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Abstract
Purpose Tendency is to moderate the injected activity and/or reduce acquisition time in PET examinations to minimize potential
radiation hazards and increase patient comfort. This work aims to assess the performance of regular full-dose (FD) synthesis from
fast/low-dose (LD) whole-body (WB) PET images using deep learning techniques.
Methods Instead of using synthetic LD scans, two separate clinical WB 18F-Fluorodeoxyglucose (18F-FDG) PET/CT studies of
100 patients were acquired: one regular FD (~ 27 min) and one fast or LD (~ 3 min) consisting of 1/8th of the standard acquisition
time. A modified cycle-consistent generative adversarial network (CycleGAN) and residual neural network (ResNET) models,
denoted as CGAN and RNET, respectively, were implemented to predict FD PET images. The quality of the predicted PET
images was assessed by two nuclear medicine physicians. Moreover, the diagnostic quality of the predicted PET images was
evaluated using a pass/fail scheme for lesion detectability task. Quantitative analysis using established metrics including stan-
dardized uptake value (SUV) bias was performed for the liver, left/right lung, brain, and 400 malignant lesions from the test and
evaluation datasets.
Results CGAN scored 4.92 and 3.88 (out of 5) (adequate to good) for brain and neck + trunk, respectively. The average SUV bias
calculated over normal tissues was 3.39 ± 0.71% and − 3.83 ± 1.25% for CGAN and RNET, respectively. Bland-Altman analysis
reported the lowest SUV bias (0.01%) and 95% confidence interval of − 0.36, + 0.47 for CGAN compared with the reference FD
images for malignant lesions.
Conclusion CycleGAN is able to synthesize clinical FDWBPET images from LD images with 1/8th of standard injected activity
or acquisition time. The predicted FD images present almost similar performance in terms of lesion detectability, qualitative
scores, and quantification bias and variance.
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Introduction

Good image quality and high quantitative accuracy in 18F-
Fluorodeoxyglucose (18F-FDG) PET imaging are crucial for
reliable visual interpretation and image analysis in clinical
oncology [1, 2]. Apart from the technical aspects, PET image
quality depends on the amount of the injected radiotracer and/
or acquisition time, which are proportional to the statistics of
the detected events and hence the noise characteristics of PET
images. The main argument in favor of reducing the injected
radiotracer’s activity is the potential hazards of ionizing radi-
ation [3]. Albeit low, this risk motivates precaution, particu-
larly in pediatric patients, healthy volunteers or in case of
multiple scanning for follow-up or treatment response moni-
toring using different molecular imaging probes. Reducing
the acquisition time positively impacts patients’ comfort
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and increases PET scanner throughput. However, dose/
time reduction adversely affects image quality, hence po-
tentially reducing signal-to-noise ratio (SNR) and hamper-
ing the diagnostic and quantitative performance of PET
imaging.

During recent years, deep learning algorithms were de-
ployed for various medical image analysis tasks, exhibiting
superior performance over traditional strategies [4–10].
Conventional post-reconstruction PET denoising approaches,
such as Gaussian, bilateral and non-local mean filtering, are
commonly used in clinical and research settings. However,
they could also induce noticeable signal loss [11, 12], in
addition to difficulties in setting the hyperparameters to
achieve the desirable output owing to variable noise char-
acteristics in PET images [13, 14]. Contrary to conventional
denoising approaches which operate directly on low-dose
(LD) PET images, deep learning algorithms are capable of
learning a non-linear transformation to predict full-dose
(FD) from LD images [15].

Several recent studies have shown the potential of LD to
FD conversion in various body regions (e.g., brain, chest,
abdomen, and pelvis). For example, a recent study performed
by Chen et al. utilized 2D slices of LD 18F-Florbetaben brain
PET images along with various MR sequences to predict FD
images using a U-Net architecture [16]. More recently, Sanaat
et al. suggested a deep learning algorithm for training the data
in projection space instead of image space to synthesize FD
brain sinograms from corresponding LD sinograms [17]. Lu
et al. showed that a 3D UNETmodel trained with only 8 LD
images of lung cancer patients generated with 10% of the
corresponding FD images effectively reduced the noise
while minimizing the bias in lung nodules [18]. Gong
et al. proposed a deep neural network (DNN) for denoising
brain and lung 18F-FDG PET images [19]. Labeled images
were generated for training by summation of an hour-long
dynamic PET scan into a FD frame whereas the LD images
were obtained by decimating the FD scan to 1/5th of the
counts. Kaplan et al. trained a residual convolutional neural
network (CNN) to estimate FD images from 1/10th of the
counts of FD scans separately for various body regions
(brain, chest, abdomen, and pelvis) using a single study
with testing performed on another study [20]. More recent-
ly, Zhou et al. proposed a supervised deep learning model
using a small dataset consisting of 18 thoracic PET images
to synthesize FD from LD scans [21].

Few studies with different degrees of success investigated
the potential of LD to FD image conversion in whole-body
(WB) PET imaging. Almost all of them suffer from small
sample size used for training and lack of comprehensive clin-
ical assessment. Cui et al. presented an unsupervised
denoising model that does not require paired datasets for train-
ing, where the model was fed by the patient’s prior FD and
current LD PET images to predict a high quality PET image

[22]. Lei et al. proposed a cycle-consistent generative adver-
sarial network (CycleGAN) model to predict FD from 1/8th of
FD WB 18F-FDG PET images [23]. The proposed model was
trained and tested on 25 and 10WBPET images, respectively.
In another study, Lei et al. used a similar approach incorpo-
rating CT images into the network to aid the process of PET
image synthesis from LD on a small dataset consisting of 16
patients [24].

The major concerns regarding previous WB PET studies
focusing on synthesizing FD images from LD images can be
grouped around three subthemes: (i) all studies included only
a small sample size which decreases robustness and impacts
generalization of the models, particularly to abnormal cases.
(ii) Except the above referenced three studies, in all previous
works, the model was trained for different body regions sep-
arately not as a single WB image. (iii) Lack of all-inclusive
clinical evaluation including assessment of image quality and
lesion detectability. In the present work, we compare two
well-established CNN architectures, namely the residual net-
work (ResNET) and CycleGAN models, used to predict FD
from LD 18F-FDG WB PET images using a realistic clinical
database acquired at two separate sessions with different scan
durations mimicking FD and LD images (ratio of 1/8th).
Quantitative image quality assessment and qualitative evalua-
tion of the predicted FD from LD images were performed. To
the best of our knowledge, this is the first study focusing on
lesion detectability when assessing these approaches.

Materials and methods

PET/CT data acquisition

This prospective single-institution study was approved by the
institutional ethics committee of Geneva University Hospital
and all patients gave written informed consent. We included
100 consecutive patients referred to the Nuclear Medicine
department for WB 18F-FDG PET/CT studies between May
and September 2017. Fifteen studies were excluded because
of technical or logistic issues (artifacts, misregistration, the
difference in scanning sequences, poor quality of either LD
or FD PET images). In addition, images presenting with no-
ticeable motion artifacts and differences in time-activity
curves were excluded. PET/CT scans were performed on a
Biograph mCT PET/CT scanner (Siemens Healthcare,
Erlangen, Germany). A low-dose CT scan (120 kVp, 80
mAs) was performed for PET attenuation correction. This
was followed by a WB PET LD/fast scan (as there is a direct
link between fast and LD scanning) acquired 60 min post-
injection of 240 ± 50 MBq of 18F-FDG in continuous bed
motion mode with a speed of 5 mm/s(~ 25 s/bed position).
Subsequently, during the same acquisition session, a FD/
standard duration scan with a speed of 0.7 mm/s (~ 3 min/
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Fig. 1 Schematic architecture of the cycle-consistent generative adversarial network (CycleGAN) model used for FD PET synthesis. The left panel
depicts the training process whereas the right panel shows the process of testing and the structure of the generator and discriminator
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bed position) was performed. Both FD and LD PET images
were reconstructed using an ordinary Poisson ordered subsets-
expectation maximization (OP-OSEM) algorithm (2 itera-
tions, 21 subsets, post-reconstruction Gaussian filtering with
2 mm FWHM).

Deep learning algorithms

We used two state-of-the-art deep learning algorithms, namely
ResNET and CycleGAN models. The details of the deep
learning approaches and architectures of the networks are pre-
sented in the “Supplementary information” section. The flow-
chart of CycleGAN architecture is presented in Fig. 1. The
motivation behind the choice of these architectures instead
of popular networks, such as UNET, is that the adopted
CycleGAN internally uses a UNET-like structure (generator
based on UNET). In addition, although ResNET is a non-
standard network for image synthesis, our trial and error ex-
periments revealed that it outperforms UNET. The training
and hyperparameter tuning of the models were performed on
60 patients. Ten patients were used for model evaluation
whereas a separate unseen dataset of 15 patients served as a
test (external validation) dataset. For data normalization, we
converted PET images to standardized uptake values (SUVs)
and then divided them by a SUVmax of 10.

The deep learning models were implemented on
NVIDIA 2080Ti GPU with 11 GB memory running under
the windows 10 operating system. The training was per-
formed using a mini-batch size of 6 for 215 epochs. We
opted for not using cross-validation since recent guide-
lines seem to suggest that although multiple internal
cross-validation can be useful, independent validation
using an external dataset for a single trained model is
preferred over internal validation to properly evaluate
generalizability [25, 26].

Evaluation strategy

Clinical qualitative assessment ET images predicted with
ResNET and CycleGAN models (denoted as RNET and
CGAN, respectively) along with their corresponding refer-
ence FD and LD PET images were anonymized and randomly
enumerated for qualitative evaluation by two experienced nu-
clear medicine physicians (this process was done for each
patient). In total, 100 PET images were evaluated, including
25 reference FD, 25 LD, 25 RNET, and 25 CGAN PET im-
ages belonging to the test and validation datasets. The quality
of PET images was assessed in three steps. First, the two
physicians, with over 15 years of experience, were asked to
use a 5-point grading scheme for visual image quality assess-
ment, namely (1) uninterpretable, (2) poor, (3) adequate, (4)
good, and (5) excellent. In the second step, since image quality
does not guarantee lesion detectability in clinical practice, the

two physicians were asked to express their overall assessment
of the diagnostic quality of PET images with a binary decision
(accepted or failed). Lastly, the physicians assessed lesion
detectability and drew regions-of-interest (ROIs) onmalignant
lesions. The size of ROIs was defined to include the whole
lesion. This process was performed separately for the brain
and neck + trunk regions. The region-wise performance of
the model was performed to mitigate potential bias between
regions with high and low count statistics.

Quantitative analysis The accuracy of the predicted FD from
LD PET images was evaluated using three quantitative met-
rics, including the mean squared error (MSE), peak signal-to-
noise ratio (PSNR), and structural similarity index metrics
(SSIM) (Eqs. 1–3). Moreover, these metrics were also calcu-
lated for the LD images to provide an insight about the noise
levels and significant signal loss.

MSE R;Pð Þ ¼ ∑T
j¼1 Rj−P j

� �2

T
ð1Þ

PSNR R;Pð Þ ¼ 20� log
Max Rð Þffiffiffiffiffiffiffiffiffiffiffi
MSE R;Pð Þ

p
� �

10 ð2Þ

SSIM R;Pð Þ ¼ 2mRmP þ c1ð Þ 2σRP þ c2ð Þ
m2

R þ m2
P þ c1ð Þ σ2

R þ σ2
P þ c2ð Þ ð3Þ

In Eq. (1), T is the total number of voxels, R is the reference
image (FD), and P is the predicted image. In Eq. (2) Max(P)
indicates the maximum intensity value of R or P, whereas
MSE is the mean squared error. mr and mp in Eq. (3)
denote the mean value of the images R and P, respective-
ly. σRP indicates the covariance of R and P. σ2

R and σ2
P in

turn represent the variances of R and P images, respec-
tively. The constant parameters c1 and c2 (c1 = 0.01 and
c2 = 0.02) were used to avoid a division by very small
numbers.

Region-based analysis was also performed to assess the
agreement in tracer uptake between predicted and FD images.
Using the AMIDE software [27], 4 ROIs were manually
drawn over the liver, brain, and left/right sides of the lungs.
Given the ROIs, the region-wise SUV bias and standard de-
viation (STD) were calculated for each region on the predicted
FD and LD PET images considering the FD PET images as
standard of reference. Bland-Altman plots of SUVs in the four
ROIs delineated on normal organs and the 285 malignant
lesions were calculated (82, 92, and 111 lesions were depicted
on LD, RNET, and CGAN, respectively). Moreover, a joint
histogram analysis was also carried out to depict the voxel-
wise correlation of the tracer uptake between RNET/CGAN
and reference FD PET images.
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The MedCalc software [28] was employed for the pairwise
comparison of MSE, SSIM, and PSNR between LD, CGAN,
RNET, and reference FD PET images using paired t test.
Bonferroni correction for multiple comparisons was applied
and the significance level was set at a P value < 0.025 for all
comparisons. The agreement between and within the physi-
cians’ scoring was assessed using weighted Cohen’s Kappa
and Krippendorff alpha was calculated to evaluate inter-rater
reliability of image quality scores and 18F-FDG uptake pat-
terns analysis.

Results

We included malignant disease-free patients (patients with
inflammatory or suspected infectious diseases (5.9%)) and
patients with various oncological indications, including

lymphoma (23.5%), lung cancer (21.2%), breast cancer
(15.3%), head and neck cancer (7.1%), colorectal cancer
(3.5%), and other malignancies (23.5%) (Table 1).

Assessment of image quality

PET images predicted by both deep learning models
(RNET and CGAN) exhibited notable enhancement in im-
age quality compared to LD by providing almost similar
visual appearance with respect to reference FD PET im-
ages. The visual inspection revealed that the images derived
by CGAN better reflected the underlying 18F-FDG uptake
patterns and anatomy than those predicted by the RNET
model (Fig. 2). Since the test and validation datasets had
approximately similar RMSE, SSIM, and PSNR and similar
trend with respect to clinical assessment, the results were
merged and presented in a single figure. PET images pre-
dicted by CGAN showed the highest PSNR, SSIM, MSE,
better noise properties, and higher quantitative accuracy
with statistically significant differences with respect to
RNET (Tables 2 and 3).

Clinical readings

Weighted Cohen’s Kappa and Krippendorff alpha tests were
used to evaluate between and within raters’ agreements. Inter-
and intra-reader agreement of image quality scores and 18F-
FDG uptake patterns analysis were high (Krippendorff alpha
for all comparisons was > 8) while the Kappa was more than
0.7 for the failed/ accept task, except for LD where it was
equal to 0.52.

The quality of LD images was poor (score = 2.6) with the
highest percentage of failed cases (56%) for neck and trunk
region while achieving relatively good quality (score = 4.2)
with zero failed case in the brain region (Fig. 3). CGAN
outperformed RNET by synthesizing images with near good
quality (score = 3.88) and 86% accepted cases for the neck and
trunk region while achieving near excellent quality (score =
4.92) and 100% accepted cases for the brain region.

Table 1 Demographics of
patients included in this study Training Test Validation

Number 60 15 10

Injected activity (MBq) 240 ± 50 235 ± 40 235 ± 47

Male/female 36/24 9/6 5/5

Age (mean ± SD) 58 ± 3 63 ± 12 71 ± 7

Weight (mean ± SD) 71 ± 8 59 ± 11 67 ± 9

Indication/diagnosis Oncological studies include lymphoma (23.5%), lung (21.2%), breast (15.3%), head
and neck (7.1%), colorectal (3.5%), other (23.5%), non-oncologic scans (5.9%)

Table 2 Comparison of the results obtained from analysis of image
quality of LD PET images and images predicted using ResNet (RNET)
and CycleGAN (CGAN) for the test and validation datasets. SSIM, struc-
tural similarity index metrics; PSNR, peak signal to noise ratio; RMSE,
root mean squared error

MSE SSIM PSNR

Validation dataset

CGAN 0.03 ± 0.04 0.98 ± 0.08 41.08 ± 3.90

RNET 0.12 ± 0.10 0.94 ± 0.10 35.41 ± 5.56

LD 0.15 ± 0.09 0.89 ± 0.11 31.21 ± 3.08

P value (CGAN vs. RNET) 0.012 0.018 0.035

P value (CGAN vs. LD) 0.022 0.011 0.017

P value (RNET vs. LD) 0.051 0.025 0.041

Test dataset

CGAN 0.03 ± 0.07 0.97 ± 0.02 39.08 ± 3.56

RNET 0.13 ± 0.10 0.93 ± 0.04 34.91 ± 1.50

LD 0.17 ± 0.04 0.9 ± 0.03 29.21 ± 2.43

P value (CGAN vs. RNET) 0.021 0.015 0.015

P value (CGAN vs. LD) 0.013 0.03 0.022

P value (RNET vs. LD) 0.021 0.011 0.021
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With regard to lesion detectability, both CGAN and RNET
performed well (depicting 19 and 17 out of 19 lesions, respec-
tively) for lesions with high uptake (SUV > 5.5). However,
CGAN performed much better compared to RNET (depicting
27 and 23 out of 28 lesions, respectively) for lesions with
reduced SUV (0.5 < SUV < 1.5) and smaller size (Fig. 4). It
should be noted that all detected lesions pinpointed by physi-
cians on FD images were also identified on LD, CGAN, and
RNET.

Figure 5 illustrates a representative example of multifocal
multicentric breast cancer with skin involvement of the right
breast and extensive lymph node metastases including medi-
astinal nodes comparing FD and LD images as well as the

synthesized images using both networks. It can be seen that
some lesions and lymph nodes are visible on HD and CGAN,
but missed by LD and RNET.

Region-based analysis

Linear regression plots depicting the correlation between trac-
er uptake for LD, RNET, and CGAN with respect to FD are
shown in Fig. 6. The scatter and linear regression plots
showed higher correlation between CGAN and FD (R2 =
0.98, RMSE = 0.18) compared to RNET (R2 = 0.92, RMSE
= 0.32). A relatively higher RMSE (0.51) was obtained for LD

Table 3 SUV bias, average and
absolute average of SUV bias ±
STD calculated across the four
standard non-lesional tissue areas
and 100malignant lesions for LD,
RNET, and CGAN PET images

SUV bias LD RNET CGAN

SUV bias in left lung (%) 4.83 ± 3.25 − 3.22 ± 2.12 4.23 ± 1.3

SUV bias in right lung (%) 1.34 ± 4.11 − 2.92 ± 2.22 3.82 ± 0.88

SUV bias in liver (%) 4.54 ± 1.32 − 3.20 ± 4.23 2.32 ± 2.50

SUV bias in brain (%) -8.40 ± 6.2 − 6.01 ± 3.65 3.21 ± 4.17

Average SUV bias for all 4 regions (%) 0.57 ± 5.36 − 3.83 ± 1.25 3.39 ± 0.71

Absolute average SUV bias for all 4 regions (%) 4.78 ± 2.49 3.83 ± 1.25 3.39 ± 0.71

Average SUV bias in malignant lesions (%) 6.00 ± 1.97 − 9.42 ± 7.20 2.03 ± 7.60

Absolute average SUV bias in malignant lesions (%) 14.30 ± 2.13 11.86 ± 6.20 9.24 ± 1.01

P value (CGAN vs. RNET) < 0.02 < 0.01 < 0.02

P value (CGAN vs. LD) < 0.02 < 0.05 < 0.02

P value (RNET vs. LD) < 0.05 < 0.05 < 0.05

Fig. 2 Representative 18F-FDGWB PET image of a 66-year old female patient. a Low-dose CT images used for attenuation correction, b reference FD
images, c the corresponding LD images, and the predicted FD images using d ResNet (RNET) and e CycleGAN (CGAN)
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PET images. All pair-wise t tests (accounting for three com-
parisons) had P values < 0.001.

The Bland-Altman plots showed that the lowest SUV bias
(− 0.10, − 0.01) and the smallest SUV variance (95% CI: −
0.48, + 0.29, 95% CI: − 0.36, + 0.47) were achieved by
CGAN for normal organs and malignant lesions, respectively.
Though the SUV bias is extremely low for LD images, in-
creased variance compared with FD images was observed
(95% CI: − 0.71, + 0.86 for normal organs and 95% CI: −
0.74, + 0.65 for malignant lesions), reflecting poor image
quality and high noise characteristics (Fig. 7).

The SUV bias was below 8.4% for CGAN, RNET, and LD
images with LD images exhibiting a relatively higher standard
deviation compared to RNET and CGAN. CGAN led to the
lowest absolute average SUV bias (3.39 ± 0.71%) across all
four organs, while RNET and LD resulted in SUV bias of 3.83
± 1.25% and 4.78 ± 2.49%, respectively. Even though a low
SUV bias was observed in LD images, a remarkably higher
standard deviation was obtained, reflecting the high noise
characteristics in LD images (Tables 3 and 4).

Discussion

The main aim of the present study was to generate diagnostic
quality WB 18F-FDG PET images from LD PET images cor-
responding to 1/8th of standard FD acquisition time. In con-
trast to previous studies, we aimed at training the network with
realistic images obtained from two separate scans acquired
with standard injected activity but different continuousmotion
bed speeds and to evaluate the performance of the two DNN
algorithms for estimation of FD PET images. It was shown
that CGAN had a superior image quality and lower regional
SUV bias and variance compared to RNET. This highlights
that CGAN adds more constraints to the generator by intro-
ducing an inverse transformation in a circular manner, which
more effectively avoids model collapse and better ensures that
the generator finds a unique meaningful mapping. Our current
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Fig. 3 Top panel: image quality assessment by the two nuclear medicine
physicians for LD, FD, RNET and CGAN PET images. Mean scores are
presented on the top of the bar plots. 1 = uninterpretable, 2 = poor, 3 =
adequate, 4 = good, 5 = excellent. Bottom panel: Percentage of failed and

accepted images is illustrated. Failed was assigned whenever lesion
detectability was not good compared to the image displaying best
image quality. The two defined anatomical regions are shown on the right

Fig. 4 Lesion detectability histogram according to different SUV
subgroups for FD, LD, RNET, and CGAN evaluated by two expert
nuclear medicine physicians
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study demonstrated the improved performance of CGAN over
RNET for addressing the PET image denoising problem, par-
ticularly in terms of lesion detectability.

The assessment of image quality performed by nuclear
medicine physicians demonstrated the superior performance
of the CGAN approach, showing close agreement between
CGAN and reference FD images. The achieved MSE was
0.03 ± 0.04, 0.12 ± 0.10, and 0.15 ± 0.09 for LD and synthe-
sized CGAN and RNET images, respectively, reflecting the
effectiveness of CGANmodel (P value < 0.05).Moreover, the
SSIM improved from 0.89 ± 0.11 for LD images to 0.94 ±
0.10 for RNET and further to 0.98 ± 0.08 for CGAN. It would
be enlightening to consider the resulting metrics in conjunc-
tion with those obtained from LD images for better interpre-
tation of the extent of improvement achieved by the proposed
methods.

Lei et al. [29] reported that WB LD images created from
1/8th of the equivalent FD images achieved an average mean
error (ME) and normalized mean square error (NMSE) of −
0.14 ± 1.43% and 0.52 ± 0.19% using a CGAN model while
the LD PET images achieved a ME of 5.59 ± 2.11% and

NMSE of 3.51 ± 4.14%. The normalized cross-correlation
(NCC) was improved from 0.970 to 0.996, while the PSNR
increased from 39.4 to 46.0 dB using the CGAN model with
respect to LD images. The NCC metric reflects mainly the
correlation between two signals (or images) in terms of pattern
and/or texture while it is less sensitive to the intensity of sig-
nals. Conversely, the SSIM metric, which measures the per-
ceptual difference between two signals, reflects the quantita-
tive accordance between two images. Since the above men-
tioned study did not report the SSIM, we calculated the NCC
for LD (0.87), RNET (0.93), and CGAN (0.97) for compari-
son with our results. In another study performed by the same
group, CT images along with LD PET images were fed to a
CGAN to achieve significant improvement of the ME (< 1%)
for synthesized FD compared to corresponding LD images
(5.59%) [24].

For clinical evaluation, WB PET images were split into
brain and neck + trunk regions. The motivation behind is the
intense 18F-FDG uptake in the brain, which is considerably
higher than other biologically normal tissues and organs in the
body. Hence, by reducing the injected activity or acquisition

Fig. 5 Representative example of lesion detectability showing a clinical
study with multifocal multicentric breast cancer with skin involvement of
the right breast and extensive lymph node metastases including the
mediastinal nodes comparing FD and LD images as well as the
synthesized images using both networks. The lesion in the infero-

extrenal quadrant (long red arrow) was detected on a FD, b LD, and d
CGAN, but missed on RNET (c). The mediastinal lymph node (level 6)
(short red arrow) was visible on FD and CGAN and missed on LD and
RNET

Fig. 6 Joint voxel-wise SUV histogram analysis of the LD PET images (left), predicted FD images using ResNet (middle), and CycleGAN (right) versus
FD PET images. For better illustration, the plot was limited to maximum SUV of 7
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time, the level and/or properties of the induced noise in the
brain region would differ from those in the chest/abdomen.
Another reason guiding our choice to group neck and torso in
our assessment was to facilitate restaging using fast and stan-
dard acquisitions. This assessment revealed that the qualitative
scores assigned to the predicted images in the brain region
(4.92/5) were significantly higher than those assigned to the
chest/abdomen (3.88/5) when using CGAN.

We included patients with various conditions, such as age,
weight and height, and cancer type for training, evaluation,
and independent validation datasets, to provide a heteroge-
neous sample reflecting common clinical practice. The
Bland and Altman analysis showed lower SUV bias and var-
iance in the 4 organs and 285 malignant lesions when using
CGAN and RNET compared to LD images. The results

further demonstrated the superior performance of the CGAN
approach, resulting in SUV values comparable to those pro-
duced by the original FD images. In terms of computational
time, the training of ResNET is less demanding (~ 40 h) than
for CycleGAN network (~ 95 h). Moreover, the synthesis of a
3D PET image (after training) using ResNET takes ~ 80 s
versus ~ 250 s required by CycleGAN.

It should be emphasized that, in this work, the LD images
were obtained through a separate fast PET acquisition corre-
sponding to ~ 1/8th the FD scan duration prior to FD PET acqui-
sition. However, most related works in the literature employed a
random sampling scheme from the recorded events (in listmode
format) of the standard FD PET acquisition to generate the LD
PET images. There are a number of fundamental differences
between LD images generated through decimating the FD scan
and LD images actually acquired separately by reducing the
acquisition time or the injected activity. First, when the LD
PET image is obtained from a separate acquisition, the underly-
ing PET signal may be different between LD and FD PET im-
ages owing to the varying tracer kinetics of the radiotracer during
the course of imaging. Moreover, potential patient motion be-
tween these two scans further adds to the complexity of FD PET
estimation from the fast/LD PET scan. This bias was minimized
by first acquiring the LD PET images and comfortable position-
ing of patients. Second, since fast PET acquisition is performed
while the activity concentration in the field-of-view is equal to
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Fig. 7 The top row shows the Bland-Altman plots of SUVmean differ-
ences in the 4 normal organ regions. Second row shows the SUVmax for
the malignant lesions calculated for LD (left), RNET (middle), and

CGAN (right) PET images with respect to reference FD PET images in
the test dataset. The solid red and dashed blue lines denote the mean and
95% confidence interval (CI) of the SUV differences, respectively

Table 4 Standard deviation of SUV for each ROI drawn in each organ
for LD, RNET, and CGAN PET images

FD LD RNET CGAN

Left lung 0.17 0.74 0.38 0.22

Right lung 0.11 0.89 0.29 0.16

Liver 0.53 1.34 0.83 0.52

Brain 0.71 1.21 0.91 0.62
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that of a standard PET scan, the number of recorded random
events, which increases quadratically with the injected dose, is
higher. As such, the fast scan would contain higher noise level
compared to the equivalent real or simulated (decimated) LD
scan [30].

The current study inherently bears a number of limitations.
First, during the clinical evaluation, the LD images were relative-
ly easy to identify by physicians. Hence, they could have been
subconsciously biased and intuitively assigned lower scores to
these images. The acceptance or failure of an image with respect
to the clinical information it carries was essentially based on
lesion detectability criteria, with the brain obtaining a higher rate
of acceptable cases than corresponding neck and trunk images.
This discrepancymay be due to the fact thatmost patients, except
two, did not have lesions in the brain. Moreover, patient motion
during the two PET/CT scans, particularly for elderly patients,
might impair the image quality of both LD and FD PET images.
In addition, the evaluation process was performed using only
18F-FDG as radiotracer and a single PET/CT scanner model.
Different radiotracer distribution and concentration as well as
other PET/CT devices and multicentric images would need re-
appraisal using our training networks. In this regard, the concept
of transfer learning can be used for retraining images acquired
with other radiotracers and PET scanners, which might help
mitigating the limited size of training datasets.

Conclusion

We have demonstrated that high-quality WB 18FDG PET
images can be generated using deep learning approaches.
The noise was effectively reduced in the predicted FD PET
images from the LD images. An important finding of this
work is that the use of quantitative metrics is not sufficient
to evaluate model performance. The clinical evaluation in-
dicated that models (e.g., ResNET) achieving relatively
good quantitative performance do not perform well when
considering clinical tasks. The prediction of FD PET im-
ages using CycleGAN model exhibited superior perfor-
mance, resulting in higher image quality, minimal quantifi-
cation bias, and closer lesion detectability performance rel-
ative to the standard of reference.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00259-020-05167-1.

Funding Open Access funding provided by University of Geneva. This
work was supported by the Swiss National Science Foundation under
grant SNRF 320030_176052, the Eurostars programme of the European
commission under grant E! 114021 ProVision and the Private Foundation
of Geneva University Hospitals under Grant RC-06-01.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Research involving human participants All procedures performed in
studies involving human participants were in accordance with the ethical
standards of the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or comparable
ethical standards.

Informed consent Informed consent was obtained from all individual
participants included in the study.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Boellaard R. Standards for PET image acquisition and quantitative
data analysis. J Nucl Med. 2009;50:11S–20S.

2. Zaidi H, Karakatsanis N. Towards enhanced PET quantification in
clinical oncology. Br J Radiol. 2018;91:20170508.

3. NAS/NRC (National Academy of Sciences/National Research
Council). Health risks from exposure to low levels of ionizing ra-
diation: BEIR VII – Phase 2. BEIR VII phase. Washington DC:
National Research Council; 2006.

4. Liu X, Faes L, Kale AU,Wagner SK, Fu DJ, Bruynseels A, et al. A
comparison of deep learning performance against health-care pro-
fessionals in detecting diseases from medical imaging: a systematic
review and meta-analysis. Lancet Digital Health. 2019;1:e271–97.

5. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian
M, et al. A survey on deep learning in medical image analysis. Med
Image Anal. 2017;42:60–88.

6. Arabi H, Zeng G, Zheng G, Zaidi H. Novel adversarial semantic
structure deep learning for MRI-guided attenuation correction in
brain PET/MRI. Eur J Nucl Med Mol Imaging. 2019;46:2746–59.

7. Shiri I, Arabi H, Geramifar P, Hajianfar G, Ghafarian P, RahmimA,
et al. Deep-JASC: joint attenuation and scatter correction in whole-
body (18)F-FDG PET using a deep residual network. Eur J Nucl
Med Mol Imaging. 2020;47:2533–48.

8. Akhavanallaf A, Shiri I, Arabi H, Zaidi H. Whole-body voxel-
based internal dosimetry using deep learning. Eur J Nucl Med
Mol Imaging. 2020; in press.

9. Arabi H, Zaidi H. Applications of artificial intelligence and deep
learning in molecular imaging and radiotherapy. Eur J Hybrid
Imaging. 2020;4:17.

10. Shiri I, AmirMozafari SabetK,ArabiH, PourkeshavarzM, Teimourian
B, Ay MR, et al. Standard SPECT myocardial perfusion estimation

2414 Eur J Nucl Med Mol Imaging (2021) 48:2405–2415

https://doi.org/10.1007/s00259-020-05167-1
https://doi.org/


from half-time acquisitions using deep convolutional residual neural
networks. J Nucl Cardiol. 2020; in press.

11. Chan C, Fulton R, Barnett R, Feng DD, Meikle S. Postreconstruction
nonlocal means filtering of whole-body PET with an anatomical prior.
IEEE Trans Med Imaging. 2014;33:636–50.

12. Arabi H, Zaidi H. Improvement of image quality in PET using post-
reconstruction hybrid spatial-frequency domain filtering. PhysMed
Biol. 2018;63:215010.

13. Arabi H, Zaidi H. Spatially guided nonlocal mean approach for
denoising of PET images. Med Phys. 2020;47:1656–69.

14. Xu Z, Gao M, Papadakis GZ, Luna B, Jain S, Mollura DJ, et al.
Joint solution for PET image segmentation, denoising, and partial
volume correction. Med Image Anal. 2018;46:229–43.

15. Wang Y, Zhou L, Yu B, Wang L, Zu C, Lalush DS, et al. 3D auto-
context-based locality adaptive multi-modality GANs for PET syn-
thesis. IEEE Trans Med Imaging. 2018;38:1328–39.

16. Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A,
Khalighi M, et al. Ultra–low-dose 18F-florbetaben amyloid PET
imaging using deep learning with multi-contrast MRI inputs.
Radiology. 2019;290:649–56.

17. Sanaat A, Arabi H,Mainta I, Garibotto V, Zaidi H. Projection-space
implementation of deep learning-guided low-dose brain PET imag-
ing improves performance over implementation in image-space. J
Nucl Med. 2020;61:1388–96.

18. Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, et al. An investiga-
tion of quantitative accuracy for deep learning based denoising in
oncological PET. Phys Med Biol. 2019;64:165019.

19. Gong K, Guan J, Liu C-C, Qi J. PET image denoising using a deep
neural network through fine tuning. IEEE Trans Rad Plasma Med
Sci. 2018;3:153–61.

20. Kaplan S, Zhu Y-M. Full-dose PET image estimation from low-
dose PET image using deep learning: a pilot study. J Digit Imaging.
2019;32:773–8.

21. Zhou L, Schaefferkoetter JD, Tham IW, Huang G, Yan J.
Supervised learning with CycleGAN for low-dose FDG PET im-
age denoising. Med Image Anal. 2020;101770.

22. Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, et al. PET image
denoising using unsupervised deep learning. Eur J Nucl Med Mol
Imaging. 2019;46:2780–9.

23. Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, et al. Whole-
body PET estimation from low count statistics using cycle-consistent
generative adversarial networks. Phys Med Biol. 2019;64:215017.

24. Lei Y, Wang T, Dong X, Higgins K, Liu T, Curran WJ, et al. Low
dose PET imaging with CT-aided cycle-consistent adversarial net-
works. Medical Imaging 2020: Physics of Medical Imaging:
International Society for Optics and Photonics; 2020. p. 1131247.

25. Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D,
Harvey H, et al. Preparing medical imaging data for machine learn-
ing. Radiology. 2020;295:4–15.

26. Mongan J, Moy L, Kahn CEJ. Checklist for artificial intelligence in
medical imaging (CLAIM): a guide for authors and reviewers.
Radiol: Artif Intell. 2020;2:e200029.

27. Loening AM, Gambhir SS. AMIDE: a free software tool for
multimodality medical image analysis. Mol Imaging. 2003;2:131–7.

28. Schoonjans F, Zalata A, Depuydt C, Comhaire F. MedCalc: a new
computer program for medical statistics. Comput Meth Progr
Biomed. 1995;48:257–62.

29. Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-
dose PET reconstruction using generative adversarial network with
feature matching and task-specific perceptual loss. Med Phys.
2019;46:3555–64.

30. Schaefferkoetter J, Nai YH, Reilhac A, Townsend DW, Eriksson L,
Conti M. Low dose positron emission tomography emulation from
decimated high statistics: a clinical validation study. Med Phys.
2019;46:2638–45.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2415Eur J Nucl Med Mol Imaging (2021) 48:2405–2415


	Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Materials and methods
	PET/CT data acquisition
	Deep learning algorithms
	Evaluation strategy

	Results
	Assessment of image quality
	Clinical readings
	Region-based analysis
	Discussion
	Conclusion
	References


