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Since its first introduction some 20 years ago, [68Ga]-
radiolabelled somatostatin receptor agonists (SSAs) have gained
high importance in the management of neuroendocrine tumours
[1], especially due to the better delineation of small structures
compared with the licensed product [111In]In-pentetreotide
([111In]In-DTPA-[D-Phe1]-octreotide, OctreoScan®) [2, 3]. In
clinical routine PET imaging of the somatostatin receptor
(SSTR) in patients with neuroendocrine tumours (NETs)
employing on [68Ga]Ga-DOTA-peptides such as [68Ga]Ga-
DOTATOC or [68Ga]Ga-DOTATATE is the gold standard [4].
Current guidelines recommend a preplacement of [111In]In-
DTPA-octreotide by [68Ga]-labelled SSAs [5]. The theranostic
pair with [177Lu]Lu-DOTATOC or [177Lu]Lu-DOTATATE as
radiotracers for peptide receptor radionuclide therapy (PRRT)
has been established [6].

The big advantage of the positron-emitting radiometal
[68Ga] is its availability from a [68Ge]/[68Ga] generator, pro-
viding an independence from a local cyclotron installation.
This aspect and the fact that some of the available generators
have received regulatory approval have spread [68Ge]/[68Ga]
generators and their production facilities worldwide in recent
years. Nevertheless [68Ga] has at the same time several disad-
vantages. With a relatively short half-life (68 min) [7], the
possibilities for decentralized production are very limited
and restrict its use in centres that have no adequate
radiopharmacy. Another limiting point is that the low overall
activity yield per synthesized batch is only sufficient for a

maximum of four patients per production. In addition to lo-
gistical disadvantages, [68Ga] also has drawbacks based on its
physical properties. [68Ga] is a long-range positron emitter (>
1 mm) with a relatively high positron energy (Emean =
0.83 MeV) which corresponds to a relatively long positron
range (Rmean = 3.5 mm) resulting in relatively blurred images
due to a suboptimal spatial resolution compared with the
radiohalogen [18F] [8, 9]. For these reasons, the implementa-
tion of especially [18F] labelling of SSAs for PET imaging of
NETs has been studied.

Concerning clinical PET imaging, [18F] is the most com-
monly used positron-emitting radiohalogen. Unlike [68Ga], it
offers several logistic and physical benefits. [18F] with a half-
life of 109.77 min [10] can be produced in large amounts by
cyclotrons, and locally synthesized PET tracers can consecu-
tively be easily transported over a longer distance to hospitals
and departments without cyclotron (satellite concept).
Another advantage is that [18F] is a short-range positron emit-
ter (< 1 mm) with a low positron energy (Emean = 0.25 MeV)
and a corresponding shorter positron range (Rmean = 0.6 mm)
resulting in a higher spatial resolution [8, 9].

To meet the high radiotracer demand in PET imaging of
NETs, the group of Hans-Jürgen Wester evaluated already
more than 10 years ago a fluorine-18-labelled somatostatin
receptor agonist, Gluc-Lys([18F]FP)-TOCA, which showed a
superior diagnostic performance compared with [111In]In-
DTPA-octreotide. Due to its complex multistep synthesis
and the poor radiochemical yield, this tracer was not imple-
mented in clinical practice [11–13]. The chemical advantages
in using silicon-fluoride acceptor (SiFA) chemistry allowing a
simple and mild radiolabeling procedure without generating
radiochemical by-products or derivatives were demonstrated
[14]. A promising fluorine-18-based SSA tracer,
[18F]SiFAlin-TATE [15], was explored in a patient with met-
astatic NET and compared with [68Ga]Ga-DOTATOC. This
case report demonstrated that the uptake of [18F]SiFAlin-
TATE in healthy and tumour tissue is in the same range as
[68Ga]Ga-DOTATOC [16]. A tracer synthesizing method
which combines the advantages of a chelator-based
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radiolabelling and the properties of [18F] was developed in 2009
[17]. Laverman et al. introduced [18F]AIF-NOTA-octreotide and
compared it with [111In]In-DTPA-octreotide and [68Ga]Ga-
NOTA-octreotide in preclinical models. This comparison con-
firmed a high in vitro binding affinity of [18F]AIF-NOTA-
octreotide towards SSTR2 [18, 19]. In 2019, the first clinical
experience with [18F]AIF-NOTA-octreotide in 22 NET patients
was reported showing that the tracer displays a favourable
biodistribution and provides an excellent detection of tumoural
lesions with a high tumour-to-background ratio; however, there
was no comparison with a [68Ga]-labelled SSA [20]. It took
almost 10 years until an automated GMP compliant production
of [18F]AIF-NOTA-octreotide was published and a GMP grade
precursor became commercially available [21].

In this issue, a systematic biodistribution study of
[18F]AIF-NOTA-octreotide as well as a first comparison to
the clinical standard [68Ga]Ga-DOTATATE is presented by
the group from Leuven, Belgium, using this automated GMP
compliant production (Pauwels et al.: [18F]AlF-NOTA-
octreotide PET imaging: biodistribution, dosimetry and first
comparison with [68Ga]Ga-DOTATATE in neuroendocrine
tumour patients, in print). While the acquisition of [68Ga]Ga-
DOTATATE is recommended to be started about 45–60 min
p.i. [22, 23], the authors showed that 120 min p.i. reveal the
best target-to-background ratio for [18F]AIF-NOTA-
octreotide imaging. This aspect has to be taken into account
in the logistic planning of the scanning if the tracer would be
introduced into routine. The very small group of patients does
not allow the conclusion that [18F]AIF-NOTA-octreotide is
superior to [68Ga]Ga-DOTATATE, but it can be stated that
it is certainly not inferior to the gold standard. The favourable
dosimetry, biodistribution, kinetics and binding affinity/
tumour targeting hold promise for a competitive compound
in the management of NET patients.

In conclusionwe think that the easy to synthesize and GMP
compliant tracer [18F]AIF-NOTA-octreotide has definitely the
potential to become the rising star in SSR imaging and might
prove to also have economical advantages.
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