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Abstract
As a reliable preoperative predictor for microvascular invasion (MVI) and disease-free survival (DFS) is lacking, we developed a
radiomics nomogram of [18F]FDG PET/CT to predict MVI status and DFS in patients with very-early- and early-stage (BCLC 0,
BCLC A) hepatocellular carcinoma (HCC).
Methods Patients (N = 80) with BCLC0-A HCC who underwent [18F]FDG PET/CT before surgery were enrolled in this retro-
spective study and were randomized to a training cohort and a validation cohort. Texture features from patients obtained using Lifex
software in the training cohort were subjected to LASSO regression to select the most useful predictive features of MVI and DFS.
Then, the radiomics nomogram was constructed using the radiomics signature and clinical features and further validated.
Results To predict MVI, the [18F]FDG PET/CT radiomics signature consisted of five texture features from the PET and six texture
features from CT. The signature was significantly associated withMVI status in the training cohort (P = 0.001). None of the clinical
features was independent predictors for MVI status (P > 0.05). The area under the curve value of the M-PET/CT model was 0.891
(95% CI: 0.799–0.984) in the training cohort and showed good discrimination and calibration. To predict DFS, the [18F]FDG PET/
CT radiomics nomogram (D-PET/CT model) and a clinicopathologic nomogram were built in the training cohort. The D-PET/CT
model, which integrated the D-PET/CT radiomics signature with INR and TB, provided better predictive performance (C-index:
0.831, 95% CI: 0.761–0.900) and larger net benefits than the simple clinical model, as determined by decision curve analyses.
Conclusion The newly developed [18F]FDG PET/CT radiomics signature was an independent biomarker for the estimation of
MVI and DFS in patients with very-early- and early-stage HCC. Moreover, PET/CT nomogram, which incorporated the radiomics
signature of [18F]FDG PET/CT and clinical risk factors in patients with very-early- and early-stage HCC, performed better for
individualized DFS estimation, which might enable a step forward in precise medicine.
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Introduction

Hepatocellular carcinoma (HCC) is a common malignancy
that ranks as the fourth leading cause of cancer-related deaths
worldwide [1]. Although most patients present with advanced
disease when first seen by a physician, some patients are ac-
tually diagnosed at the very early and early stage (BCLC 0-A)
[2]. Partial hepatectomy is the best modality for treating these
patients [3]. However, it was found that the prognosis of very-
early- and early-stage HCC after hepatic segmentectomy var-
ied [4]. In some patients, the disease progresses slowly and
has along disease-free survival (DFS), while in some patients,
the tumors recur and progress quickly [4]. The varied progno-
sis may have resulted from the high heterogeneity of the
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tumors [5, 6]. Some tumors manifest as having highly aggres-
sive characteristics, and the patients have a poor prognosis.
Alternatively, some tumors appear as low-grade tumors with
slow growth.

Microvascular invasion (MVI) is defined as the invasion of
HCC cells to the microvascular of peritumoral tissues, which
can only be visible on the pathological section under the mi-
croscopy after operation. It is one of the pathological
features reflecting the invasiveness of the tumor.
Highly aggressive HCC often exhibits obvious MVI,
while low-grade HCC often appears with no MVI.
HCC with MVI has a 4.4-fold higher risk of tumor
recurrence, and the patient has a much shorter DFS
[7]. Therefore, MVI is recognized as an important prog-
nostic factor in HCC [8–10]. Preoperative prediction of
MVI in HCC using noninvasive imaging modalities,
such as β-2-[18F] fluoro-2-deoxy-D-glucose positron
emission tomography/computed tomography ([18F]FDG
PET/CT), magnetic resonance imaging(MRI), computed
tomography(CT), or ultrasound (US) [11–13], has
attracted clinical interest.

[18F]FDG PET/CT is an integrated imaging modality of
PET and CT, which is always used for evaluating and staging
the malignant tumors before surgery, including HCC [14, 15].
The semi-quantitative indices such as maximum standardized
uptake value (SUVmax) and TLR (tumor-to-liver ratio) on PET
images [16] are often used to quantify tumor glucose metab-
olism, which may have a positive relationship with MVI and
the prognosis of HCC patient [17, 18]. Pseudocapsule sign of
the lesion on CT was also reported to prompt the low grade of
the tumor. On the other hand, fuzzy and irregular boundary of
the lesion often indicates the invasiveness of the tumor, which
often indicatesMVI. However, both the SUVmax and TLR can
only provide the gross glucose metabolism of the tumor, but
not reflect the subtle heterogeneity of metabolism in
different parts of the tumor. In addition, edge informa-
tion of the lesion analyzed by visual assessment has
great inter-observer variability.

Radiomics is an emerging method for imaging analysis
using algorithms or statistical analysis tools to capture distinct
phenotypic differences of tumors from diagnostic images. The
radiomics features can provide a great deal of information
beyond analysis with the naked eye and can sensitively
determine the subtle heterogeneity of the morphology
and function among different parts within the tumor at
the cellular level [19]. Radiomics has shown its power-
ful potential in diagnosis and prognosis predicting in
some tumors based on analysis of image features ex-
tracted from CT, MRI, or PET/CT. To the best of our
knowledge, no article has introduced radiomics analysis
to predict MVI and prognosis in very-early- and early-
stage HCC. Therefore, in this paper, we investigate the
capacity of the radiomics signature extracted from

preoperative [18F]FDG PET/CT to predict MVI and
DFS in patients with very-early- and early-stage HCC.

Materials and methods

Patients

Ethical approval was waived by the local Ethics
Committee of Guangzhou Medical University and
Southern Medical University in view of the retrospec-
tive nature of the study.

We retrospectively reviewed data from patients with histo-
logically confirmed very-early- and early-stage (BCLC0,
BCLCA) HCC who underwent radical surgical resection be-
tween March 2013 and April 2019 at the First Affiliated
Hospital of Guangzhou Medical University and Southern
Medical University Nanfang Hospital. The tumors were
staged according to the Barcelona Clinic Liver Cancer
(BCLC) system. Inclusion criteria included (1) pathologically
confirmed primary HCC, (2) [18F]FDG PET/CT performed
less than 2 weeks prior to surgery, (3) availability of follow-
up data and clinical-pathologic characteristics, and (4) no his-
tory of preoperative anti-cancer treatment. Patients were ex-
cluded if he/she had multiple primary cancers or had a previ-
ous history of cancer. The endpoint of this study was DFS
calculated from the day of surgery to the date of disease pro-
gression (locoregional recurrences or metastases), death from
any cause (censored), or the date of the last follow-up visit
(censored). Local recurrence and distant metastasis were
diagnosed based on clinical symptoms, physical exami-
nation, AFP essay, and imaging findings including chest
X-ray, abdominal ultrasound, enhanced contrast CT or
MRI, whole-body bone scan, and PET/CT. A total of 80
consecutive patients who met the criteria were enrolled
and divided into two cohorts (training and validation
cohort) with a ratio of 5:3 using computer-generated
random numbers. As a result, 50 patients were allocated
to the training cohort, and 30 patients were allocated to
the independent validation cohort. Clinical information
is presented in Table 1. Of these 80 patients, 63 pa-
tients underwent isolated enhanced CT, 7 had isolated
MRI examinations, and 4 underwent both CT and MRI
prior to radical surgical resection.

Histopathology

All patients underwent radical surgical resection within
2 weeks of [18F]FDG PET/CT examination. All surgical
specimens were reviewed by a pathologist with more
than 10 years of experience in liver pathology, in par-
ticular to estimate the presence of MVI. MVI was de-
fined as the presence of tumor in a portal vein, hepatic
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Table 1 Clinical and histopathological characteristics and imaging indicators of patients with very early and early HCC in the training and validation
cohort

Variables Training cohort (n = 50) Validation cohort (n = 30) P

MVI− MVI+ MVI− MVI+

Age (years) 0.226
≤ 50 12 (60.0) 8 (40.0) 2 (25.0) 6 (75.0)

> 50 16 (53.3) 14 (46.7) 14 (63.6) 8 (36.4)

Sex 1.000
Male 25 (54.3) 21 (45.7) 15 (55.6) 12 (44.4)

Female 3 (75.0) 1 (25.0) 1 (33.3) 2 (66.7)

Diameter (cm) 0.664
≤ 3 14 (73.7) 5 (26.3) 8 (80.0) 2 (20.0)

3–5 6 (50.0) 6 (50.0) 5 (50.0) 5 (50.0)

> 5 8 (42.1) 11 (57.9) 3 (30.0) 7 (70.0)

HBV infection 0.518
Absent 2 (33.3) 4 (66.7) 3 (50.0) 3 (50.0)

Present 26 (59.1) 18 (40.9) 13 (54.2) 11 (45.8)

Child-Pugh 0.248
A 24 (55.8) 19 (44.2) 16 (55.2) 13 (44.8)

B 4 (57.1) 3 (42.9) 0 (0.0) 1 (100)

Cirrhosis 0.538
Absent 8 (53.3) 7 (46.7) 5 (45.5) 6 (54.5)

Present 20 (57.1) 15 (42.9) 11 (57.9) 8 (42.1)

Tumor differentiation 1.000
Well-moderately 23 (54.8) 19 (45.2) 14 (56.0) 11 (44.0)

Poorly 5 (62.5) 3 (37.5) 2 (40.0) 3 (60.0)

BCLC stage 0.447
0 6 (60.0) 4 (40.0) 3 (75.0) 1 (25.0)

A 22 (55.0) 18 (45.0) 13 (50.0) 13 (50.0)

ALT (U/L) 0.365
≤ 50 22 (57.9) 16 (42.1) 10 (50.0) 10 (50.0)

> 50 6 (50.0) 6 (50.0) 6 (60.0) 4 (40.0)

AST (U/L) 1.000
≤ 40 17 (56.7) 13 (43.3) 10 (55.6) 8 (44.4)

> 40 11 (55.0) 9 (45.0) 6 (50.0) 6 (50.0)

TB (μmol/L) 0.180
≤ 19 21 (56.8) 16 (43.2) 14 (53.8) 12 (46.2)

> 19 7 (53.8) 6 (46.2) 2 (50.0) 2 (50.0)

CB (μmol/L) 0.614
≤ 6.8 20 (58.8) 14 (41.2) 12 (54.5) 10 (45.5)

> 6.8 8 (50.0) 8 (50.0) 4 (50.0) 4 (50.0)

ALB (g/L) 0.698
≤ 40 23 (62.2) 14 (37.8) 11 (52.4) 10 (47.6)

> 40 5 (38.5) 8 (61.5) 5 (55.6) 4 (44.4)

PLT

≤ 100 × 109/L 6 (54.5) 5 (45.5)

> 100 × 109/L 22 (56.4) 17 (43.6) 16 (53.3) 14 (46.7)

INR 0.093
≤ 1.15 18 (54.5) 15 (45.5) 15 (60.0) 10 (40.0)

> 1.15 10 (58.8) 7 (41.2) 1 (20.0) 4 (80.0)

PT (s) 0.407
≤ 13 19 (55.9) 15 (44.1) 14 (60.9) 9 (39.1)

> 13 9 (56.3) 7 (43.8) 2 (28.6) 5 (71.4)
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vein, or a large capsular vessel of the surrounding he-
patic tissue lined by the endothelium that was visible
only on microscopy [20, 21].

PET/CT imaging

[18F]FDG was synthesized using the Tracer lab FXFN synthe-
sis system (TRACERlab FXFDG; GE Healthcare, USA).
PET/CT scan was performed using a BiographmCTx scanner
(Discovery ST 8, GE Healthcare, WI, USA, and Siemens,
Germany). Patients were instructed to fast for at least 4 h.
The blood glucose levels of patients ranged from 3.6 to
6.1 mmol/L before [18F]FDG injection. Approximately
60 min after the intravenous injection of 3.70–5.55 MBq/kg
of [18F]FDG, PET/CT data were acquired according to the
guidelines for tumor imaging with [18F]FDG PET/CT 1.0.
Then, PET images were converted into SUV units by normal-
izing the activity concentration to the dosage of [18F]FDG
injected and patient body weight after decay correction.

VOI drawing and image analyzing

[18F]FDG PET/CT images were exported to the Lifex soft-
ware (version 5.10) [22]. PET/CT images were analyzed by
an experienced nuclear medicine physician with more than
20 years of experience in PET/CT diagnosis (XL Wang).
Areas with abnormal uptake of [18F]FDG on PET and/or ab-
normal density on CT were defined as lesions. On the PET
image, an ellipse iso-contour was drawn covering the lesion,
and the volume of interest (VOI) in 3D was obtained semi-
automatedly with an iso-contour threshold of 30% maximum.
If the PET and CT images matched well, the VOI of PET was
then copied to CT images to obtain the VOI on CT. If the
lesion had a low uptake of [18F]FDG, the VOI was calculated
on CT images and was then copied to PET to obtain the VOI
on PET. On the CT images, the regions of interest (ROIs) were

drawn section by section to measure the VOI. Enhanced con-
trast CT and MRI were sometimes used to help determine the
VOI. VOIs for PET and CTwere drawn respectively in case of
the mismatching of lesions border on PET and CT. The tex-
ture features were then automatically extracted from the PET
and CT images. Tumor FDG avidity was measured by tumor-
to-normal liver standardized uptake value ratio (TLR) calcu-
lated with the following equation: TLR =maximum SUV of
the tumor/mean SUV of the normal liver.

Then, the images were resampled to 1 × 1 × 1 mm3 voxels
by three-dimensional Lagrangian polygon interpolation. On
the CT images, Hounsfield units were then resampled into
400 discrete values (called bins) with absolute discretization
from − 1000 to 1000 Hounsfield units, leading to a fixed bin
size of 5.0 Hounsfield units. Four gray-level matrices were
calculated in three dimensions, giving 49 radiomics features
(including first-order and second-order features and volumes)
for each of the CT-tumor VOIs. On the PET images, SUV
units were resampled into 64 discrete values with absolute
discretization from 0 to 30 SUV units, leading to a fixed bin
size of 0.476 SUV units. Four gray-level matrices were calcu-
lated in three dimensions, giving 52 radiomics features for
each of the PET-tumor VOIs. Values of extracted radiomics
features were normalized using the Z-transform method [23].
All the texture features were summarized and defined in detail
in the Supplemental Materials.

Feature selection and radiomics signature
construction

The least absolute shrinkage and selection operator (LASSO)
method was used to select the most useful features from the
training cohort for prediction. A radiomics score (Rad-score)
was calculated for each patient via a linear combination of
selected features that were weighted by their respective
coefficients.

Table 1 (continued)

Variables Training cohort (n = 50) Validation cohort (n = 30) P

MVI− MVI+ MVI− MVI+

Scr (μmol/L)

≤ 133 28 (56.0) 22 (44.0) 16 (53.3) 14 (46.7)

> 133

AFP (ng/ml) 0.064
≤ 200 18 (56.3) 14 (43.8) 14 (56.0) 11 (44.0)

> 200 10 (55.6) 8 (44.4) 2 (40.0) 3 (60.0)

SUVmax 4.58 ± 4.25 7.66 ± 6.00 4.89 ± 3.20 8.29 ± 4.48 0.629

TLR 1.98 ± 1.04 3.46 ± 2.56 2.27 ± 1.71 3.48 ± 1.79 0.653

HBV, hepatitis B virus; ALT, alanine transaminase; AST, glutamic-oxal (o) acetic transaminase; TB, serum total bilirubin;CB, conjugated bilirubin; ALB,
albumin; PLT, platelet count; INR, international normalized ratio; PT, prothrombin time; Scr, serum creatinine; AFP, serum α-fetoprotein
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Development of individualized prediction models

Univariable and multivariable logistic regression analyses or
Cox regression analyses were used to analyze the value of
clinical candidate predictors. Radiomics signature was applied
to develop a diagnostic model for the prediction ofMVI status
and DFS. Backward stepwise selection was applied using the
likelihood ratio test with Akaike’s information criterion as the
stopping rule. Patients were classified into the high-risk group
and the low-risk group using the X-tile analyses for the
radiomics signature [24]. To provide the clinician with a quan-
titative tool to predict MVI and DFS, a radiomics nomogram
was built based on multivariable analysis.

Assessment of nomogram performance

Calibration curves were plotted to assess the calibration of the
radiomics nomograms and were accompanied by Hosmer-
Lemeshow tests (a significant test statistic implies that the
model does not calibrate perfectly). To quantify the discrimi-
nation performance of the radiomics nomogram, area under
the curve (AUC) or Harrell’s C-index was calculated.

Validation of the radiomics nomogram

The radiomics nomogram was subjected to bootstrapping val-
idation (10 bootstrap resamples) to draw the time-dependent
C-index curves in the training cohort. Then, the model created
in the training cohort was applied to all patients in the valida-
tion cohort and the performance of the internally validated
nomogram was tested in the validation cohort. The AUC/C-
index and calibration curves were derived based on the regres-
sion analyses.

Clinical utility of the radiomics nomogram

To estimate the clinical utility of the nomograms, decision
curve analyses (DCA) were performed by calculating the net
benefits for a range of threshold probabilities in the training
cohort and validation cohort.

Statistical analysis

All statistical tests were performed using SPSS 24.0 and R
statistical software (version 4.0.2). The differences in age,
sex, BCLC stage, mean follow-up time, and other related clin-
ical information between the training and validation cohort
were assessed using independent sample t test, χ2 test, or
Mann-Whitney U test, where appropriate.

The selected features after Z-transformation and the clinical
features were revealed by a heatmap using an online tool
called Morpheus (https://software.broadinstitute.org/
morpheus). Univariate and multivariate regression analyses

were used to evaluate the prediction value by SPSS 24. To
predict MVI status, binary logistic regression analyses were
used. To predict DFS, we used Cox regression analyses. A
two-sided P < 0.05 was considered significant.

We used the “glmnet” package to perform the LASSO
regression analysis. Nomogram construction and calibration
plots were performed using the “rms” and “pec” packages.
Bootstrapping validation of the radiomics nomogram was ac-
complished using the “hdnom” package. Comparison of two
time-dependent AUCs was performed using the “time ROC”
package. The survival curves were obtained by the
“survminer” package. DCA was performed using the “rmda”
and “ggDCA” package.

Results

Clinical characteristics

The study flowchart for predicting MVI and DFS via analysis
of PET and CT texture features and clinical risk factors is
presented in Fig. 1. Patient characteristics in the training co-
hort and validation cohort are given in Table 1. Of the 80
patients with BCLC0-A HCC, 45.0% (36/80) had the tumors
with MVI (MVI+) and 55.0% (44/80) patients had the tumors
without MVI (MVI−). MVI positivity was detected in 44.0%
(22/50) of tumors in the training cohort, similar to 46.7% (14/
30) seen in the validation cohort (P = 0.816). Follow-up data
showed that 50.0% of patients in the training cohort experi-
enced tumor relapse, which was not significantly different
from the 46.7% seen in the validation cohort (P =
0.773). Univariate analyses revealed that there was also
no significant difference in patients’ clinical and histo-
logical characteristics between training and validation
cohort (P > 0.05, Table 1). The above information indi-
cated that the patients in the training and validation
cohort had a balanced distribution of survival and base-
line clinical-pathologic characteristics.

Development of the predictive models for MVI status

Univariable analyses were used to determine the relationship
between clinical and histopathological features and imaging
indicators with MVI status (Table 2). According to the results
of the univariable analysis, none of the clinical factors was
found to be closely related with MVI status (Table 2, P >
0.05 for all clinical features), neither the histopathological
features, including BCLC stage, tumor differentiation and
Child-Pugh classification (Table 2, P > 0.05). For the three
conventional imaging indicators, the diameter was also not
related to MVI status (Table 2, P > 0.05); however, close as-
sociations were observed between SUVmax and TLR with
MVI in training cohort (P < 0.05).
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Potential radiomics features were selected to establish PET/
CT model (M-PET/CT model) for predicting MVI status using
the LASSO regression on the basis of 50 patients in the training
cohort. LASSO analysis revealed that five PET texture features
(HISTO_Entropy_log2, HISTO_Energy, GLCM_Contrast,

NGLDM_Busyness, GLZLM_ZP), and six CT texture features
(CONVENTIONAL_HUmax, CONVENTIONAL_HUQ3,
H I S TO _K u r t o s i s , H I S TO _ E x c e s s K u r t o s i s ,
NGLDM_Coarseness, GLZLM_ZLNU), were most useful
for predicting the MVI status. From the above-selected

Fig. 1 Study flowchart for predicting MVI and DFS by analyzing PET and CT texture features and clinical risk factors in training and validation set
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radiomics features, Rad-score for PET/CT (M-R-score) was
calculated. Calculation formula for the Rad-score based on
radiomics features was presented in the Supplemental Data.
As a result, M-R-score was proved to be statistically associated
with MVI (P = 0.001, Table 2). The heatmap, which was used
to visualize the rough association of clinical features and M-R-
score with MVI status, is provided in Figs. S1 and S2 in the
Supplemental Data. From the results of univariable analyses,
SUVmax, TLR and M-R-score were then brought into the mul-
tivariable logistic analysis, which finally demonstrated that on-
ly M-R-score was the independent predictor for
predicting the MVI status (P = 0.001, Table 4). Only
the M-R-score was used to build predictive model
(named M-PET/CT model) for MVI status.

Assessment and validation of prediction models for
MVI status

In order to identify the prediction performance, the ROC
curves for the M-PET/CT model in the training and validation
cohort were drawn (Fig. 2a, b). The AUC ofM-PET/CT mod-
el in the training cohort was found to be 0.891(95% CI:
0.799–0.984) (Fig. 2a). The optimum cut-off of M-R-score
generated by the AUC was 0.07. In this condition, the
predicting sensitivity was 0.682 and the specificity was
0.964. The AUC of the M-PET/CT model in the validation

cohort was 0.692 (95% CI: 0.497–0.887). The Hosmer and
Lemeshow tests showed good fits not only in the training
cohort (P = 0.796) but also in validation cohort (P = 0.874).
The calibration curve of the M-PET/CT model for predicting
MVI demonstrated good agreement between prediction and
observation in training cohort (Fig. 2c). However, the unfa-
vorable calibration of the M-PET/CT model was observed in
validation cohort (Fig. 2d).

Clinical use

The decision curve analysis for the M-PET/CT model in
the training and validation cohort is presented in Fig.
2e, f. The decision curve showed that if the threshold
probability of a patient or doctor is > 10%, using the M-
PET/CT model to predict MVI adds more benefit than
either the treat-all-patients scheme or the treat-none
scheme.

Feature selection and radiomics nomograms building
for predicting DFS

According to the results of follow-up, a total of 39 patients,
including 25 patients (50%) in the training cohort and 14
patients (46.7%) in the validation cohort, had the tumor
relapse.

Table 2 Univariate cox
regression analyses for MVI in
the training cohort

Variables B SE Wald Sig. Exp (B) 95.0% CI for Exp (B)

Lower Upper

Sex − 0.924 1.192 0.601 0.438 0.397 0.038 4.105

Age 0.272 0.585 0.216 0.642 1.313 0.417 4.131

Diameter 0.665 0.345 3.703 0.054 1.944 0.988 3.826

PT − 0.015 0.611 0.001 0.981 0.985 0.297 3.263

INR − 0.174 0.604 0.083 0.773 0.840 0.257 2.745

PLT − 0.076 0.686 0.012 0.912 0.927 0.242 3.559

TB 0.118 0.648 0.033 0.856 1.125 0.316 4.005

CB 0.357 0.609 0.343 0.558 1.429 0.433 4.717

ALB 0.966 0.663 2.123 0.145 2.629 0.716 9.645

AST 0.068 0.581 0.014 0.907 1.070 0.342 3.342

ALT 0.318 0.664 0.230 0.632 1.375 0.374 5.055

HBsag − 1.061 0.919 1.333 0.248 0.346 0.057 2.095

AFP 0.028 0.593 0.002 0.962 1.029 0.322 3.290

Child-pugh − 0.054 0.823 0.004 0.948 0.947 0.189 4.756

BCLC 0.205 0.719 0.081 0.776 1.227 0.300 5.028

Cirrhosis − 0.154 0.620 0.062 0.804 0.857 0.254 2.890

Differentiation 0.320 0.793 0.162 0.687 1.377 0.291 6.519

SUVmax 2.750 0.709 15.054 0.000* 15.640 3.899 62.735

TLR 2.134 0.729 8.559 0.003* 8.444 2.022 35.262

M-R-score 2.158 0.660 10.694 0.001* 8.654 2.374 31.547

* These variables were statistically significant for predicting MVI status in the univariate analyses
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The LASSO regression analyses revealed that three PET
t ex t u r e f e a t u r e s (H ISTO_Ene rgy_Un i f o rm i t y ,
GLCM_Contrast_Variance, NGLDM_Coarseness) and four

CT texture fea tures (CONVENTIONAL_HUQ2,
CT_HISTO_Kurtosis, CT_HISTO_ExcessKurtosis,
CT_NGLDM_Busyness) were most useful for predicting

Fig. 2 a, b ROC curve for the M-PET/CT model in the training (a) and validation (b) cohorts. c, d Calibration curves of the M-PET/CT model for MVI
prediction in the training (c) and validation (d) cohorts. e, f Decision curve analysis for M-PET/CT model in training cohort (e) and validation cohort (f)
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DFS. PET/CT Rad-score (D-R-score) was then calculated
based on the above texture features. The formula of Rad-
score for predicting DFS was listed in the Supplemental
Materials. The D-R-score optimum cut-off point generated
by the X-tile analysis was identified at 0.5. Accordingly, pa-
tients were classified into the low-risk group (Rad-score < 0.5)
and the high-risk group (Rad-score ≥ 0.5). The relationship
between DFS and the clinical factors and histopathologic
and imaging indicators were investigated. Among them, 6
variables including 4 clinical variables (INR, CB, TB and
MVI) and 2 conventional PET imaging metrics (SUVmax

and TLR) were identified to be closely related with DFS by
univariate analysis (P < 0.05 for all) (Table 3 and Table 4,
Fig. 3). The D-R-score was observed to be significantly asso-
ciated with DFS (P < 0.001) (Table 3, Fig. 4). In the training
cohort, Kaplan-Meier analysis showed the D-Rad-score was
significantly correlated with tumor relapse and the patients
with higher Rad-scores had a significantly higher incidence
of tumor recurrence (P < 0.05, Fig. 4a). 13 (34.2%) patients
were confirmed to have tumor relapses in the low-risk group;
12 (100%) patients in the high-risk group were confirmed to
have tumor relapse (mean DFS, 40.82vs9.08 months,
P < 0.0001). A similar result was also observed in the D-R-
score in the validation cohort (Fig. 4b). Further multivariate
analysis revealed that the INR, TB and D-R-score were statis-
tically significant for predicting DFS. These three features
were applied to develop the predictive model for DFS, which
was named the D-PET/CT model. Meanwhile, a clinical mod-
el was also built after multivariate analysis of the clinical var-
iables in the training cohort. The clinical model was integrated
by the INR, TB, andMVI status. To provide the clinician with
a quantitative method to predict patients’ probability of 1-, 2-
and 3-year DFS, the nomograms of the D-PET/CT model and
clinical model were developed (Fig. 5a–d).

Assessment and validation of prediction models
for DFS

The C-indices of the D-PET/CT model and clinical model in
the training cohort were 0.831(95% CI, 0.761 to 0.900) and
0.776(95% CI, 0.689 to 0.862), respectively. The C-index of
the D-PET/CT model was superior to that of clinical model in
the training cohort (P = 0.04). Using time-dependent receiver
operating characteristic curve analysis, we found that the D-
PET/CT model had higher predictive power for HCC recur-
rence than the clinical model at various time points in the
training cohort (Fig. 5c, d). The C-indices of the two models
for predicting DFS in the validation cohort were 0.640 (95%
CI, 0.487 to 0.793) and 0.692 (95% CI, 0.552 to 0.832),
respectively.

The calibration curves for predicting the probability of tu-
mor recurrence at 1, 2, or 3 years after surgery of each model
after 1000 times of bootstraps are shown in Fig. 5e–h. The

calibration curves showed similarly good agreement between
the estimation and actual observation in the training cohort.
Correlation matrix for all the eligible features in the training
cohort is shown in the Fig. S3.

Clinical use

The decision curve analyses for the D-PET/CT model and
clinical model are presented in Fig. 6. Decision curve analyses
showed that the D-PET/CT radiomics nomogram had a higher
overall net benefit than the clinical-pathologic nomogram
across most of the range of risk threshold (Fig. 6a). Decision
curve analyses in the validation cohort were a little unsatisfac-
tory but kept a similar trend with that in the training cohort
(Fig. 6b).

Discussion

The prediction of MVI and the tumor recurrence in patients
with very early and early HCC (BCLC stage 0-A) are impor-
tant for establishing a precise therapeutic strategy. Despite
improvements in diagnostic and therapeutic modalities, the
recurrence rate after treatment for HCC remains high [25].
Approximately half of the patients in our study developed
tumor relapse. MVI is an important factor related to the recur-
rence of HCC. Preoperatively predicting MVI and DFS in
patients with very early or early HCC (BCLC stage 0 or A)
is important for establishing a personalized therapeutic strate-
gy and helps to select a more aggressive treatment for those
with high-risk factors in order to reduce the post-operation
recurrence. In this study, we found that the radiomics signa-
ture of preoperative [18F]FDG PET/CT from patients with
very-early- and early-stage HCC was an independent predic-
tor for MVI status, while the clinical features were not.
Meanwhile, we also demonstrated the role of the radiomics
of preoperative [18F]FDG PET/CT in predicting DFS. Based
on the above findings, we developed and validated a
radiomics feature-based [18F]FDG PET/CT nomogram and a
clinical nomogram for predicting DFS. Our data revealed that
the D-PET/CT nomogram successfully stratified patients into
high-risk and low-risk groups, with significant differences in
DFS within 3 years. The D-PET/CT model performed better
than the clinical-pathologic nomogram, indicating the incre-
mental value of the D-PET/CT radiomics signature for indi-
vidualized DFS in patients with very-early- and early-stage
HCC.

Some studies reported that preoperative metabolic bio-
markers of the HCCs, such as SUVmax and TLR, are indepen-
dent predictors of MVI [26–28]. In agreement with their re-
sults, univariate analysis in our study also found that SUVmax

and TLR were closely associated with MVI (P < 0.05), as
higher SUVmax and TLR showed higher frequencies of
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Table 3 Univariate cox
regression analyses for disease-
free survival in the training cohort

Variables B SE Wald Sig. Exp (B) 95.0% CI for Exp (B)

Lower Upper

Sex 0.312 0.616 0.257 0.612 1.367 0.408 4.575

Age 0.268 0.418 0.411 0.521 1.307 0.576 2.964

Diameter 0.359 0.239 2.248 0.134 1.432 0.896 2.289

PT 0.746 0.404 3.403 0.065 2.109 0.954 4.659

INR 0.885 0.402 4.836 0.028* 2.422 1.101 5.330

PLT − 0.732 0.420 3.034 0.082 0.481 0.211 1.096

CB 0.899 0.402 5.000 0.025* 2.457 1.117 5.405

TB 1.181 0.414 8.130 0.004* 3.256 1.446 7.332

ALB 0.343 0.430 0.635 0.426 1.409 0.607 3.271

AST 0.640 0.402 2.544 0.111 1.897 0.864 4.168

ALT 0.717 0.432 2.759 0.097 2.048 0.879 4.773

HBsag 0.656 0.739 0.788 0.375 1.926 0.453 8.194

AFP 0.447 0.403 1.227 0.268 1.563 0.709 3.445

Child-pugh 0.527 0.507 1.083 0.298 1.694 0.628 4.572

BCLC 0.396 0.547 0.525 0.469 1.486 0.509 4.340

Cirrhosis − 0.069 0.430 0.026 0.873 0.934 0.402 2.168

Differentiation − 0.661 0.469 1.984 0.159 0.516 0.206 1.295

MVI 1.256 0.421 8.897 0.003* 3.512 1.538 8.016

SUVmax 0.107 0.033 10.470 0.001* 1.113 1.043 1.188

TLR 0.262 0.087 9.147 0.002* 1.300 1.097 1.541

D-R-score 1.045 0.248 17.762 0.000* 2.842 1.749 4.621

* These variables were statistically significant for predicting DFS in the univariate cox regression analyses

Table 4 Univariate and multivariable Cox regression analysis of predictors in three predicting Models for MVI and DFS in the training cohort

Variable Univariable Multivariable

HR 95% CI P HR 95% CI P

Predict MVI

M-PET/CT model

SUVmax 15.640 3.899–62.735 0.000

TLR 8.444 2.022–35.262 0.003

M-R-score 8.654 2.374–31.547 0.001 8.654 2.374–31.547 0.001

Predict DFS

D-PET/CT model

INR 2.422 1.101–5.330 0.028 3.786 1.485–9.653 0.005

CB 2.457 1.117–5.405 0.025

TB 3.256 1.446–7.332 0.004 4.124 1.696–10.028 0.002

MVI 3.512 1.538–8.016 0.003

SUVmax 1.113 1.043–1.188 0.001

TLR 1.300 1.097–1.541 0.002

D-R-score 2.842 1.749–4.621 0.000 3.295 1.651–6.574 0.001

Clinical model

INR 2.422 1.101–5.330 0.028 2.723 1.183–6.267 0.018

CB 2.457 1.117–5.405 0.025

TB 3.256 1.446–7.332 0.004 3.441 1.458–8.122 0.005

MVI 3.512 1.538–8.016 0.003 4.973 2.075–11.917 0.0003
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microvascular infiltration than the lower glucose metabolism.
However, all of the clinical features were not significantly
associated with MVI (P > 0.05), which is different from re-
ports by Xu and Seung et al. [18, 21]. In their studies, some
clinical features such as clinical stage, AST, and AFP are

important predictors of MVI [21, 29]. This difference is likely
due to the difference in study object, as their studies included
advanced liver cancer, whereas we only enrolled patients with
very-early- and early-stage HCC. In our study, most patients
had the low grade of HCC and preserved liver function, which

Fig. 3 Kaplan-Meier analyses of the 6 selected features for patients in the training cohort

Fig. 4 a, b Survival of patients stratified by the risk classification according to D-PET/CT radiomics signature for patients in the training (a) and
validation (b) cohorts
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might be one of the reasons that the clinical features were not
significant predictors for MVI status. However, multivariate
analysis showed that only the radiomics signature (M-R-
score) was an independent predictor for MVI status in very-

early- and early-stage HCC (P < 0.05). Our study revealed that
the radiomics signature of [18F]FDG PET/CT was a stable
predictor of MVI status with relatively high AUCs and cali-
brations. Ultrasound, contrast-enhanced CT and the gadoxetic

Fig. 5 a, b Radiomics nomogram of the D-PET/CT model and clinical
model for predicting DFS. c, d Time-dependent area under ROC curve of
the D-PET/CT model and clinical model for DFS prediction. e–h

Calibration curves of D-PET/CT model and clinical model for DFS pre-
diction in the training cohort at the 1-year (e), 2-year (f), and 3-year (h)
time points
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acid–enhanced MRI based models had been used for
predicting MVI status. The gadoxetic acid–enhanced MR
model had the highest AUC (0.936; 95% CI 0.895–0.976)
for predicting MVI status [30], followed by the contrast-
enhanced CT model, both of which worked better than the
ultrasound-based model [12]. The blood supply could be
assessed via contrast-enhanced CT or MR, which may con-
tribute to the high AUCs for prediction. When compared with
other reported models, our study demonstrated that the
M-PET/CT model (0.891, 95% CI: 0.799–0.984) exhib-
ited similar performance with the contrast-enhanced CT
model (0.909, 95% CI, 0.869–0.928). The CT compo-
nent of the PET/CT had a relatively poor performance in
assessing MVI due to its specific image acquisition (low dose
without contrast enhancement). The performance improve-
ment of the M-PET/CT model was likely due to the addition
of the PET component.

Resection for early-stage HCCs is still plagued by a high
recurrence rate, and approximately half of the patients in our
study developed tumor relapse, which was in agreement with
the results of previous studies [31, 32]. In this study, we re-
vealed that the radiomics signature of [18F]FDG PET/CT was
a stable predictor for MVI. However, the relationship between
MVI, PET/CT based radiomics, and early tumor recurrence in
very-early- and early-stage HCC remains unclear. Although
the Barcelona Clinic Liver Cancer system is crucial for
assessing the prognosis and establishing a treatment strategy,
this staging system performs poorly in predicting tumor recur-
rence after hepatic resection or orthotopic liver transplantation
for HCC [29]. In this study, Kaplan-Meier analysis revealed

that there was no significant difference in the DFS distribution
between BCLC 0 stage and the group of BCLC A stage (P =
0.269, Fig. S4a). Within BCLC A, the radiomics signature
successfully identified high-risk patients with poor survival
outcomes, for whom more intensified treatment was needed
(Fig. S4b). Unfortunately, the radiomics signature failed to
discriminate subgroups within stage BCLC 0 (n = 14), which
may be largely attributed to the limited size of the study pop-
ulation. Unlike prior prognostic investigations that mainly an-
alyzed patients at all stages of the disease, our current study
focused exclusively on patients with very-early- and early-
stage disease. Therefore, we sought to improve the predictive
ability for prognosis of very early and early HCC by develop-
ing a novel method for categorizing patients into low- and
high-risk groups for early tumor recurrence. To our knowl-
edge, the association between radiomics features of
PET/CT images and DFS of HCC patients has not been
evaluated previously.

Radiomics refers to the comprehensive quantification of
tumor phenotypes by applying a large number of quantitative
imaging features, which may reflect changes in human tissues
at the cellular and genetic levels, and provides more detailed
information on tumor biology and microenvironment that are
complementary to visual features [33, 34]. In this study, the
extraction of advanced PET imaging features allowed us to
assess intratumor heterogeneity quantitatively on the glucose
metabolism scale. Cox regression analysis showed that the
radiomics signature was an independent prognostic factor for
DFS in very-early- and early-stage hepatocellular carcinoma,
even after adjustment for the same stage (Fig. S4b). In order to

Fig. 6 Decision curve analysis for each model in training cohort (a) and
validation cohort (b). The y-axis measures the net benefit. The net benefit
was calculated by summing the benefits (true positive results) and
subtracting the harms (false-positive results), weighting the latter by a
factor related to the relative harm of an undetected cancer compared
with the harm of unnecessary treatment. The radiomics model had the

highest net benefit compared with both clinical model and simple
strategies such as follow-up of all patients (green line) or no patients
(horizontal black line) across the full range of threshold probabilities at
which a patient would choose to undergo imaging follow-up in the train-
ing cohort
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use it for clinical practice, we established a radiomic-based
prediction model and a clinical model for predicting HCC
recurrence. We found that the prognostic performance of the
radiomic-based model (D-PET/CT model) was superior to
that of the clinical model in the training cohort (P < 0.05).
The D-PET/CT model had a higher capability for risk assess-
ment of early recurrence after radical resection of very early
and early HCC and yielded the best discriminatory capacity
(Fig. 5c, d). The metabolic signature of [18F]FDG PET/CT, a
multi-parametric approach using fully integrated [18F]FDG
PET/CT, successfully stratified those patients into high-risk
and low-risk groups with significant differences in DFSwithin
3 years. Patients at high risk for recurrence are potential can-
didates for more intensive surveillance and adjuvant therapy
after curative surgery. Study findings have supported the
prognostic value of the signature and allowing clinicians to
potentially identify candidates for systemic approaches with
greater effectiveness to improve treatment outcomes.
Moreover, incorporation of D-PET/CT radiomics signatures
into a clinical model can add prognostic information to better
identify patients that may have different outcomes, and the
radiomics nomogram is a good witness. The decision curve
analysis demonstrated that the D-PET/CT radiomics nomo-
gramwas superior to the clinical-pathologic nomogram across
most of the range of reasonable threshold probabilities, indi-
cating that the D-PET/CT radiomics signature added incre-
mental value to other clinical-pathologic risk factors for indi-
vidualized DFS estimation.

Microvascular invasion is a well-known independent prog-
nostic factor associated with more advanced tumor stage, tu-
mor progression, and poorer clinical outcomes. In this study,
the microvascular invasion was a high-risk factor associated
with DFS (Fig. 3a). However, further analysis revealed that
the radiomics signature is the independent prognostic factor,
but not MVI (Table 4). As demonstrated in the current study,
radiomics feature-based [18F]FDG PET/CT imaging signature
by applying a large number of quantitative image features
could be suggestive of survival outcomes, which may reflect
changes of human tissues at the cellular and genetic levels and
provide different information fromMVI and thus is associated
with patient prognosis. Except for radiomics signature, TB
and INR were also significantly associated with DFS even in
very early and early HCC and were risk factors for DFS pre-
diction models (Fig. 3b, c), similar to the results of other
studies that liver function is another independent prognostica-
tor of tumor recurrence [35–37]. Previous studies have ex-
plored the relationship between SUVmax and HCC outcomes.
HCCs with increased [18F]FDG uptake showed molecular
features of more aggressive biologic properties than
those with a low [18F]FDG uptake [14]. The findings
of this study support the above hypothesis that patients
with a high SUVmax and TLR demonstrated a worse
overall survival (Fig. 3e, f).

Our study has some limitations. First is the small sample
size and the retrospective evaluation of data. The relationship
between the clinicopathological parameters, MVI, and prog-
nosis could have been influenced by the small sample size. To
overcome these limitations, we are aiming at validating the
model in prospective multi-center clinical trials. Finally,
whether adjuvant therapy can provide a better survival benefit
to patients classified as high Rad-score based on [18F]FDG
PET/CT nomogram should be assessed in the future.

Conclusion

This study provided [18F]FDG predictive model that incorpo-
rated both the radiomics signature of [18F]FDG PET/CT and
clinical risk factors. The radiomics signature can be conve-
niently used to facilitate the preoperative individualized pre-
diction for MVI status and DFS in patients with very-early-
and early-stage HCC. The radiomics signature of [18F]FDG
PET/CT effectively predicted MVI status. Incorporating
D-PET/CT radiomics into a nomogram along with other
clinical-pathologic risk factors to estimate the disease-
free survival for very early and early HCC was more
accurate than the clinical-pathologic nomogram. Our
predictive models are potential, noninvasive, and effec-
tive complements to clinical practice. The radiomics
analysis could renew the application of [18F]FDG for
management of HCC.
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