improv-
ing the 3D attenuation maps produced by a maximum likeli-
hood reconstruction of attenuation and activity (MLAA) algo-
rithm [7]. Unsupervised training with unpaired data within a
cycle-consistent GAN framework (CycleGAN) [8] has also
been investigated for medical imaging [3]. One such study
investigated this technique for transforming MR into CT im-
ages of the head [9], resulting in high-resolution synthetic
sagittal image slices. CycleGAN has also been used in trans-
formations for the whole body [10]— this work incorporated
a novel correlation loss to address the issues associated with
subject positioning differences between MR and CT. The au-
thors show improvements, but their results were not anatom-
ically accurate across the entire body. The cycle-constrained
framework has also been used to translate directly between
NAC and AC PET images, mitigating the need for deriving
the patient mu map altogether [11].

These prior studies offer important contributions for im-
proving PET AC, but none is without their limitations. Each
of these focused on limited anatomical ranges, required so-
phisticated preprocessing algorithms or produced suboptimal

results which could limit a clinical adoption of the techniques.
Algorithms trained on only PET data are prone to anatomical
discrepancies and may only be applicable to specific PET
tracers. Furthermore, networks trained by supervised, pixel-
averaged loss functions, are known to produce relatively blur-
ry outputs, and many were built on networks with 2D archi-
tectures not optimized for 3D data.

The experiment detailed here was designed in pursuit of a
robust solution for accurate anatomical transformations in
whole-body PET/MR AC protocols. This study aimed to in-
vestigate the capacity of a GAN system for general MR-to-CT
image transformation and to evaluate the quantitative perfor-
mance of the AI-synthesized images for PET AC. The find-
ings presented here demonstrate the feasibility of this tech-
nique and its potential to generate high-quality results which
could improve certain aspects of AC for whole-body PET/MR
examinations. Moreover, this work may lend its methods to
other medical applications in which inter-modality transfor-
mations would be helpful.

Methods

Network architecture and training

The deep convolutional networks were trained within a GAN
framework, and the performances of two-dimensional and
three-dimensional networks were evaluated. The generator
and discriminator architectures followed those described in a
previous work [12]. The generator comprised sequential resid-
ual blocks, situated between encoding and decoding layers at
the bottom and the top of the network, respectively. The dis-
criminator followed the patchGAN architecture [13]. The
GAN system was trained with adversarial, supervised and
unsupervised losses. The supervised objective included a
pixel-wise L1-norm (mean absolute error) loss imposed at
the output of the generator network [14]. The unsupervised
objective included cycle consistency and identity loss terms
[8]. This approach required 2 unique generator networks, one
for transforming MR to CT and one for CT to MR, designed
for mutual regularization. There were also 2 respective dis-
criminator networks, for classifying the real and generated
data in each domain, trained with an L2-norm (mean squared
error) loss. Both generators and both discriminators were
trained in the same way for 15,000 epochs, and used the
Adam optimizer. Cross-validation was performed to concur-
rently monitor training convergence within a separate popula-
tion of test subjects.

Supervised training objectives require classification informa-
tion which directly labels the training data — in this case, it
meant that a number of paired MR and CT volumes needed to
be spatially co-registered. Differences in patient positioning be-
tween the 2 scanners made whole-body, global co-registration
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challenging, and even impossible. However, local co-registration
was used to generate labels at different regions independently.
Sub-volumes at various anatomical sites were co-registered and
extracted from the patients in the training population. This ap-
proach was well-suited for creating training data, since the net-
work was trained with 3D patch samples which were already
much smaller than the whole-body volumes.

The supervised and unsupervised training used different
datasets — co-registered volume patches were necessary for
the supervised objectives, but the unmatched, whole-body
volumes were able to be used for the unsupervised training
iterations. Although the paired data could be used for both the
supervised and the unsupervised training, the unpaired data
could not, and it was decided to keep the datasets separate.
Hence, the different training approaches were not performed
simultaneously, per se, but were alternated at each epoch. At
every run, the input subject data were randomly augmented by
translation, rotation and anisotropic scaling, before randomly
extracting a single 96 × 96 × 96 cubic patch from each.
Theoretically, this approach yielded an infinite number of
unique patch samples available for training — a complete
epoch comprised training on 128 samples, with minibatch size
2. For computational efficiency, a separate script to prepare
the training data at each epoch ran concurrently on the CPU
with the GAN training performed on the GPU.

Training patient population

The underlying transformation task of this work sought to
define the mapping specifically between Hounsfield-valued
CT and MR Dixon water image domains within the human
body. The datasets from 60 patients, imaged with 18F-
DCFPyL for evaluation of prostate cancer, were selected for
this — every subject gave informed consent for their
anonymized data to be used as a part of an institutional
REB-approved research study. Each patient underwent sepa-
rate PET/CT (Discovery MI DR, GE Healthcare) and PET/
MR (Biograph mMR, Siemens Healthcare) examinations on
the same day. For PET/CT, the CT data were acquired with
120 kVp tube voltage and average current of 165 ± 14.5 mAs;
the pixel size of the reconstructed image volumes was
1.3672 mm with slice thickness 3.27 mm. For PET/MR, the
MR Dixon data were acquired with Siemens’ CAIPIRINHA
parallel imaging technique [15]. This sequence is fast and
yields high-quality Dixon images with pixel size 1.3021 mm
and slice thickness 2.9928 mm.

Whole-body image generation

Once the training was complete, the CT generator network was
used to create pseudo CT volumes to be used for PET/MR AC
in a set of 30 validation patients. For each subject, the com-
posed whole-body Dixon water image volumewas divided into

overlapping patches, whichwere then processed by the network
to produce the corresponding synthesized CT patches. These
outputs were then recombined to produce the whole-body vol-
ume — an example of this is shown in Fig. 1.

The synthesized CT volumes were converted to 511 keV
attenuation mu maps according to the bilinear transformation
described in [16].

The validation patients received injections of 326.3 ±
14.8 MBq 18F-DCFPyL and were scanned on the PET/MR
at 122 ± 7 min post-injection and then on and PET/CT at 200
± 10 min post-injection. In this work, the data from PET/CT
were used as the ground truth. As an initial test, the total
amounts of attenuating medium contained in both MR-based
attenuation maps were compared to those from the CT.

PET evaluation

The PET images reconstructed using different AC mu maps,
from the PET/MR,were compared to each other and also to those
from the PET/CT. For every patient, the PET/MR data was re-
constructed 2 times, once with the default mu map and again
with the synthesized CT mu map (synCT) — both were com-
pared to that from PET/CT. In order to account for MR trunca-
tion artefacts, MLAA is routinely used at our institution in order
to improve PET quantification for all patient scans— we main-
tained this convention for this work. TheMLAA algorithm takes
2 inputs, the incomplete umap and NAC PET data, and from
these, simultaneously estimates the most likely distribution of
each. The end results here were umaps with “filled in” arms
(illustrated for each of the MR-based mu maps in Fig. 6), which
were then used for PET AC in the reconstruction. All PET anal-
yses were performed using standardized uptake value (SUV)
images to correct for the tracer decay at the different acquisition
times. For the reconstructions, the transaxial image pixel dimen-
sions were matched at 2.6 mm, but the slice thickness, which
depends on the gantry detector configuration, was 2.03 mm for
PET/MR and 3.27 mm for PET/CT. None of the PET recon-
structions used time-of-flight information.

Quantitative evaluations were performed for volumes of
interest (VOIs) defined at various anatomical locations: liver,
lungs, salivary glands and small metastatic lesions. These re-
gions were selected in order to represent a range of tracer
uptake characteristics. For the liver and lung, the VOIs were
defined by all voxels contained within spheres of 30-mm di-
ameter, manually placed within the organ parenchyma. For
the salivary glands, the VOIs were defined by the intracranial
voxels having values greater than or equal to 50% of the max.
Lesion VOIs were also defined by a 50% max threshold, but
since the lesions were much smaller than the salivary glands,
the VOIs used smaller spheres drawn over the focal uptake.
The VOIs were defined separately on the PET/MR and PET/
CT volumes, and the threshold-based voxel selections (for the
salivary glands and lesions) were calculated independently for
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every image. The VOIs are illustrated for 3 representative
patients in Fig. 2.

The VOI measurements in the images of both PET/MRAC
methods were compared to those of PET/CT. The relative
differences in each VOI set were found to be normally distrib-
uted by the Shapiro-Wilk normality test. As such, 2-tailed,
paired t-tests were used to quantify the significance of any
discrepancies between the 2 methods.

Results

Network performance

The convolutional networks were initially trained using only the
unsupervisedCycleGANapproach, i.e. using only the adversarial,

cycle consistency and identity losses with unpaired training sam-
ples. The networks successfully learned the features of each class
and produced high-quality, realistic transformations for certain
body parts like the head. However, it was observed that these
transformations were not anatomically accurate for every region
within the whole body— the ribs were incorrectly characterized
by the translation, as seen in Fig. 3. Although, this may not have
significantly impacted the PET AC in the thorax, we sought to
achieve transformations which were anatomically accurate.

Incorporating the supervised loss, with labelled data, into the
CycleGAN training resolved this — the results presented
throughout this work were produced by only 3D networks
trained through this combination. As a sanity check, the perfor-
mance of the CT generator network, trained using only adversar-
ial and supervised losses, i.e. without unsupervised losses, was
visually evaluated, as was that of the corresponding 2D network.

Fig. 1 A synthetic, whole-body
CT volume generated from pa-
tient Dixon MR data. Here, the
MR and corresponding synthe-
sized CT data are displayed as
single slices in coronal (left) and
sagittal (right) views

Fig. 2 VOIs were defined at various regions for PET/MR and PET/CT,
illustrated here for 3 patients. Liver and lung VOIs, shown in blue and
green, were defined by all voxels contained in spheres of 30 mm diame-
ter. The salivary gland VOIs, shown in gold, were defined by the

intracranial voxels, with values greater than or equal to 50% of the
max. Lesion VOIs, shown in red, were also defined by a 50% max
threshold, but within smaller spheres drawn only over the focal lesion
uptake
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As seen in Fig. 4, all networks were able to learn MR-to-CT
translations, but the 2D network yielded whole-body volumes
of relatively low overall quality with poor axial contiguity across
most of the body. The additional dimension allowed an equiva-
lent 3D network to produce volumes with higher fidelity across
all spatial dimensions. Both of these networks were trained using
supervised and GAN losses and paired data. Including additional
unsupervised objectives with unpaired data introduced substan-
tial improvements for regions which did not have accurate super-
vised labels, like the hands.

Mu map evaluation

Several advantages were found for the mu maps derived
from the synthetic CTs — most notably, the bone maps
throughout the entire body were complete with better

anatomical alignment relative to those in the default mu
maps. Direct comparison of these whole-body mu maps
with those of the CT was challenging due to patient posi-
tioning and the resulting complex misregistration.
However, in the head, where simple co-registration was
possible, a higher correlation of the quantified mu values
was observed for the synCT mu maps — Fig. 5 illustrates
this. The top two rows show identical line profiles drawn
over the default and synCT umaps resulted in mean
squared errors of 0.35 and 0.15, respectively, relative to
the CT umap. This slice was chosen to also highlight a
characteristic pitfall often encountered in the default mu
maps, that is, incorrectly assigning tissue values to air
within the intracranial sinuses. The correlations between
all voxels within the head are shown on the bottom row
of the same figure, along with the linear regression fits.

Fig. 3 A potential pitfall of
CycleGAN training. This is an
example of inference by a
network during training with only
unsupervised loss objectives, with
the Dixon MR image shown on
the left and its corresponding
synthesized CT on the right.
While this network was
successfully learning to reproduce
the features of the CT domain and
the synthesized images seemingly
appeared reasonable, the results
were anatomically inaccurate.
The zoomed-in views of the
outlined regions show the real lo-
cations of the ribs (denoted by the
arrowheads), which were incor-
rectly characterized by the trans-
formation. Including supervised
losses (with labelled data) during
training corrected this
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Indeed, the synCT resulted in much higher Pearson corre-
lation coefficient between CT mu values (PCC = 0.885),
with higher coefficient of determination (slope = 0.8;
R2 = 0.78), relative to that of the default mu map (PCC =
0.651; slope = 0.55; R2 = 0.42) for all voxels included
within a mask of the entire head. The significance values
displayed on the scatter plots correspond to the F statistic
of the linear regression.

PET evaluation

The default and synCT attenuation maps from the PET/MR
were then used for AC in PET reconstructions. The two
resulting PET images were compared directly to those from
the PET/CT in the evaluation subjects. An overview of this is
presented in Fig. 6.

For each subject, the axial fields of view were matched, and
the total amounts of attenuation and tracer activity throughout
the body were measured. The biases are shown for each MR-
basedmap in Fig. 7. BothMR-derivedmumaps underestimated
the total amount of attenuation, but the additional bony regions
in the mu map derived from the synthesized CT reduced this
negative bias. As a result, the total amounts of reconstructed
PET activities were slightly greater with the synCT mu maps.
In both cases, the quantitative differences between MR-AC
methods were found to be significant at the 5% level.

The measurements of tracer activities were performed on
PET images taken at different scanning points and uptake
times (~122 min P.I. for PET/MR and ~ 200 min P.I. for
PET/CT) — as demonstrated in Fig. 7, this had little effect

on the total amount of measured tracer in the body. The top
row of Fig. 8 shows the absolute differences between local
SUV measurements in the PET/MR and PET/CT images.
These were expected to be similar, and it is seen here that
the median absolute differences in the VOI measurements
were lower in the images reconstructed with the synCT mu
maps relative to those reconstructed with the default mumaps,
though the differences between methods were not significant
except for in the case of the salivary glands. These data are
presented in the figures as percentage differences relative to
PET/CT as ground truth.

Accurate interpretation of the total differences in regional
tissue measurements, however, is somewhat more complicat-
ed — different tissues will have different tracer uptake and
washout properties. Both mu map methods produced images
which generally followed the expected trends, with exception
of the salivary glands. In this region, the synCT mu maps
produced, presumably, more quantitatively accurate images
with systematically lower measurement difference. In fact, it
was only in this region in which the differences between MR-
AC methods were statistically significant.

Discussion

This study investigated the potential of 3D deep convolutional
networks for cross-domain, medical image translation. In par-
ticular, it focused on whole-body transformation, and in this
context, state-of-the-art results were achieved.

Fig. 4 A visual comparison of the
transformations produced by a 2D
network (on the left) and that by
an equivalent 3D network (in the
middle) — the additional spatial
dimension of the 3D network
substantially improved the quality
of the inference. Both of these
networks were trained using the
same supervised L1-norm and
GAN adversarial losses. The
transformation on the right was
produced by a 3D network trained
with additional unsupervised ad-
versarial, cycle consistency and
identity losses. These additional
objectives improved the quality
further; this is especially notable
in regions like the hands, where
difficult co-registration prevented
accurate supervised labels
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The novelty of this work lies in several aspects. It has been
previously shown that sophisticated deep learning systems
trained on unpaired data are capable of producing high-
quality synthetic images, but potential pitfalls of using such
an approach for medical applications are less documented.
This study found that additional constraints were needed to
generate structurally accurate data. The GAN system here was
trained using both paired and unpaired training data, allowing

a unique combination of supervised and unsupervised loss
objectives. This combined approach yielded high-quality syn-
thetic CT data which were found to be anatomically correct.
The convolutional networks used here were built on 3D archi-
tectures. This improved the translational quality of the volu-
metric data over 2D networks. A unique set of whole-body
patient data was used to evaluate the networks’ performance
for improving PET attenuation correction, and image

Fig. 5 A representative example showing the head mu maps of single
subject, co-registered between PET/CT and PET/MR. The top two rows
show the profiles of identical lines drawn over three mu maps. Taking the
CT-derived mu map as the ground truth, the mean squared error was less
among mu values in the synCTmumap than those in the default mu map.

The bottom row shows the correlations for all voxels within the masked
whole head of the same patient, along with the linear regression fits. The
mu values within the synCT mu map showed a significantly higher cor-
relation with the CT mu values than did those of the default mu map
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quantification was compared to a set of matched, same-day
PET/CT reconstructions.

The main goal of this work was to demonstrate the efficacy
of this whole-body 3D approach for general whole-body
transformation tasks. The results are promising but must be
interpreted cautiously— it would be wrong to assert that any

AI-synthesized image has inherent clinical value on its own.
For example, it might not be possible to produce a T2-
weighted image, generated from a T1-weighted image, which
could be used for accurate pathological diagnosis, i.e. the T1-
weighted image may not provide sufficient information to
inform accurate mapping to the T2 domain.

Fig. 6 Whole-body PET reconstructions on the PET/MR using the de-
fault (2nd column) and synCT (3rd column) mu maps were performed in
a set of validation patients and compared to those from PET/CT (1st
column). In this figure, the different AC mu maps are shown on the top

row and the resulting PET reconstructions on the bottom. The last column
shows the relative differences within the body between the 2 MR-AC
approaches

Fig. 7 PET/MR measurement
differences relative to PET/CT for
the total attenuation in the mu
maps and corresponding recon-
structed PET activities. The data
in each plot are presented as
biases, since, ideally, they are ex-
pected to be zero. The mean pop-
ulation differences between both
methods were significant at the
5% level
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SuchAI transformation techniques are immediatelymore use-
ful in situations in which the real data provide the complete set of
information needed for the inference. In the current experiment,
the whole-body MR volume provided the anatomical template
fromwhich characteristic bone structures were generated. In oth-
er words, although the synthesizedCT data is not likely sufficient
to diagnose bone disease, we found that they do provide a com-
prehensive and realistic map of Hounsfield values. Overall, AC
for PET/MR systems seems like a well-suited application, and
the performance evaluation of the synthesized data presented
here was investigated within this context. The quantification
within the reconstructed PET images was compared to that with-
in the images processed using the conventional MR-ACmethod,
using PET/CT as the reference. This analysis required certain
considerations regarding tracer uptake characteristics in various
regions, due to the different scanning time points between PET/
MR and PET/CT. The results suggest possible areas of improve-
ment using the new method.

The PET AC evaluation showed that the two methods for
estimating attenuation maps performed similarly in some
regards. Although the total amounts of attenuation were more
accurately estimated with the AI-generated mu map, the me-
dian total amounts of reconstructed whole-body PET activities
were not substantially different between the two methods. The
latter point, of course, depends on the distribution of PET
tracer used, which in this case was the prostate-specific mem-
brane antigen (PSMA) agent 18F-DCFPyL. If, instead, a tracer
was used with a larger distribution adjacent to the bones, e.g.

18F-NaF, we would expect a larger difference between the
total amounts of corrected PET activities.

Notwithstanding this, analyses of the regional measurements
revealed some differences. Since the majority of the tracer up-
take, due to irreversible tracer-receptor binding, should have al-
ready occurred in the 2 h before the first scan [17], tracer activity
concentrations in every tissue would be expected to be roughly
similar between both scanning time points. The top row of Fig. 8
shows the absolute differences between local SUV measure-
ments in the PET/MR and PET/CT images, and the median
absolute differences in the VOI measurements are lower in the
images reconstructed with the synCT mu maps relative to those
reconstructed with the default mumaps. The total differences for
every region (seen in the bottom row) must be interpreted while
considering the physiological PSMA expression in each tissue.
Tracer activity concentrations in tissues known to express
PSMA, i.e. liver, glands and metastatic lesions, were not expect-
ed to decrease in the 2nd scan. In contrast, measurements in the
lung tissue mainly comprise unbound, circulating tracer in the
blood and therefore should not increase in the 2nd scan. The
results showed that both MR-AC methods produced images
which generally satisfied these expectations for the measured
tissues, with the exception of the salivary glands. In this region,
the AI-generated mu maps produced PET images with consis-
tently lower SUV measurements.

In this study, obvious differences were observed through direct
comparisons of the mu maps, and in this regard, clear advantages
were realized by the synCT mu maps. It was challenging,

Fig. 8 Absolute and total PET measurement differences for both MR-based
mu maps, relative to PET/CT, for VOIs located in different anatomical re-
gions (illustrated in Fig. 2). The top row shows that the median absolute
differences were consistently lower when using the synCT mu maps. None
of these or the total differences shown in the bottom row was expected to be
exactly zero, however, due to the different scanning time points between

PET/MR and the later PET/CT. Instead, it was expected that differences in
the regions which express PSMA, i.e. liver, glands and lesions should not be
positive. In contrast, measurement of the lung tissue, which does not express
PSMA, comprises mainly blood pool activity and should not show negative
differences. The paired t-test analyses indicated that the performances of both
methods were not significantly different, except for in the salivary glands
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however, to identify a viable approach for PET validation, espe-
cially since the “ground truth” data were from a PET/CT scanner
with different acquisition characteristics. This subjected the anal-
yses to potential bias, since different gantry design and processing
techniques can lead to inconsistencies in reconstructed activity
measurements, even regardless of AC. Considering this, efforts
were made to ensure that the reconstructions were similar, e.g.
both incorporated system resolution modelling with similar num-
bers of iterative updates, the transverse pixel sizes were matched
and identical smoothing kernels were used. Notwithstanding this,
inconsistencies were still inevitable. Hence, the findings were pre-
sented here as generalized trends of the subject population, under
the assumption that both scanners were calibrated and quantita-
tively accurate. This assumption is reasonable since both scanners
were used clinically and underwent frequent quality control.

The findings of this study revealed that the AI-based AC
method might offer potential improvements for local PET quan-
tification in certain anatomical regions— this was observed here
for the salivary glands, which seemed to be over-corrected by the
conventional method. However, the PET quantification in other
regions could also be improved by this method. For example,
focal bony metastases would likely realize significant benefit
from more complete and accurate bone information in the mu
map. The patient population used in this work was scanned for
primary staging and did not contain a large number of these
lesions, but this would be an interesting direction for future work.

Conclusion

This study demonstrated the possibility for leveraging AI tech-
niques to improve certain aspects of MR-based PET attenuation
correction. We demonstrated that whole-body 3D MR image
volumes can be transformed into synthetic CT image volumes
for use in PETACwith high accuracy. However, this work may
have larger implications for inter-modality, medical image trans-
formation tasks in general. Similar methods could be applied to
other aspects of whole-body imaging, potentially opening the
door to a new set of AI-based clinical applications.
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