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Abstract

Purpose Risk classification of primary prostate cancer in clinical routine is mainly based on prostate-specific antigen (PSA)
levels, Gleason scores from biopsy samples, and tumor-nodes-metastasis (TNM) staging. This study aimed to investigate the
diagnostic performance of positron emission tomography/magnetic resonance imaging (PET/MRI) in vivo models for predicting
low-vs-high lesion risk (LH) as well as biochemical recurrence (BCR) and overall patient risk (OPR) with machine learning.
Methods Fifty-two patients who underwent multi-parametric dual-tracer ['*FJFMC and [**Ga]Ga-PSMA-11 PET/MRI as well as
radical prostatectomy between 2014 and 2015 were included as part of a single-center pilot to a randomized prospective trial
(NCT02659527). Radiomics in combination with ensemble machine learning was applied including the [**Ga]Ga-PSMA-11 PET,
the apparent diffusion coefficient, and the transverse relaxation time-weighted MRI scans of each patient to establish a low-vs-high risk
lesion prediction model (M y;). Furthermore, Mpcr and Mepr predictive model schemes were built by combining M; i3, PSA, and
clinical stage values of patients. Performance evaluation of the established models was performed with 1000-fold Monte Carlo (MC)
cross-validation. Results were additionally compared to conventional [**Ga]Ga-PSMA-11 standardized uptake value (SUV) analyses.
Results The area under the receiver operator characteristic curve (AUC) of the My jy model (0.86) was higher than the AUC of the
[¥Ga]Ga-PSMA-11 SUV . analysis (0.80). MC cross-validation revealed 89% and 91% accuracies with 0.90 and 0.94 AUCs
for the Mpcr and Mopr models respectively, while standard routine analysis based on PSA, biopsy Gleason score, and TNM
staging resulted in 69% and 70% accuracies to predict BCR and OPR respectively.

Conclusion Our results demonstrate the potential to enhance risk classification in primary prostate cancer patients built on PET/
MRI radiomics and machine learning without biopsy sampling.
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prediction - Overall patient risk prediction
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Introduction

Prostate cancer is the second most common cancer in men
worldwide, with 1.3 million new cases diagnosed in 2018
[1, 2]. The worldwide incidence rates significantly increased
during the last decade, most likely due to the wider application
of prostate-specific antigen (PSA) screening [2]. While the 10-
year survival rate of prostate cancer is approximately 90%,
advanced or late-stage prostate cancer may be life-threatening,
in particular, in metastasized stages of the disease [3].

The S-year risk stratification in patients with primary
prostate cancer is mainly built on clinical stage, PSA, and
Gleason scores, derived from invasive biopsy samples [4].
Despite having profound effects on treatment planning and,
thus, patient’s quality of life, this approach has a number of
limitations [3, 5]. First, Gleason scoring relies on biopsy
sampling, hence, can neither help assess the entire prostate
nor fully characterize the heterogeneity of any pertinent tu-
mor [6]. In addition, transrectal biopsy sampling has been
associated with side-effects, such as haematospermia or
haematuria [3]. Second, previously published risk classifi-
cation systems were reported to have the tendency of incor-
rectly grading primary prostate cancer [3]. In patients with a
high risk score and absent metastatic disease, radical pros-
tatectomy is the treatment-of-choice [7] despite the risk of
potential overtreatment [8] and at the same time, a 20—-40%
chance of biochemical recurrence (BCR) [9, 10].

Combined positron emission tomography/computed to-
mography (PET/CT) or PET/magnetic resonance imaging
(PET/MRI) using radiotracers targeting prostate-specific
membrane antigen (PSMA) can help to localize suspicious
lesions in the prostate [11, 12]. PSMA-PET in combination
with CT has been reported to improve primary tumor locali-
zation [13] and the diagnosis of recurrent prostate cancer [14,
15] in patients after radical prostatectomy even at low PSA
levels [16]. In contrast, PSMA-PET/MRI was shown to sup-
port the diagnosis of intermediate and high-risk patients as
well as to detect tumor recurrence [13]. Nevertheless, the di-
agnosis of primary prostate cancer is still based on core-needle
biopsy, with non-invasive imaging playing a role in the visual
identification of lesions and/or in image-guidance for biopsy
sampling [17, 18].

Recently, radiomics have been argued to add value to the
diagnostic pathways and patient management [19]. Various
studies have been investigating the correlation of PSMA ex-
pression and clinical end-points in prostate cancer patients
[14, 15]. Furthermore, radiomics combined with machine
learning in MRI [20, 21] as well as in PET/CT [22-24] dem-
onstrated the potential feasibility to establish novel in vivo
prediction models for prostate cancer risk assessment.

In light of the potential of combining PET/MR imaging,
radiomics and machine learning (ML), the objectives of this
study were as follows: (a) to establish and cross-validate
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prostate lesion low-vs-high risk in vivo ML predictive models
built on PET/MRI radiomics, (b) to establish and validate
biochemical recurrence and overall patient risk (OPR) models
that utilize in vivo ML scores instead of biopsy grades togeth-
er with PSA and clinical stage, and (c) to compare the above
patient risk models to the standard risk stratification.

Materials and methods
Patient data

Patients were selected from the database (n = 122) of a mono-
centric pilot study to a prospective randomized trial
(clinicaltrials.gov NCT02659527) conducted between 2014
and 2015. Fifty-two of the 122 patients underwent surgery;
in these patients, PET/MRI, PSA values, pre-operative biopsy
results, and post-operative whole-mount histopathology were
documented [15] (Table 1). All the 52 patients underwent a
dual-tracer, fully integrated PET/MRI scan (['*F]JFMC and
[°*Ga]Ga-PSMA-11 sequentially). This study, however, only
included the [*®Ga]Ga-PSMA-11 PET image as well as the
transverse relaxation time-weighted (T2w) and apparent dif-
fusion coefficient (ADC) MRI sequences in the analysis
(Supplement: Table 1). All patients were treated with radical
prostatectomy according to guideline recommendations [3].
All surgical specimens were processed according to the insti-
tution’s standard pathologic procedures in whole mount sec-
tions. Staging and grading were performed according to the
UICC TNM classification and WHO/ISUP 2005 system, re-
spectively [25]. The study was approved by the local institu-
tional ethical committee and patients provided their written
informed consent. See Fig. 1 for the CONSORT study
diagram.

Delineation

Delineation and annotation of prostate lesions on PET/MR
images were performed using the Hybrid 3D software ver.
4.0.0 (Hermes Medical Solutions, Stockholm, Sweden).
Here, [*®*Ga]Ga-PSMA-11 PET and T2w as well as ADC
MR images were viewed side-by-side with the annotated,
whole-mount histopathological slices. Delineation was
done over the [**Ga]Ga-PSMA-11 image using standard
three-dimensional iso-count VOIs (Fig. 2). The initial le-
sion delineations were cross-examined and corrected
manually—if required—as part of an independent review
process performed by PET and MRI specialists. This step
resulted in 121 lesions in total. An additional reference re-
gion was defined in the gluteus muscle to normalize the
standard uptake value (SUV) of [*®*Ga]Ga-PSMA-11 and
the T2w arbitrary voxel values to the mean of their respec-
tive reference background (26).
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Table 1 Characteristics of the 52 patients involved in this study, at the
time of radical prostatectomy (RP)

Patient characteristics (n = 52) Value
Age (years), median (IQR) 64 (59-70)
PSA (ng/ml), median (IQR) 7.5 (5.0-13.4)
Pathologic T staging, n (ratio)

2 20 (0.38)
2a 1 (0.02)
2¢ 2 (0.04)
3a 11(0.21)
3b 17 (0.33)
4 1 (0.02)
Primary Gleason pattern, n (ratio)

3 18 (0.35)
4 31 (0.6)
5 3(0.05)
Secondary Gleason pattern, n (ratio)

3 16 (0.31)
4 26 (0.5)
5 10 (0.19)
Total Gleason Score, n (ratio)

6 3 (0.06)
7 14 (0.27)
>=8 35(0.67)
Biochemical recurrence (BCR), n (ratio)

Yes 9(0.17)
No 27 (0.52)
NA 16 (0.31)
Overall patient risk (OPR), n (ratio)

Yes 23 (0.44)
No 27 (0.52)
NA 2 (0.04)
Follow-up (months), median (IQR) 41 (32-49)

IQR interquartile range, NA not available

Feature extraction

Each image was resampled to 2.0 x 2.0 x 2.0 uniform voxel
resolution via ordinary Kriging interpolation [27, 28].
Radiomic features with “very strong” or “strong” consensus
values as of the Imaging Biomarker Standardization Initiative
(IBST) guidelines were extracted from the 121 resampled
[*®Ga]Ga-PSMA-11, T2w and ADC lesions by the MUW
Radiomics Engine (ver. 2.0) that was validated based on
IBSI standards [29] (Supplement Table 1). Conventional stan-
dardized uptake values including SUX,;,x, SUVeak,
SUVnean, and SUV g were merged with the extracted 442
radiomic features to compose a 446 long feature vector for
each lesion. While total lesion glycolysis (TLG) is originally
proposed for ['*FJFDG, it was involved in our analysis as it

characterized [**Ga]Ga-PSMA-11 accumulation in prostate
lesions.

Feature redundancy reduction

Feature redundancy ranking and reduction were done across
the 446 features by covariance matrix analysis [19] where
features were considered redundant with higher than 0.75 ab-
solute Pearson correlation coefficient. This step resulted in
keeping 80 features for further analysis.

Reference standard

The respective whole-mount histopathology patterns of each
delineated lesion were dichotomized as low (< Gleason 3,
prostatic intraepithelial neoplasia (PIN), prostatitis, benign
prostatic hyperplasia (BPH)) and high (> = Gleason 4) risk
respectively. Furthermore, BCR and OPR reference values
were established for each patient. BCR was defined when
two consecutive PSA rose above 0.2 ng/ml. Follow-up was
generally every 3 months for the first 2 years, then semiannu-
ally until the fifth year, then annually. Mean follow-up was
41 months. OPR was defined high, if BCR was positive or the
node-stage (clinical or pathological) or the metastases-stage
(clinical or pathological) were positive.

Statistical analysis in [*®GalGa-PSMA-11

Area under the receiver operator characteristic curve (AUC)
was calculated for conventional SUVs and the volume of each
delineated lesion in the [*®Ga]Ga-PSMA-11 image to estimate
the performance of predicting low-vs-high lesion risk. This
process included SUX 4x, SUVpears SUVTL, and lesion vol-
ume values.

Cross-validation scheme

Monte Carlo (MC) cross-validation scheme was utilized to
randomly assign training and validation roles to the 52 pa-
tients 1000-times. In each fold, five patients were selected
for the validation role, while the remaining patients got the
training role. This step was necessary to avoid mixing lesions
for training and validation from the same patient. No repeti-
tions were allowed during the generation of MC folds; thus,
each of the 1000-fold configurations with their training-
validation selections was unique.

Machine learning scheme
Mixed ensemble learning scheme built on random forest
classifiers (RF) was utilized to build models for predicting

lesion LH, patient BCR as well as OPR (models denoted as
M 1, Mpcr and Mgpg respectively) [26, 30, 31]. Nine RFs
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- Sham data analysis across MC folds

- AUC analysis across MC folds
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Fig. 1 The analysis workflow of the collected dataset. The pre-study of
the prospective randomized trial NCT02659527 provided data records of
122 patients between 2014 and 2015. Patients having a dual-tracer posi-
tron emission tomography/magnetic resonance imaging (PET/MRI),
prostate-specific antigen (PSA) screening, and whole-mount histopathol-
ogy through undergone surgery were included in the analysis (n =52).
Only [*®Ga]Ga-PSMA-11 PET, apparent diffusion coefficient (ADC),
and transverse relaxation time-weighted (T2w) MRI images were select-
ed for radiomic analysis. Overall 121 PET/MRI-positive lesions were
delineated from the 52 patients followed by radiomics feature extraction.
The 121 lesions underwent prostate specific membrane antigen (PSMA)

with various hyperparameters were configured for each of
the three model schemes (Supplemental Table 2). The final
prediction was provided by majority vote of the respective
nine RFs. This approach was chosen to minimize
hyperparameter bias and to increase predictive performance
[32]. Furthermore, the average predictive score of the nine
RFs represented a continuous value range between 0.0 and
1.0 reflecting on the prediction certainty of the mixed en-
semble. Therefore, this value could be the subject of AUC
analysis across MC folds.

@ Springer

standardized uptake value (SUV) and volume area under the receiver
operator characteristics curve (AUC) analysis. Monte Carlo (MC) cross-
validation scheme was utilized to generate patient training and validation
sets 1000-times. This MC scheme was utilized to build lesion low-vs-
high (LH) prediction models via machine learning (My j1). Biochemical
recurrence (BCR, n =36) and overall patient risk (OPR, n =50) patient
prediction models were built across the same MC folds (Mpcr and Mopr
respectively). All machine learning models underwent confusion matrix
analytics, sham data analysis, and AUC analysis across MC folds. BCR
and OPR were also predicted by standard D’ Amico score

Lesion low-vs-high risk prediction

Training and validation lesion sets were generated as of the
pre-generated MC scheme roles to train and validate the
My models in each MC fold. In order to keep model com-
plexity minimal and to reduce the chance of overfitting,
selection of the top five-ranking features was performed
by R-squared ranking in the training dataset prior to estab-
lishing the My i lesion model per fold [33]. The same five
features were then selected from the respective validation
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Fig. 2 (A) Positron emission tomography/magnetic resonance imaging
(PET/MRI) views of a prostate cancer patient with volumes of interests
(VOIs) drawn over lesions with Gleason 4 (red) and high-grade pin (blue)
patterns. Standard iso-count 3D VOIs were drawn over the [**Ga]Ga-
PSMA-11 PET in the Hermes Hybrid 3D software. First row:
[*®Ga]Ga-PSMA-11 PET; second row: apparent diffusion coefficient
(ADC) MRI; third row: fused [**Ga]Ga-PSMA-11 PET and transverse

dataset to evaluate. Validation model performance was es-
timated via confusion matrix analytics across the predic-
tions of the validation cases of the MC folds [26]. The
My scheme also underwent AUC analysis by evaluating
the predictive performance of its averaged nine RF vote
across the MC validation cases. Last, to estimate the effect
of sham data in the My j; model, confusion matrix analytics
were also performed over randomly permutated labels
across all MC folds [24, 34].

Feature weighting

The importance of each feature in predicting lesion low-vs-
high risk was determined by counting the occurrence of all
selected features across the MC folds by the R-squared rank-
ing approach.

Patient biochemical recurrence and overall risk
prediction

Patient risk models for predicting BCR and OPR were
established (Mpcr and Mgpr respectively) analyzing the
PSA, the enumerated clinical stage (Supplemental Table 3),
and a composite My score (CLH) per patient calculated by
eq. 1.

b

relaxation time-weighted (T2w) MRI images. Note that each image is
represented in its own frame of reference, while the fused PET/MRI view
is aligned to the frame of reference of the T2-weighted MRI. Hence, the
cross-sections of the drawn VOIs look different on each view. (B) An
example histopathological slice with the same color codes as in case of
the PET/MRI views (red: Gleason 4, blue: high-grade pin)

CLH = L”;(l)v"

T~

(1)

where £ is the number of lesions in the given patient,
M (i) is the predicted low-vs-high risk score of lesion i pro-
vided by the M iy model of the given fold, v; is the volume of
lesion 7, and V = ¥, v; is the sum of lesion volumes in the
given patient.

Training and validation patient sets containing the above
value triplets were generated as of the pre-generated MC
scheme roles to train and validate the Mgcr and Mppr models
in each MC fold. In case a patient with validation role in the
given fold had no BCR or OPR reference value available, it
was excluded from the respective cross-validation of the given
patient model.

To handle class imbalance, the training set underwent
class imbalance correction by synthetic minority
oversampling technique (SMOTE) [24, 35] for both the
Mgcr and Mgpg training independently. Confusion matrix
analytics were calculated across the validation set of all MC
folds of the Mgcr and Mgpr model schemes. The same
process was repeated by reference label permutations across
the MC folds to estimate the effect of sham data. Both the
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Table 2 Characteristics of the 121 delineated lesions in the 52 patients
Lesion characteristics (n = 121) Value
Delineated lesions, n (ratio)

Benign prostatic hyperplasia 20 (0.17)
Low grade PIN 16 (0.13)
High grade PIN 5(0.04)
Prostatitis 2 (0.02)
Gleason 3 17 (0.14)
Gleason 4 50 (0.41)
Gleason 5 11 (0.09)
Lesion high-low risk pattern, n (ratio)

High risk pattern 61 (0.504)
Low risk pattern 60 (0.496)

Mgcr and Mopr models underwent AUC analysis across
the MC cross-validation folds.

Fig. 3 Area under the receiver

operator characteristics curves

(AUC) of conventional standard-

ized uptake values (SUV) as well 1
as lesion volume together with the

machine learning low-vs-high le-

sion risk scores. Note that the

M iy AUC performance is a con-

servative estimate, as it is a Monte 08
Carlo cross-validation AUC,

while the SUV and volume curves

were measured directly from the

whole dataset

0.6 /

0.4

0.2
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Results
Patients

Of the 52 patients, 36 had BCR during follow-up and 50 had
OPR information available at the time of conducting the
study. At the time of radical prostatectomy, the average PSA
was 7.5. The most common pathologic stages were stage 2
(n =20, 38%) followed by 3b (n =17, 33%) and 3a (n =11,
21%). Total Gleason score occurrences were GS > =8 (n =35,
67%) followed by GS 7 (n =14, 27%) and GS=6 (n =3, 6%)
(Table 1). The delineated 121 lesions represented a wide-
range of benign and malign pathological alterations
(Table 2). The most common high-risk pattern was associated
to Gleason 4 (n =50, 41%), followed by Gleason 3 (n =17,
14%) and Gleason 5 (n =11, 9%). Low-vs-high risk pattern
regions were represented with balanced occurrences (n =61-
vs-60) (Table 2).

ROC curves of lesion predictors to classify low-vs-high

risk prostate lesions
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Fig. 4 Occurrence of the highest
ranked features across the 1000-
fold Monte Carlo cross-validation
scheme. PSMA—[®3Ga]Ga-
PSMA-11 positron emission to-
mography (PET); stat.cov: coef-
ficient of variation; cm.info.corr.
1—gray level co-occurrence ma-
trix information correlation type
1; ADC—apparent diffusion co-
efficient; stat.iqr—interquartile
range; cm.joint.entr—gray level
co-occurrence matrix joint entro-
py; dzm.hgze—gray level dis-
tance zone matrix high gray zone
emphasis

stat.iqr

dzm.hgze (PSMA)

Statistical analysis in [*®Ga]Ga-PSMA-11

The AUC curves of SUV metrics were SUV 5, 0.80, SUV peax
0.74 and SUVt.g 0.64. Lesion volume presented AUC of
0.53. In contrast, the low-vs-high lesion prediction model
(Mpy) demonstrated a cross-validation AUC of 0.86 which
was the highest compared to conventional [**Ga]Ga-PSMA-
11 values (Fig. 3).

Lesion low-vs-high risk prediction
The M 3 model validation performance as per the MC cross-

validation scheme yielded 71% sensitivity, 90% specificity,
88% positive predictive value, 75% negative predictive value,

Biochemical recurrence (BCR) prediction

performances
100 93
89 90 89
1 78 78 82
80
69

70 F 65
60
50 f 42
40 F
30 |
20 |
10 |
0

SENS SPEC ACC PPV NPV

mMBCR M Standard

Fig. 5 Left: validation performance estimations of predicting
biochemical recurrence (BCR) by Mpcr and clinical standard models.
Right: validation performance estimations of predicting overall patient
risk (OPR) Mgpr and the clinical standard models. SENS—sensitivity;
SPEC—specificity; ACC—accuracy; PPV—positive predictive value;

stat.cov (PSMA)
cm.info.corr.1 (PSMA)
SUVmax (PSMA)
(ADC)
cm.joint.entr (PSMA)

SUVmean (PSMA)

Occurrence of high-ranking features across 1000 Monte
Carlo folds in the M, , PET/MRI model predicting lesion

low-vs-high risk

I 1000
. 1000
T a74
T eee
" 573
P 509

M ss

0 200 400 600 800 1000

81% accuracy, and 0.86 AUC. Sham data analysis revealed
0.52 AUC for permutated labels in the M} iy model.

Feature weighting and distribution

Overall seven features were identified as selected across the
1000 MC folds via the R-squared ranking method. Features
that were always selected were coefficient of variation and
gray level co-occurrence matrix (GLCM) information corre-
lation type 1 from the [**Ga]Ga-PSMA-11 image (n = 1000).
[®Ga]Ga-PSMA-11 SUV . was the third mostly selected
feature (n =974) followed by the interquartile range of the
ADC image (n =886). GLCM joint entropy and SUV can
were moderately prominent with (n =573) and (n =509)

Overall patient risk (OPR) prediction

performances
94 91 93 g 93
70
61
48
SENS SPEC ACC PPV NPV

® MOPR ® Standard

NPV—negative predictive value. Confusion matrix values are in percent-
ages. Note that standard risk estimator had a confusion analytics perfor-
mance estimation in the whole dataset, as it is an established model, while
the performance of Mpcr and Mopr models was calculated through
Monte Carlo cross-validation
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respectively in the [**Ga]Ga-PSMA-11 image. The lowest
ranking feature (n = 58) was high gray zone emphasis in the
[°*Ga]Ga-PSMA-11 image (Fig. 4).

Patient biochemical recurrence and overall risk
prediction

The cross-validation performance revealed an average valida-
tion accuracy of 89% and 91% as well as AUC of 0.90 and
0.94 for the Mpcr and Mgpr patient models respectively. The
Mgpr model outperformed the Mpcr model with 94% spec-
ificity, 93% positive predictive value, and with 87% sensitiv-
ity. The performance of Mopr and Mpcr with sham data
revealed 0.54 and 0.56 AUC respectively. See Fig. 5 for the
detailed performance values of the Mpcr and Mppr models.

Discussion

In this study, we investigated the feasibility of predicting
prostate lesion-specific low-vs-high risk built on PET/MRI
radiomics and patient-specific biochemical recurrence as
well as overall patient risk. We demonstrated excellent
cross-validation performances for M i (AUC 0.86) as well
as for Mgcr (AUC 0.90) and Mgpr (AUC 0.94). Based on
the above approaches and our achieved model perfor-
mances, we consider that our findings have important clin-
ical implications in the field of primary prostate cancer risk
assessment as they point towards the feasibility to estimate
lesion and patient risks in vivo.

Next to establishing the above models with radiomics and
machine learning, conventional [**Ga]Ga-PSMA-11 SUV
and volume analysis were also conducted. This analysis re-
vealed that SUV .« had the highest predictive power (AUC
0.80) to classify low-vs-high prostate lesions followed by
SUVpeaks and SUV g, while lesion volume had no signifi-
cant predictive power (AUC 0.53). These findings are in line
with previous analyses performed in PET/CT [24].

Feature ranking across our Monte Carlo folds demonstrated
that [**Ga]Ga-PSMA-11 is the most important in vivo feature
source to establish lesion risk prediction models compared to
ADC and T2w MRI features. The highest-ranking [**Ga]Ga-
PSMA-11 features were either simple statistical values such as
the coefficient of variation and SUV,,,, or simple second-
order textural ones such as information correlation from the
GLCM feature category. Information correlation is a first-
order GLCM feature reflecting on the information content
(a.k.a. entropy) of voxel neighborhood connectivity occur-
rences; thus, it is a basic heterogeneity descriptor. This feature
was previously also identified as highly robust across various
PET imaging centers [36]. The feature ranking across MC
folds identified SUV,c., SUVrLg, and volume as low-
ranking; however, SUV,,.x was among the highest ranking

@ Springer

ones. While the potential of PSMA SUV,,,, in characterizing
prostate cancer had been presented [37, 38], Cysouw et al.
concluded in a recent study that prostate risk in PSMA can
be better characterized by textural parameters compared to
SUVmax [24]. They utilized ['*F]-DCFPyL PET/CT and re-
ported 0.81 AUC to differentiate high (GS > = 8) and low-risk
prostate cases. Our findings on the other hand demonstrate
that conventional SUV parameters in combination with simple
textural features can yield high-performing models in
[®Ga]Ga-PSMA-11 PET/MRI to characterize prostate risk.

While no T2w feature was selected as high-ranking, ADC
interquartile range (also referred to as “robust” value range)
was selected as high-ranking. Prior studies focusing on ADC
analysis to predict prostate lesion risk consistently identified
ADCpin, ADCiyean @s well as ADCpegian [20, 39] as highly
predictive (AUC range 0.72—0.90). We consider that the
above findings and ours describe the same phenomenon,
namely, the strong predictive ability of simple ADC values
without the need of incorporating second or higher-order
radiomic features in the analysis. The above findings in prior
reports demonstrate the predictive performance of PSMA PET
and ADC MR images individually. Hence, we hypothesize
that the high performance of our M; ;; model is due to the fact
that it combines both [*®Ga]Ga-PSMA-11 PET and ADC
MRI features in one model scheme.

Further to the above findings, we also established patient
biochemical recurrence (Mpcr) and overall patient risk
(Mopr) models. In order to provide an in vivo score per pa-
tient in lieu of biopsy grades in these models, we created a
CLH score which weighted each M y; score per lesion with its
respective volume in each patient. Since volume was identi-
fied as non-predictive to classify low-vs-high risk in prostate
lesions (AUC 0.53), we assumed that the volume effect [40] in
our high-ranking features was negligible, and thus, lesion vol-
ume was an independent value from our lesion My scores.
This assumption allowed us to utilize volume as a weight
factor for each lesion My score to compose the patient-
specific CLH score. The resulted CLH score in combination
with PSA and clinical stage values resulted in high-
performing Mpcr and Mopr models (0.90 and 0.94 cross-
validation AUCs respectively). We assume that the accuracy
performance increase of +20% and + 21% in our Mpcg and
Mopr models compared to standard risk estimation are due to
the following reasons: first, the clinical standard utilizes
Gleason patterns from biopsy to describe lesion pattern risks
in the prostate [41]. Biopsy is considered imperfect as it may
not be able to describe the overall heterogeneity of the prostate
lesions [19, 42]. In contrast, our CLH score could characterize
whole prostate lesions in vivo. Second, the clinical standard
categorizes the PSA, the Gleason, and the clinical stage values
independently into three categories (low, medium, and high
risk). In contrast, we incorporated PSA, clinical stage, and the
CLH score without re-binning them, and thus, avoiding
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potential information loss. Third, the clinical standard score
acts as a maximum filter across its pre-binned risk categories
to estimate overall risk to the patient. In contrast, the random
forest ensemble logics in our Mgcr and Mppr models could
describe more complex relationships among PSA, clinical
stage, and our in vivo CLH score. Our results demonstrate
that such relationships may be indeed present and that build-
ing on those relationships may lead to in vivo risk predictive
models in prostate cancer patients with the potential to elimi-
nate the need of biopsy sampling in the future.

This study had a number of limitations. First, it built on a
single-center cohort; however, due to utilizing a pre-generated
MC fold scheme for all training and validation processes, no
training and validation samples were mixed in between the
lesion and patient predictors. In addition, the utilized data
preparation (redundancy reduction, feature ranking, and class
imbalance correction) as well as training (mixed ensemble)
and validation (1000-fold CV, sham data analysis) approaches
minimized the chances of false discoveries. Second, due to the
dual-tracer study design from which our images were taken,
the [**Ga]Ga-PSMA-11 scans were not entirely exempt of
['"®F]JFMC uptake remnants. Nevertheless, ['*FJFMC can be
regarded an irreversible tracer [43] and, thus, the ['*FJFMC
uptake in terms of tissue to lesion ratio is expected not to
change until the [**Ga]Ga-PSMA-11 examination. Last, only
patients with proven prostate cancer were included after rad-
ical prostatectomy. Nevertheless, this selection criterion was
necessary to acquire stable ground truth for lesion labeling.

Conclusions

This study demonstrates the feasibility of [**Ga]Ga-PSMA-11
PET/MRI in combination with radiomics and machine learn-
ing to non-invasively deliver both lesion characterization and
risk prediction equally to preoperative invasive biopsy in pa-
tients with primary prostate cancer. Prospective multicentric
studies are required to investigate the reproducibility and clin-
ical utility of this approach.
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